Nicolas Isoart
email: isoart@univ-cotedazur.fr

Jean-Charles Régin
email: regin@univ-cotedazur.fr

An adaptive CP method for TSP solving

Keywords: Lagrangian Relaxation, Filtering Algorithms, TSP

HAL is

Introduction

Lagrangian relaxation (LR) is a relaxation method which approximates a dicult problem of constrained optimization by a simpler problem [START_REF] Beasley | Lagrangian Relaxation[END_REF]. It consists in removing dicult constraints by integrating them into the objective function. It is therefore appropriate for solving problems where the constraints can be partitioned into two parts: a set of constraints that can be easily solved and a set that contains the other constraints. The constraints of the second group are moved to the objective, so it remains only constraints that are easy to solve. The satisfaction of dicult constraints is achieved by penalizing them in the objective by introducing a cost for each constraint that measures the distance to satisfaction and by multiplying this cost by a multiplier. For each set of multipliers the optimal solution of the LR is a lower bound of the optimal solution of P , the initial problem, and there is a multiplier set for which this lower bound is equal of the optimal value of P . Thus, an optimal solution of P can be found by searching for some multipliers of LR. We can also use the lower bounds produced by the LR to accelerate the search for an optimal solution of P by more traditional means such as the use of a branch-and-bound algorithm.

LR is an eective method to solve many combinatorial optimization problems. In particular, it has proven its eciency in solving the Traveling Salesman Problem (TSP), which consists of nding a simple cycle of minimum weight traversing all the nodes of a graph [START_REF] Held | The traveling-salesman problem and minimum spanning trees: Part ii[END_REF]. The LR of the TSP can be dened as follows. The TSP can be seen as the search for a 1-tree (i.e. a node associated with two arcs joining a spanning tree) of minimum weight such that each node of the 1-tree has a 2 degree. The search for a minimum weight 1-tree is equivalent to the search for a minimum spanning tree. This problem can be solved in polynomial time and therefore forms a constraint that we know how to solve. However, we do not know how to eectively combine it with the constraint on degrees, since the TSP is NP-Complete. The Lagrangian relaxation transfers these degree constraints into the objective. Thus for each node v, the expression µ i (degree(v) -2) with µ ≥ 0 is added to the objective, where the degree of v is expressed as the sum of the arcs taken with v as an endpoint.

The fact that for any set of multipliers µ, the optimal value of the LR is a lower bound of the optimal value of P can be eciently used for removing some values of variables. Consider U B, an upper bound of the optimal solution of P (for example any solution of P , therefore not necessarily optimal), and x = a an assignment, if for x = a the optimal value of the LR is greater than U B then we can remove a from D(x) since we know that x = a does not belong to the optimal solution. From this idea, Fahle and Sellmann introduced the CP-based Lagrangian relaxation [START_REF] Sellmann | Constraint programming based lagrangian relaxation for the automatic recording problem[END_REF] which has been used successfully to solve many problems [2325,[START_REF] Khemmoudj | Combining arc-consistency and dual lagrangean relaxation for ltering csps[END_REF][START_REF] Menana | Automates et programmation par contraintes pour la planication de personnel[END_REF][START_REF] Fontaine | Constraint-based lagrangian relaxation[END_REF]68]. It consists in modeling the problem so that one or more cost based ltering algorithms can be used on the easy part of the problem. Dicult constraints are moved to the objective function and these ltering algorithms are used when looking for good multipliers.

Sellmann then became more interested in the relationship between the LR and ltering algorithms [START_REF] Sellmann | Theoretical foundations of cp-based lagrangian relaxation[END_REF]. He made two important observations: Suboptimal multipliers can be more ecient for ltering than the optimal multipliers for the original problems. Since the search for good multipliers is important for determining good lower bound, it is necessary to do it. Thus, it makes sense to perform cost-based ltering during the optimization of Lagrangian multipliers.

It is not clear whether domain reduction should actually take place during the optimization of the Lagrangian multipliers (i.e. as early as possible or not?), because the standard approach for the optimization of the Lagrangian multipliers are not guaranteed to be robust enough to enable a change of the underlying subproblem during the optimization.

In this paper, we study the impact of suboptimal multipliers on ltering algorithms for the TSP, and propose an approach to determine relevant ones.

We can immediately make another observation for the CP-based Lagrangian relaxation approach. The optimal solution of the initial problem is obtained by using a branch-and-bound algorithm, thus we are mainly interested in good lower bounds given by the LR and not by the optimal solutions. In addition, since we need suboptimal multipliers, we can accept to not compute (or even to not converge to) the optimal multipliers. This means that it is reasonable to consider subgradient optimization algorithms for determining multipliers, because they give access to suboptimal multipliers and are fast.

Subgradient algorithms work in steps and reoptimize locally the multipliers according to a certain precision. Thus, determining the appropriate multipliers is the same as determining the type of precision and the number of internal multiplier recomputations we want, that is two parameters.

We start by showing that the permanent use of ltering algorithms does not lead to good results and reveals a rather disturbing property. Normally, in CP, when F 2 , a ltering algorithm, is added to F 1 , another ltering algorithm, all values eliminated by F 1 are also eliminated by the combination of F 1 and F 2 . However, it turns out that this is not the case when ltering algorithms are called more often with CP based-Lagrangian relaxation. This does not help in determining the right level of ltering to use! In addition, we show that the number of values eliminated by ltering algorithm is, in fact, rather erratic. In other words, introducing more precision, or making more internal recalculations, is sometimes better and sometimes worse. This therefore seems to eliminate any a priori determination of the criteria. Also, we introduce a multi-armed bandit algorithm to learn the right combination of criteria during solving. The results we obtain with this method are quite good since they improve the best combination of parameters that could be obtained globally on a set of instances and are competitive with the best method for each instance.

The article is organized as follows. We recall some denitions. Then we present the subgradient algorithm we used. We then show the erratic side of the results we obtain. Next, we introduce the multi-armed bandit algorithm. Finally, we conclude. Many experimental results are given throughout this article.

Preliminaries

Most of the presentations come from [START_REF] Ahuja | Network Flows[END_REF][START_REF] Sellmann | Theoretical foundations of cp-based lagrangian relaxation[END_REF].

Lagrangian Relaxation. The Lagrangian relaxation (LR) procedure uses the idea of relaxing some dicult constraints by bringing them into the objective function with associated Lagrangian multipliers µ ≥ 0. The application of LR to a mixed integer program can be dened as follows.

Z = min c• x Z LR (µ) = min c• x + µ(A 1 • xn -b 1) s.t.    A 1 • x ≤ b 1 A 2 • x ≤ b 2 x ∈ X -→ s.t. A 2 • x ≤ b 2 x ∈ X
We will denote by LR(P) the Lagrangian relaxation of the problem P and by LR(P, µ) the LR of P associated with the multiplier set µ.

Assume that the constraint

A 1 • x ≤ b 1 is dicult to solve whereas constraint A 2 • x ≤ b 2 is easy. LR moves the rst one into the objective. If A 1 • x ≤ b 1 is violated then A 1 • x > b 1 and so d = A 1 • x -b 1 > 0.
This value d measures the distance to the satisfaction of this constraint. The further away the d value is from satisfaction, the more the solution must be penalized, so the more the value of the objective must be increased. On the contrary, the closer it is to satisfaction, the less the objective should be penalized. As we consider a problem of minimization, penalizing the objective means increasing it. This result is obtained by adding the value (A 1 x -b 1) in the objective. Lagrangian relaxation proposes to use a positive or zero multiplier µ for each constraint introduced in the objective. The interest of the multipliers is shown by the following property: Property 1 For any vector µ, the value of Z LR (µ) is a lower bound of Z.

The Lagrangian multiplier problem (LMP) consists of searching for the best multipliers. The two most popular types of methods for solving it are the subgradient and the bundle methods [START_REF] Frangioni | Generalized bundle methods[END_REF]. This second type of method converges faster than the previous one. Since we need to use suboptimal multipliers to lter we will focus our attention on the rst type.

CP-based Lagrangian Relaxation. According to Sellmann [START_REF] Sellmann | Theoretical foundations of cp-based lagrangian relaxation[END_REF] CP based LR consists in the following procedure: Assuming we are given a linear optimization problem that consists in the conjunction of two constraint families A and B for which an ecient ltering algorithm prop(B) is known, we try to optimize Lagrangian multipliers for A and use prop(B) for ltering in each Lagrangian subproblem LR(P, µ).

It is not necessary for constraints A or B to be linear (something that is not imposed in CP). We need to ensure that the relaxation we calculate for any multiplier set is a P relaxation. So we just need to be able to make sure that prop(B) remains valid when the objective becomes that of the LR.

Sellmann dened a particular consistency based on the continuous relaxation of P , but it does not matter in this paper. He also dened the following property: Property 2 Suboptimal multipliers can be more ecient for ltering than the optimal multipliers for the original problems.

This property is explained by the fact that a value x = a can be removed when the optimal value of P ∧ (x = a) is greater than U B, a given upper bound. By considering the Lagrangian relaxation we consider the problem LR(P) and not LR(P ∧ (x = a)) and there is no reason why the best multipliers for LR(P) should also be the best for LR(P ∧ (x = a)).

In CP, it is also possible to express the violation of the constraint in dierent ways, we can also decide not to measures the distance to the violation. Fontaine et al. have proposed to avoid counting any value of a relaxed constraint when it is satised [START_REF] Fontaine | Constraint-based lagrangian relaxation[END_REF]. This is an interesting idea, but since we will relax only equality constraints we will not detail it here.

TSP model. The TSP consists of the searching for an Hamiltonian path whose the sum of the cost of its edges is minimum.

The model we use is based on the weighted circuit constraint (WCC) [START_REF] Benchimol | Improved ltering for weighted circuit constraints[END_REF] with some additional structural constraints [START_REF]Anonymous: Integration of structural constraints into TSP models[END_REF]. The circuit constraint is based on the famous Held and Karp Lagrangian relaxation of the TSP [START_REF] Held | The traveling-salesman problem and minimum spanning trees: Part ii[END_REF]:

A 1-tree of a graph G is formed by a node x, two edges having x as an extremity and a spanning tree of G -x (the graph G in which x has been removed). Held and Karp proposed to represent the TSP as the search for a 1-tree whose all vertices have a degree two and whose sum of the costs of the edges it contains is minimum. Searching for a minimum 1-tree is an easy task because it is related to the search for a minimum spanning tree. However, the constraints on the degree modify the complexity of the problem. Held and Karp proposed to use the Lagrangian relaxation on these constraints (the degree of a node x is expressed as the sum of the arcs taken with x as an endpoint).

Decomman et al. [START_REF] Ducomman | Alternative ltering for the weighted circuit constraint: Comparing lower bounds for the TSP and solving TSPTW[END_REF] tested dierent models and concluded that the weighted circuit constrained gave the best results for the TSP.

Fages et al. [START_REF] Fages | The salesman and the tree: the importance of search in cp[END_REF] tested dierent strategies and concluded that three strategies gave similar results that are better than the others. Among them, the best strategy with the additional structural constraints is LCFirstMinReplacementCost. It consists in selecting the edges by their increasing replacement costs [START_REF] Benchimol | Improved ltering for weighted circuit constraints[END_REF] with the LCFirst policy, which keeps one of the two extremities of the last branching edge and selects the edges from the neighborhood of the kept node by their increasing replacement costs.

It can therefore reasonably be considered that the WCC constraint with structural side constraints used in conjunction with the LCFirstMinReplace-mentCost strategy is the state of the art of TSP modeling by the CP-based Lagrangian Relaxation.

Experiments. The algorithms have been implemented in Java 11 in a locally developed CP solver. The experiments were performed on a Windows 10 machine using an Intel Core i7-3930K CPU @ 3.20 GHz and 64 GB of RAM. The reference instances are from the TSPLib [START_REF] Reinelt | TSPLIBa traveling salesman problem library[END_REF], a library of reference graphs for the TSP and the set of instances is the same as in [START_REF] Fages | The salesman and the tree: the importance of search in cp[END_REF]. All instances considered are symmetrical graphs. The name of each instance is suxed by its number of nodes.

Subgradient algorithm

As mentioned above, we are trying to calculate multipliers that allow ltering algorithms to prune values. Also, we decided to base our study on the search for multipliers by the subgradient method.

We need to have a ne control of the subgradient method in order to be able to study the relationship between multipliers and ltering algorithms. This is why we propose a particular calculation of multipliers that is strongly inspired by the Beasley algorithm [START_REF] Beasley | Lagrangian Relaxation[END_REF] which is one of the most widely used. This algorithm is depicted in Algorithm 1.

In order to be able to measure the impact of subgradient optimization, we propose to simplify this algorithm, in particular the dierent loops, and to make it parametric. The algorithm will be used with a branch-and-bound procedure, so we do not need to nd the optimal multipliers. Algorithm 1: subgradientSolve algorithm of Beasley subgradientSolve(LR(P), Z ub)

π ← 2 // subgradient agility k ← 0; noImprovedCount ← 0; ∀r ∈ R : µ 0 r ← 0
Zmax ← -∞ // best lower bound so far do x k ← solve LR(P, µ) to optimality

Z k ← obj(x k) + r∈R µ k r objr(x k)
// optimal value of LR(P)

∆ k ← π(Z ub -Z k) r∈R (objr (x k)) 2 // compute step ∀r ∈ R : µ k+1 r ← max(0, µ k r + ∆ k × objr(x k)) // update multipliers if Z k > Zmax then Zmax ← Z k ; noImproveCount ← 0 if Zmax = Z ub then return Zmax //the optimum has been found else noImproveCount ← noImproveCount + 1 if noImproveCount > 30 then π ← π/2; noImproveCount ← 0 k ← k + 1 while π > 0.005 return Zmax
After many tests, we propose Function parametrizedSubgradient (See Algorithm 2) which has only two simple loops. The main loop (variable i) deals with the subgradient agility: at each iteration the parameter is divided by 4. The number of iterations is given by the n parameter. Inside this loop, so for an agility value, multipliers are calculated and the ltering algorithms are called, via Funtion runPropagation of the solver. It is during the calculation of these multipliers that a second loop is used (variable j). The content of this loop is a classical application of the subgradient optimization. The number of iterations performed is dened by the m parameter. It is important to note that during these calculations the ltering algorithms are not called. By using the m value we can determine when to call the ltering. If m = 1 then the ltering will be called systematically after calculating multipliers, whereas with a higher value we will do calculations without ltering, so without changing the problem for which the multipliers are calculated.

The subgradient algorithm (FLR) used by Fages et al [START_REF] Fages | The salesman and the tree: the importance of search in cp[END_REF] in their experiments corresponds to the values of the parameters n = 5 and m = 30 of Algorithm 2 and makes the agility dierent since it uses the following update formula: π ← π/β; β ← β/2 with β = 1/2 at initialization. It should also be noted that Fages et al. repeats the call to the algorithm as long as the lower bound of the 1-tree is increased, which we do not do, as no experiment has shown a signicant gain with this additional repetition.

Table 1 shows that our approach produces much better results. We reproduce here the best combination of pair (n, m). The gain potential is quite high since we gain on average a factor of 5.5 in time and 9 in number of backtracks if the best combination of parameters is found.

We therefore propose to focus on the determination of eective parameters. for each i = 1..n do for each j = 1..m do x k ← solve LR(P, µ) to optimality

Z k ← obj(x k) + r∈R µ k
r objr(x k) // optimal value of LR(P) The subgradient algorithm (FLR) used by Fages et al [START_REF] Fages | The salesman and the tree: the importance of search in cp[END_REF] in their experiments corresponds to the values of the parameters n = 5 and m = 30 of Algorithm 2 and makes the agility dierent since it uses the following update formula: π ← π/β; β ← β/2 with β = 1/2 at initialization. It should also be noted that Fages et al. repeats the call to the algorithm as long as the lower bound of the 1-tree is increased, which we do not do, as no experiment has shown a signicant gain with this additional repetition.

∆ k ← π(Z ub -Z k) r∈R (objr (x k)) 2 // compute step ∀r ∈ R : µ k+1 r ← max(0, µ k r + ∆ k × objr(x k)) // update multipliers if Z k > Zmax then Zmax ← Z k if Zmax = Z ub then return x k k ← k + 1 runPropagation(P, x k-1 , Z ub , µ) //
Table 1 shows that our approach produces much better results. We reproduce here the best combination of pair (n, m). The gain potential is quite high since we gain on average a factor of 5.5 in time and 9 in number of backtracks if the best combination of parameters is found.

We therefore propose to focus on the determination of eective parameters.

LR and ltering

The parameterizedSubgradient algorithm allow us to study the relationship between the calculation of multipliers and ltering by dening the parameters n and m and by observing the solving time and the number of backtracks obtained to solve the instances of the TSP problems we considered. After some tests it became clear that we can restrict the values of the parameters n and m to the set of values {6, 9, 12, 15}. This means that 16 pairs are possible. Surprisingly, values below 6 do not seem interesting, as well as values above 15 (we often nd n = 5 and m = 30 in the literature). Consider instance ch150 of the TSPLib. If Algorithm 2 with n = 6 and m = 9 is used in conjunction with a static strategy (the arcs are assigned according to the decreasing value of their cost) then 1778 backtracks are needed to nd the optimal solution and to prove the optimality. If the ltering algorithms are used all the time, that is when Function runPropagation is called after each computation of multipliers in Algorithm 2, then 1868 backtracks. This result shows that using systematically the ltering algorithms can degrade the performance in term of pruned values! (The time increases from 4,011 to 12,504 ms). This is counter-intuitive (although explicable in this case) because usually when you add one lter to another lter you potentially eliminate more values.

The question now is: can a clear relationship between the parameters n and m and solving time and the number of backtracks be dened? First, we can compute for each pair (n, m) the mean and geometric mean for all the instances. The following We can also study the impact of some parameters problem by problem (See Fig. 1). Again, no particular behavior seems to be describable.

The best pair value for each problem is given in Table 2. All pairs appear to be the best combination for at least one instance. All these observations lead us to deduce that the behavior of the CP-based Lagrangian relaxation seems erratic.

Multi-armed bandit approach

Since we cannot determine which pair (n, m) will lead to the most value deletion in Function parameterizedSubgradient, we propose a Multi-Armed Bandit (MAB) approach, similar to the one proposed by Palmieri et al. [START_REF] Palmieri | Parallel strategies selection[END_REF], to determine a good pair (n, m).

The Multi-Armed Bandit selector is based on a model dened on a set of k arms and a set of rewards R i (j), where R i (j) is the reward delivered when an arm i has been chosen at time j. A reward reects the performance of choosing that arm. The selection value is based on this reward and the sequence of previous trials. Usually, the arm having the largest selection value is selected. Two rules should be respected: if a bad choice is made then the selection value should prevent us to make this choice at the next step; and if we made good choice then the selection should help us to make the same choice.

In our case, each pair (n, m) corresponds to an arm. Since n ∈ {6, 9, 12, 15} and m ∈ {6, 9, 12, 15} there are 16 possibles pairs and so 16 arms. The reward function is related to the number of deleted values, which correspond to our goal. We propose to use the UCB1 policy dened in [START_REF] Auer | Finite-time analysis of the multiarmed bandit problem[END_REF], which selects the arm i that maximizes a(i) = R i + 2ln(s) si , where s is the current number of selection, s i the number of times i has been selected and R i is the mean of the past rewards of the i arm. This policy prefers the most rewarded arm but also biases the selection toward less frequently selected arms (this bias factor increases along the iterations).

The main diculty is the denition of the reward function. We adapt the one of Gagliolo and Schmidhuber [START_REF] Gagliolo | Learning dynamic algorithm portfolios[END_REF] which is designed for resource allocation and dened by: ln(tmax)-ln(ti) ln(tmax)-ln(tmin) , where t max and t min are respectively the maximum and minimum solving time and t i is the time for solving problem i. The logarithms help to moderate extreme cases.

Experimentally, we obtained the best results with the reward function:

R i = ln(p max) -ln(p i) ln(p max) -ln(p min) (1)
where p i is the number of pruned values if it is greater than 0; otherwise it is equal to p max , in order to obtain a reward equals to 0.

p is the mean of the computed p i . p max = 10 p p min = p/10

The extreme values p min and p max are dened in relation to the mean because fewer and fewer values are deleted as variables are instantiated during the search. Factor 10 was empirically determined. The detailed results obtained by this algorithm are given in Table 3. The best and worst pairs are considered per instance and not globally.

Fig. 2 compares the number of backtracks for the parameter pair that gives the best results on average (i.e. n = 6 and m = 9) with the MAB approach. Results are given in term of ratio. The gain is clear (a factor 1.5 for the number of backtracks). However, the solving times gain according to the best pair for each instance is weaker (around 10%; See Fig. 3). It is important to note that we know that the pair [START_REF] Bergman | Improved constraint propagation via lagrangian decomposition[END_REF][START_REF] Ducomman | Alternative ltering for the weighted circuit constraint: Comparing lower bounds for the TSP and solving TSPTW[END_REF] gives the best results only after we have done all the experiments. This pair is the best for this given set of instances and it seems dicult to generalize this result. The MAB approach does not make any assumption a priori and can be used for any set of instances. Thus, being able to obtain results improving the best possible global method without making any assumption is quite interesting.

The dierence in gain between the number of backtracks and the solving time shows that the MAB approach is too focused on the number of pruned values and sometimes ltering is not necessary. The combination of solving time and pruned values is not easy to manage because giving weight to time locally causes the bandit to select more values with a lower ltering potential. We have not found a satisfactory solution combining these two aspects.

Finally, Table 4 compares this part with the LR proposed in Fages et al. [START_REF] Fages | The salesman and the tree: the importance of search in cp[END_REF] which is the current state of the art. Except for the pr107 instance which is resolved very quickly with both approaches, a factor of 4.7 is gained for the average time and 7.3 for the average number of backtracks with the MAB approach. 6 Related work

The best set of parameters for the subgradient algorithm could also have been determined with a sampling method similar to Parallel Search Strategy [START_REF] Palmieri | Parallel strategies selection[END_REF] which aims to determine a priori the best search strategy. This method proposes to decompose the initial problem into a large number of subproblems consistent with the propagation, as does the Embarrassingly Parallel Search (EPS) method [START_REF] Régin | Embarrassingly parallel search[END_REF][START_REF] Malapert | Embarrassingly parallel search in constraint programming[END_REF]. Then, it proceeds by sampling: it randomly draws a set of subproblems.

Then, these subproblems are solved in parallel by setting a timeout corresponding to twice the time of the best method in order to limit the time spent with "bad" strategies. A Wilcoxon test is nally applied to eliminate the statistically worse strategies. All remaining strategies being equivalent, one is chosen that will be used by EPS to solve the other subproblems. This approach is dicult to implement in our case because of the large number of subproblems it requires. Consider we have k methods to compare and we set a factor of 2 as timeout. With a condence level of 95% and sample size equal to 30, which is not a good value in general but could be ne for our purpose, and if you accept to spend t % of the solving time in the selection of the best method then it means that the minimum number of elements in the population should be: pop = 2×30×k t . For t = 3% and k = 16 we have pop = 32, 000. Unfortunately, it requires a lot of time to decompose some TSP instances into 32,000 subproblems. For instance, the decomposition of kroB150 in more than 30,000 subproblems requires more than 100s, whereas the solving time is around 350s. This prevent us from using this method in practice for a lot of instances or a new way to decompose the instances should be found.

The MAB approach can be more easily combined with other approaches. Here we use the bandit with Lagrangian relaxation, but we could also make a bandit with the choice of strategy or a bandit linked to another part of the model without any extra cost brought by the bandit algorithm. This is more complicated to do with sampling because each sampling takes a certain amount of time. In addition, the sampling combinations also require increasing the sampling size to stay within acceptable condence intervals.

Conclusion

In this article we are interested in the CP-based Lagrangian relaxation and more particularly in the relationship between Lagrangian multiplying and ltering algorithms. We proposed a parameterized subgradient algorithm, thanks to which we compared Sellmann's results and observed that the relationship between multipliers and ltering seems erratic. We then used an approach based on a multi-armed bandit algorithm to calculate the best combination of parameters for each instance. Compared to the best choice that can be made a priori, the gain in number of backtracks is high, that in time a little less. Compared to the state of the art, the improvements are strong since we gain on average almost a factor of 5 in time and more than a factor of 7 in the number of backtracks.

Algorithm 2 :

 2 parameterizedSubgradient algorithm parameterizedSubgradient(P,Z ub ,µ,n,m) π ← 2 // subgradient agility k ← 0 ∀r ∈ R : µ 0 r ← µr // We start with the current values of multipliers Zmax ← computeLowerBound(LR(P), µ)

Fig. 1 .

 1 Fig. 1. Solving times (in ms with a logarithmic scale) for dierent instances when: (top) n = 6 and m ∈ {6, 9, 12, 15}; (bottom) n ∈ {6, 9, 12, 15} and m = 9.

Fig. 2 .

 2 Fig. 2. Comparison of number of backtracks ratio between best and worst pairs and: (top) n=6 and m=9 (in blue); (bottom) the multi-armed bandit approach (in blue).

Fig. 3 .

 3 Fig. 3. Comparison of time ratio between the best and worst pairs and: (top) n=6 and m=9 (in blue); (bottom) the multi-armed bandit approach (in blue).

Table 1 .

 1 Comparison between LR based on FLR's subgradient algorithm and LR based on parameterizedSubgradient algorithm; #bk stands for the number of backtracks

	if solver failed then return nil	trigger the ltering algorithms
	π ← π/4	
	return nil	
	Instance gr96 rat99 kroA100 kroB100 kroC100 kroD100 kroE100 eil101 pr107 gr120 pr124 bier127 ch130 pr136 gr137 pr144 ch150 kroA150 kroB150 brg180 rat195 d198 kroB200 gr202 pr264 mean geo mean sum	FLR time (ms) 3113 278 7305 23181 10812 #bk 1372 46 3726 4451 2070 778 240 5604 2316 337 74 9 10 1791 578 2387 582 728 180 10243 3682 160126 48370 13664 4208 1892 316 12350 3514 63307 17526 1194191 319360 335182 parameterized time #bk 931 185 1792 1489 592 283 2684 176 873 815 1325 728 1586 68198 2225 941 3110 5865 56323 267004 428 732018 178312 78353 93713 24048 32374 1393679 288336 134291 7073 1906 2492 7194 278 6629 151829 47155 27342 8681 2761 2734 3795735 1178866 683457

 table does not show any particular trend:

	n m 6 6 6 9 6 12 6 15 9 6 9 9 9 12 9 15	mean 49987 4100 geo 33765 3569 33517 3804 46999 4037 45493 4084 23838 3166 30855 3775 32782 3622	n m 12 6 12 9 12 12 12 15 15 6 15 9 15 12 15 15	mean 30628 3775 geo 25195 3690 28061 3994 29833 3917 15134 3268 22440 4529 20268 4095 21554 3847

Table 2 .

 2 Min and max results and best pairs of parameters for each instance.

	time (ms) min max 931 4855 185 305 1792 7949 1489 6945 592 2447 283 673 2684 9796 176 354 873 1848 815 2024 1325 3932 728 5124 1586 6230 pr136 68198 134391 10736 25898 15 9 #bk best Instance min max n m gr96 152 1320 15 12 rat99 12 26 9 6 kroA100 830 2610 6 9 kroB100 622 1914 6 12 kroC100 90 376 12 12 kroD100 46 72 6 12 kroE100 1112 3818 6 15 eil101 18 50 12 15 pr107 90 186 6 12 gr120 88 358 15 15 pr124 374 530 6 6 bier127 88 1042 9 15 ch130 394 1414 9 9 gr137 2225 7310 618 1458 6 12 pr144 941 2292 62 246 9 12 ch150 3110 14050 574 2186 12 6 kroA150 5865 22593 1744 3542 6 6 kroB150 335182 901294 79648 138884 9 9 brg180 428 2010 30 3106 6 15 rat195 78353 243035 13550 36710 9 6 d198 32374 200688 2184 25566 15 15 kroB200 134291 318964 16522 35638 15 6 gr202 2492 12224 444 1164 6 6 pr264 6629 16866 326 508 6 15 mean 27342 77128 5214 11545 geo mean 2734 9086 426 1507 sum 683547 1928199 130354 288622

Table 3 .

 3 Multi-arm bandit approach results.

	FLR time 3113 278 7305 kroB100 23181 10812 2795 1088 MAB #bk time #bk time ratio #bk ratio gr96 1372 1454 588 2.1 2.3 rat99 46 172 24 1.6 1.9 kroA100 3726 5830 2592 1.3 1.4 8.3 9.9 kroC100 4451 2070 555 128 8.0 16.2 kroD100 778 240 302 50 2.6 4.8 kroE100 5604 2316 6440 2700 0.9 0.9 eil101 337 74 197 42 1.7 1.8 pr107 9 10 957 100 0.0 0.1 gr120 1791 578 994 220 1.8 2.6 pr124 2387 582 1763 400 1.4 1.5 bier127 728 180 1327 270 0.5 0.7 ch130 10243 3682 2797 672 3.7 5.5 pr136 160126 48370 75592 19376 2.1 2.5 gr137 13664 4208 2268 512 6.0 8.2 pr144 1892 316 1354 196 1.4 1.6 ch150 12350 3514 4814 1022 2.6 3.4 kroA150 63307 17526 9867 2134 6.4 8.2 kroB150 1194191 319360 344632 78552 3.5 4.1 brg180 56323 267004 505 54 111.5 4944.5 rat195 732018 178312 110230 18474 6.6 9.7 d198 93713 24048 59912 9070 1.6 2.7 kroB200 1393679 288336 156220 23108 8.9 12.5 gr202 7073 1906 2339 336 3.0 5.7 pr264 7194 278 9302 508 0.8 0.5 mean 151829 47155 32105 6489 4.7 7.3 geo mean 8681 2761 3755 741 2.3 3.7 sum 3795735 1178866 802618 162216 4.7 7.3

Table 4 .

 4 Comparison between FLR and Multi-arm bandit.

N. Isoart and J-C. Régin

Acknowlegments

This work was supported by the Agence Nationale de la Recherche (ANR) through the MULTIMOD project under the reference ANR-17-CE22-0016.