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A Hypersequent Calculus with Clusters
for Data Logic over Ordinals ?

Anthony Lick* (junior researcher)

LSV, CNRS & ENS Paris-Saclay, Université Paris-Saclay, France

Abstract. We study freeze tense logic over well-founded data streams.
The logic features past- and future-navigating modalities along with
freeze quantifiers, which store the datum of the current position and
test data (in)equality later in the formula. We introduce a decidable
fragment of that logic, and present a proof system that is sound for the
whole logic, and complete for this fragment. Technically, this is a hy-
persequent system enriched with an ordering, clusters, and annotations.
The proof system is tailored for proof search, and yields an optimal coNP
complexity for validity and a small model property for our fragment.

Keywords: Modal logic · Data ordinals · Freeze logic · Proof system ·
Hypersequent calculus

1 Introduction

Data Streams. Many applications can generate data streams, such as traces of
a program’s execution [21], system logs [7], XML streams [18], or intrusions
detection [20], which motivates the study of data words and data ω-words in
order to be able to formally reason about such streams. They consist respectively
of finite and infinite sequences in which each position carries a label from a finite
alphabet and a datum from an infinite domain.

Consider for instance a system where multiple processes could be editing the
same file on some server. The log of their execution can be represented as an
infinite data word, the datum being an integer identifying the process, and the
label representing their action: b for the beginning of a process, e for its ending,
and r (resp. w) when a process reads (resp. writes) the file. On such a data
ω-word, we could want to verify various properties:

1. Every process does not do anything after it stops or before it starts, i.e. for
every datum, the corresponding subword belongs to b(r + w)∗e.

2. For every position labelled by w, there exists a previous position labelled by
r with the same datum such that there is no a position in-between labelled
by w and carrying a different datum.

On the following infinite data word, only the first property is respected.

(b, 1)(r, 1)(b, 2)(r, 2)(w, 1)(w, 2)(e, 2)(e, 1)(b, 3)(r, 3)(e, 3) · · ·
? Funded by ANR-14-CE28-0005 prodaq. I am grateful to David Baelde and Sylvain

Schmitz for their many valuable advices, and for proofreading this paper.
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Data Logics. Among the many logics developed to reason about data words,
freeze LTL [14,17,30] extends linear temporal logic [36] with freeze quantifiers:
a formula ↓rϕ stores the current datum in register r and evaluates ϕ; in this
scope, ↑r is satisfied if the current datum matches the one stored in r. As always
with data logics, the satisfiability problem for freeze LTL is undecidable and its
known decidable fragments are untractable [14,17].

Contributions. In this paper, we investigate the freeze tense logic over data or-
dinals, which we call K↓

tL`.3, and which combines freeze quantifiers à la Demri
and Lazić [14] with the tense logic over ordinals KtL`.3. Our temporal core is
thus Prior’s tense logic [39,9], which only features the strict ‘past’ H and ‘future’
G temporal modalities (and their duals P and F), but this is sufficient for many
modelling tasks [41], and is known to lead to an NP-complete satisfiability prob-
lem over arbitrary linear time flows [35], over ω-words [40], and over arbitrary
ordinals [3]. For instance, property 1 above can be expressed by

G
(
b ⊃ ↓r

(
H¬↑r ∧ G (b ⊃ ¬↑r) ∧ F (↑r ∧ e ∧ G¬↑r ∧ H (e ⊃ ¬↑r))

))
∧ G ((e ∨ r ∨ w) ⊃ ↓rP (↑r ∧ b))

The full freeze tense logic K↓
tL`.3 is already undecidable with a single reg-

ister, just like freeze LTL over finite words [14,17]. We present a decidable frag-
ment, dubbed Kd

tL`.3, in which the use of registers is further restricted, and
which is exactly as expressive as the two-variable fragment of the first order logic
on data words [6]. We show in particular that

1. the satisfiability problem for Kd
tL`.3 over the class of ordinals is NP-complete,

2. a formula ϕ of Kd
tL`.3 has a well-founded linear model if and only if it has

a model of order type α for some α < ω · (4 · |ϕ|2 + |ϕ|+ 2); this should be
contrasted with the corresponding ω · (|ϕ|+2) bound proven in [3, Prop. 4.1]
for the underlying data-free logic KtL`.3.

These results are however just by-products of our main contribution, which is a
sound and complete proof system for Kd

tL`.3 in which proof search is in coNP.
Moreover, our system allows to work not only with data ω-words but with

arbitrary data ordinals, which provides greater modelling flexibility: for instance,
Demri and Novak [15] use ordinals to model Zeno behaviours in physical sys-
tems [15], and Godefroid and Wolper [19] to model-check n concurrent executions
while avoiding exploring their n! interleavings.

Algorithmic Approach. Algorithmic results for data logics are often obtained
via automata-theoretic techniques [42,14,6], by building an enriched automaton
recognising the models of a given formula and testing it for emptiness. However,
this kind of approach might not be modular as the type of enriched automata is
often tailored for each specific logic. Moreover, if one’s interest is to check that
a formula ϕ is valid, the automata-theoretic approach does not yield a ‘natural’
certificate that could be checked by simple independent means.

All these considerations motivate our use of proof-theoretic techniques. The
primary example of proof system amenable to automated reasoning is Gentzen’s
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sequent calculus. However, it is often too limited for modal logics, it has been
enriched in various ways, using e.g. labelled sequents [34], display calculus [5,28],
nested sequents [27,8,37,38,31], or hypersequents [1,22,29,23]. These enriched for-
malisms remain quite modular and sustain extensions simply by adding a few
rules. They can be exploited to provide optimal complexity solutions to the va-
lidity problem directly by proof search [25,33,4,12,2,3], which may sometimes
avoid the worst-case complexity of the problem and rely in practice on vari-
ous heuristics. Finally, this approach obviously yields a proof of validity as a
certificate in case of success.

Specifically, we use the framework of ordered hypersequents with clusters in-
troduced in [2] as an elaboration, with terminating proof search, of Indrzejczak’s
ordered hypersequent calculus for Kt4.3 [23,24], and which was then generalised
in [3] to work over ordinals. Conceptually, re-using the framework required to
adapt it to work with data ordinals, to use additional rules to deal with regis-
ters, and to develop a strategy to make sure that proof search always produces
proof attempts of polynomial depth. Moreover, this framework uses annotations
to bound the proof search, and we managed to handle them as a new type of
formulæ rather than just as an artefact of the proof system.

Furthermore, as in [3], our proof system can easily adapted to also address
the more precise problems of validity over all the data ordinals of order type
β < α + 1 for a given α and of order type exactly α < ω2—which is recalled
in Section 6. Such a result seems out of reach of axiomatisations, and yields for
instance a coNP decision procedure for validity over data ω-words.

2 Freeze Tense Logic over Ordinals

Syntax. Our logic, called K↓
tL`.3, features two unary temporal operators from

the tense logic, and countably many freeze operators, over a countable set Φ of
propositional variables, with the following syntax:

ϕ ::= ⊥ | p | ϕ ⊃ ϕ | Gϕ | Hϕ | ↓rϕ | ↑r (where p ∈ Φ and r ∈ N)

Formulæ Gϕ and Hϕ are called modal formulæ. Intuitively, Gϕ expresses that ϕ
holds ‘globally’ in all future worlds, while Hϕ expresses that ϕ holds ‘historically’
in all past worlds. Other Boolean connectives may be encoded from ⊥ and ⊃, and
as usual Fϕ = ¬G¬ϕ expresses that ϕ will hold ‘in the future’ and Pϕ = ¬H¬ϕ
that it held ‘in the past’. Formulæ ↓rϕ are called freeze formulæ, and atoms ↑r
are called thaw formulæ. Intuitively, ↓rϕ stores the datum of the current world
in the register r, and evaluates ϕ, and ↑r tests if the current world has the same
datum as the one stored in the register r. Any occurrence of a thaw ↑r within
the scope of a freeze quantifier ↓r is bounded by it; otherwise, that thaw is free.

Furthermore, in order to guide the proof search, our calculus will have to
manipulate a different kind of future formulæ called annotations: these formulæ
will be written (Gϕ), where Gϕ is a future modal formula, and will express
that Gϕ holds starting from a specific later position. Remark that such formulæ
cannot ever appear as a subformula.
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Data Ordinal Semantics. Recall that an ordinal α is seen set-theoretically as
{β ∈ Ord | β < α}. An ordinal is either 0 (the empty linear order), a limit
ordinal λ (such that for all β < λ there exists γ with β < γ < λ), or a successor

ordinal α + 1. In the case of K↓
tL`.3, our formulæ shall be evaluated on data

ordinals, which are couples (α, δ) with α an ordinal and δ a function mapping
elements from α to a datum from an infinite1 domain D. Models of our logic are
Kripke structures M = (F, V, ν), where the frame F = (α, δ) is a data ordinal,
V : Φ→ α is a valuation of the propositional variables, and ν is a finite partial
map from N to D called a register valuation. The domain of such a ν must contain
all the free registers that appear in the formulæ it evaluates.

Given a structure M = ((α, δ), V ) and a register valuation ν, we define the

satisfaction relation M, β |=(θ)
ν ϕ, where β < α, θ < α and ϕ is a formula, by

structural induction on ϕ. Notice that θ is only used for the annotations.

M, β 6|=(θ)
ν ⊥

M, β |=(θ)
ν p iff β ∈ V (p)

M, β |=(θ)
ν ϕ ⊃ ψ iff if M, β |=(θ)

ν ϕ then M, β |=(θ)
ν ψ

M, β |=(θ)
ν Gϕ iff M, γ |=(θ)

ν ϕ for all β < γ < α

M, β |=(θ)
ν Hϕ iff M, γ |=(θ)

ν ϕ for all γ < β

M, β |=(θ)
ν ↓rϕ iff M, β |=(θ)

ν[r 7→δ(β)] ϕ

M, β |=(θ)
ν ↑r iff δ(β) = ν(r)

M, β |=(θ)
ν (Gϕ) iff β < θ, and M, γ |=(θ)

ν ϕ

for all γ such that θ ≤ γ < α

When M, β |=(θ)
ν ϕ, we say that (M, ν, β, (θ)) is a model of ϕ. Remark that, since

annotations cannot appear as subformulæ, we have M, β |=(θ)
ν ϕ if and only if

M, β |=(θ′)
ν ϕ for any θ′, when ϕ is not an annotation.

Substitutions. We note [x/y](ϕ) for the formula ϕ where every free occurrence
of the register y is replaced by the register x. More formally, we define it by
structural induction as follows:

[x/y](⊥) = ⊥ [x/y](p) = p

[x/y](Gϕ) = G [x/y](ϕ) [x/y](Hϕ) = H [x/y](ϕ)

[x/y](ϕ1 ⊃ ϕ2) = [x/y](ϕ1) ⊃ [x/y](ϕ2)

[x/y](↑r) = ↑r if r 6= y [x/y](↑y) = ↑x
[x/y](↓rϕ) = ↓r[x/y](ϕ) if r 6= y and r 6= x [x/y](↓yϕ) = ↓yϕ
[x/y](↓xϕ) = ↓r[x/y]([r/x](ϕ)) where r is fresh

1 Since we will only be able to perform equality tests between data values, we can
assume that D is countable.
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Example 1. Even though the underlying data-free logic KtL`.3 cannot express
that a model is of order type at least ω2 [3], this can be done with K↓

tL`.3,
even without using any propositional variable. Consider for this ϕ1 = G (↓rF ↑r),
ϕ2 = G (↓rF¬↑r), and ϕ3 = G (↓rG (F ↑r ⊃ ↑r)). Then, ϕ = F>∧ϕ1 ∧ϕ2 ∧ϕ3 is
satisfiable, and any model of ϕ is of order type at least ω2.

Thanks to the conjunct F>, the other formulæ do not quantify over an
empty set of future positions: there exists at least a future β1. The conjunct ϕ1

forces that every datum appears infinitely many times, and ϕ3 forces that every
such infinite sequence of positions carrying the same datum is continuous (two
such sequences for two different data cannot be interleaved). Hence, any model
of ϕ starts with at least ω positions carrying d1 = δ(β1). In turn, ϕ2 forces the
existence of β2 carrying a datum d2 such that d1 6= d2, which due to ϕ3 must
be after the positions carrying d1; and because of ϕ2 we must have at least ω
positions carrying the datum d2. Again, ϕ2 forces the existence of β3 carrying d3

different from d1 and d2, and thus ω positions carrying d3 must exist, etc. By
repeating this reasoning, any model of ϕ must comprise at least ω positions
carrying the datum d, for infinitely many d ∈ D, so is of order type at least ω2.

Moreover, ϕ is indeed satisfied by a model of order type ω2, where the ith ω
carries di, for an enumeration (di)i∈N of D.

3 Hypersequents with Clusters

As is often the case with modal logics, Gentzen’s sequent calculus does not pro-
vide a rich enough framework to obtain complete proof systems. The extension
we consider is to use hypersequents [1], which are essentially sets of sequents
logically interpreted as a disjunction. Indrzejczak has moved to ordered hyperse-
quents [23,24] (which are lists of hypersequents) to obtain a sound and complete
calculus for Kt4.3. We have further enriched the structure of his ordered hy-
persequents with clusters and annotations to obtain calculi for Kt4.3 [2] and
KtL`.3 [3] for which proof search terminates and, in fact, yields an optimal com-
plexity decision procedure. We keep the same structure in the present work, but
simplify the annotation mechanism, and add rules to handle freeze formulæ. In
Section 4, we present our proof system, and prove that it is sound for K↓

tL`.3. In

Section 5, we focus on a decidable fragment of K↓
tL`.3, and prove that our calcu-

lus is complete for that fragment, and has a proof strategy of optimal complexity.

3.1 Annotated Hypersequents with Clusters

Sequents. A sequent (denoted S) is a couple consisting of two finite sets Γ,∆
of formulæ, written Γ ` ∆. It is satisfied by worlds β and θ of a structure M

if there exists a register valuation ν such that M, β |=(θ)
ν
∧
Γ ⊃

∨
∆ (where∧

Γ and
∨
∆ denote respectively the conjunction of the formulæ of Γ and the

disjunction of the formulæ of ∆).

Hypersequents. A hypersequent is a list of cells, each cell being either a sequent
or a non-empty list of sequents called a (syntactic) cluster. We shall use the
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following abstract syntax, where both operators ‘;’ and ‘‖’ are associative with
unit ‘•’:

H ::= C | H ;H (hypersequents)

C ::= • | S | {Cl} (cells)

Cl ::= S | Cl ‖ Cl (cluster contents)

Note that this definition allows for empty cells and hypersequents ‘•’, but these
notational conveniences will never arise in actual proofs—and should not be
confused with the empty sequent ‘`’. We will see that the order of cells in a
hypersequent is semantically relevant, but the order of sequents inside a cluster
is not. Nevertheless, assuming an ordering as part of the syntactic structure of
clusters is useful in order to refer to specific sequents or positions.

3.2 Semantics

The semantics of an ordered hypersequent with clusters relies on a notion of
embedding, building on a view of hypersequents as partially ordered structures.

Partial Order of a Hypersequent. LetH be a hypersequent containing n sequents,
counting both the sequents found directly in its cells and those in its clusters. In
this context, any i ∈ [1;n] is called a position of H, and we write H(i) for the
i-th sequent of H. We define a partial order - on the positions of H by setting
i - j if and only if either the i-th and j-th sequents are in the same cluster, or
the i-th sequent is in a cell that lies strictly to the left of the cell of the j-th
sequent. We write i ≺ j when i - j but j 6- i, i.e. j lies strictly to the right of
i in H. We write i ∼ j when i - j - i. Finally, the domain of H is defined as
dom(H) = ([1;n],-); note that empty cells are ignored in dom(H).

While a hypersequent is syntactically a finite partial order, its semantics will
refer to a linear well-founded order, obtained by ‘bulldozing’ its clusters into
copies of ω. This defines the order type o(H) of H by induction on its structure:
for cells, o(•) = 0, o(S) = 1, and o({Cl}) = ω, and for hypersequents, o(H1 ;
H2) = o(H1) + o(H2). Thus, o(H) = ω · k+m where k is the number of clusters
in H and m the number of non-empty cells to the right of the rightmost cluster.

Embeddings. Let H be a hypersequent and α an ordinal. We say that µ :
dom(H)→ α+ 1 \ {0} is an embedding of H into α, written H ↪→µ α, if

– for all i, j ∈ dom(H), i ≺ j implies µ(i) < µ(j) and i ∼ j implies µ(i) = µ(j)
– and for all i ∈ dom(H), i is in a cluster if and only if µ(i) is a limit ordinal.

Observe that, if H ↪→µ α, then o(H) < α+ 1.

Semantics. A structure M is a model of a hypersequent H if there exists a
register valuation ν, an embedding M ↪→µ H, and a position i of H such that
for all d ∈ D there exists an ordinal βd < µ(i) such that for all γ such that

βd ≤ γ < µ(i) and δ(γ) = d, we have M, γ |=(µ(i))
ν H(i). In that case, we write

M, ν, µ |= H.
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Following this definition, we say that a hypersequent is valid if for any M =
((α, δ), V ), any embedding H ↪→µ M and any register valuation ν, M, ν, µ |= H.
A formula ϕ is valid in the usual sense (i.e., satisfied in every world of every
ordinal structure) if and only if the hypersequent ` ϕ is valid in our sense.

If a hypersequent H is not valid, then it has a counter-model, that is a
structure M = ((α, δ), V ), an embedding H ↪→µ M and a register valuation ν
such that for every i ∈ dom(H) there exists di ∈ D such that for every β < µ(i),

there exists γ with β ≤ γ < µ(i) and δ(γ) = di such that M, γ 6|=(µ(i))
ν H(i).

For the positions i ∈ dom(H) that are not in clusters, µ(i) is a successor ordinal

γ+ 1 and this amounts to asking that M, γ 6|=(γ+1)
ν H(i). When i is in a cluster,

the condition implies the existence of an infinite increasing sequence (γj)j of
ordinals carrying the same datum, and with limit µ(i) = supj γj , such that

M, γj 6|=(µ(i))
ν H(i) for all j.

4 Proof System

We now present our proof system for K↓
tL`.3, called HKd

tL`.3. The rules of
HKd

tL`.3 are given in figures 1 to 3: the first group includes the usual proposi-
tional rules, the second deals with modalities, the third deals with annotations,
and the last one with freeze formulæ. The figures make use of some notations
which we explain next, before commenting on the rule definitions themselves.

4.1 Notations

First, we use hypersequents with holes. One-placeholder hypersequents, cells,
and clusters are defined by the following syntax:

H [] ::= H ; C [] ;H C [] ::= ? | { Cl [] } Cl [] ::= Cl• ‖ ? ‖ Cl• Cl• ::= • | Cl

Two-placeholder cells and hypersequents have two holes identified by ?1 and ?2:

H [] [] ::= H ; C [] [] ;H | H[?1] ;H[?2]

C [] [] ::= { Cl [?1] ‖ Cl [?2] } | { Cl [?2] ‖ Cl [?1] }

As usual, C [S] (resp. C [Cl ]) denotes the same cell with S (resp. Cl) substituted
for ?; two-placeholder cells and hypersequents with holes behave similarly. In
terms of the partial orders underlying hypersequents with two holes, observe that
the positions i and j associated resp. to ?1 and ?2 are exactly such that i - j.

Second, we use a convenient notation for enriching a sequent: if S is a sequent
Γ ` ∆, then Sn (Γ ′ ` ∆′) is the sequent Γ, Γ ′ ` ∆,∆′. Moreover, we sometimes
need to enrich an arbitrary sequent of a cluster {Cl} with a sequent S; then
{Cl}n S denotes the cluster with its leftmost sequent enriched.

Finally, we write [x/y](H) for the hypersequent H where the operator [x/y]
has been applied to every formula.
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H [ϕ, Γ ` ∆,ϕ]
(ax)

H [ϕ ⊃ ψ, Γ ` ∆,ϕ] H [ϕ ⊃ ψ,ψ, Γ ` ∆]

H [ϕ ⊃ ψ, Γ ` ∆]
(⊃ `)

H [Γ,⊥ ` ∆]
(⊥)

H [ϕ, Γ ` ∆,ψ, ϕ ⊃ ψ]

H [Γ ` ∆,ϕ ⊃ ψ]
(` ⊃)

Fig. 1. Propositional rules of HKd
tL`.3.

H [Gϕ, Γ ` ∆] [ϕ,Gϕ,Π ` Σ]

H [Gϕ, Γ ` ∆] [Π ` Σ]
(G`)

H1; {Cl• ‖ ϕ,Gϕ, Γ ` ∆ ‖ Cl ′•} ;H2

H1; {Cl• ‖ Gϕ, Γ ` ∆ ‖ Cl ′•} ;H2

({G`})

H [ϕ,Hϕ,Π ` Σ] [Hϕ, Γ ` ∆]

H [Π ` Σ] [Hϕ, Γ ` ∆]
(H`)

H1; {Cl• ‖ ϕ,Hϕ, Γ ` ∆ ‖ Cl ′•} ;H2

H1; {Cl• ‖ Hϕ, Γ ` ∆ ‖ Cl ′•} ;H2

({H`})

H1 ; C [Γ ` ∆,Gϕ] ; (Gϕ) ` ϕ ; C′ ;H2

H1 ; C [Γ ` ∆,Gϕ] ; {(Gϕ) ` ϕ} ; C′ ;H2

H1 ; C [Γ ` ∆,Gϕ ‖ (Gϕ) ` ϕ] ; C′ ;H2 if C 6= ?
H1 ; C [Γ ` ∆,Gϕ] ; C′ n (` Gϕ) ;H2 if C′ 6= •
H1 ; C [Γ ` ∆,Gϕ] ; C′ n ((Gϕ) ` ϕ) ;H2 if C′ 6= • and C′ 6= {Cl}

H1 ; C [Γ ` ∆,Gϕ] ; C′ ;H2

(`G)

H2 ; C′ ; Hϕ ` ϕ ; C [Γ ` ∆,Hϕ] ;H1

H2 ; C′ n (` Hϕ) ; C [Γ ` ∆,Hϕ] ;H1 if C′ 6= •
H2 ; C′ n (Hϕ ` ϕ) ; C [Γ ` ∆,Hϕ] ;H1 if C′ 6= • and C′ 6= {Cl}

H2 ; C′ ; C [Γ ` ∆,Hϕ] ;H1

(`H)

Fig. 2. Modal rules of HKd
tL`.3. In (`G) and (`H), we allow C′ = • only when H2 = •.

4.2 Rules

We now comment on our rules. The rules from figures 1 and 2 are the same as
in [3]. The propositional rules of Figure 1 are straightforward: they are the usual
ones applied to an arbitrary sequent of the hypersequent.

The left modal rules of Figure 2 should not be surprising. For instance, in
(G`), if the conclusion has a counter-model, then Gϕ holds at some ordinal and
thus both ϕ and Gϕ must also hold at strictly greater ordinals. The rule also
applies to two distinct sequents inside the same cluster. The ({G`}) rule allows
to proceed in the same way inside a cluster when the sequent ‘further to the
right’ is the original sequent itself, something that our notations do not allow in
(G`). Finally, (H`) and ({H`}) are symmetric to the two previous rules.

The rules (`G) and (`H) are the most complex ones. We shall not try to
justify their soundness at this point, but simply make a few remarks that are
important to understand their definition. First, these rules are the only ones
that may introduce new cells in hypersequents. In (`G), new cells come with
the annotation (Gϕ) of the principal formula Gϕ, which will help bounding the
proof search, as we will see in Lemma 1.

Second, the principal cell C [Γ ` ∆,Gϕ] in (`G) may be the rightmost cell
of the conclusion hypersequent, in which case both C ′ and H2 are empty, and
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H1 [(Gϕ), Γ ` ∆] ;H2 [ϕ,Gϕ,Π ` Σ]

H1 [(Gϕ), Γ ` ∆] ;H2 [Π ` Σ]
((G))

[x/y](H [↑x, Γ ` ∆])

H
[
↑x, ↑y, Γ ` ∆

] (↑ `)

H [Γ, ↓rϕ, ↑x, [x/r](ϕ) ` ∆] if ∀y ∈ N, ↑y /∈ Γ , with x fresh
H [Γ, ↓rϕ, [x/r](ϕ) ` ∆] if ↑x is the only thaw atom in Γ

H [Γ, ↓rϕ ` ∆]
(↓ `)

H [Γ, ↑x ` [x/r](ϕ), ↓rϕ,∆] if ∀y ∈ N, ↑y /∈ Γ , with x fresh
H [Γ ` [x/r](ϕ), ↓rϕ,∆] if ↑x is the only thaw atom in Γ

H [Γ ` ↓rϕ,∆]
(` ↓)

Fig. 3. Annotation, freeze, and thaw rules of HKd
tL`.3. By fresh, we mean that x does

not appear as a free register anywhere in the conclusion.

the rule has two or three premises depending on whether the principal cell is a
cluster or not. When the principal cell is not rightmost, then C ′ is not allowed
to be empty, and the rule has one or two extra premises depending on whether
C ′ is a cluster or not. The situation is symmetric for (`H).

The annotations rules from [3] are now subsumed by the new rule ((G)) which
is similar to (G`), the difference being that an annotation (Gϕ) cannot affect
the current cluster.

The other rules from Figure 3 are new. The rule (↑ `) unify two registers
when they must contain the same datum, and is helpful to bound the number
of registers appearing in the proof search. The rules (↓ `) and (` ↓) both handle
the freeze quantifier ↓r by adding a version of ϕ where r has been replaced by
either an already used register matching the current datum if any, or a fresh one
otherwise.

Finally, we have designed our rules so that they are all invertible: by keeping
in premises all the formulæ from the conclusion, we ensure that validity is never
lost by applying a rule; this is proved in Appendix A.1.

Proposition 1 (invertibility). In any rule instance, if a premise has a counter-
model, then so does its conclusion.

In practice, keeping all formulæ can be unnecessarily heavy. Fortunately, it
is easy to see that the following weakening rules are admissible:

H [Γ ` ∆]

H [Γ, ϕ ` ∆]
(weak `)

H [Γ ` ∆]

H [Γ ` ϕ,∆]
(` weak)

4.3 Soundness

Our calculus is sound w.r.t Kd
tL`.3, which is proved in Appendix A.2.

Proposition 2. The rules of HKd
tL`.3 are sound: if the premises of a rule

instance are valid, then so is its conclusion.

Invertibility is not enough to obtain completeness since proof search does not
terminate, K↓

tL`.3 being undecidable. We now investigate a decidable fragment
for which HKd

tL`.3 is complete and has a proof strategy of optimal complexity.
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5 Restricted Logic and Completeness

The previous logic is known to be undecidable, even with only one register [14]
and some restrictions regarding the use of that register [17]. Here, we consider
another restriction of the logic, and prove that our calculus is complete for that
fragment, with proof search in coNP.

5.1 Restricted Syntax

We consider the following fragment of K↓
tL`.3, that we call Kd

tL`.3:

ϕ ::= ⊥ | p | ϕ ⊃ ϕ | Gϕ | Hϕ
| ↓rG (↑r ⊃ ϕ) | ↓rG (¬↑r ⊃ ϕ)

| ↓rH (↑r ⊃ ϕ) | ↓rH (¬↑r ⊃ ϕ) (where p ∈ Φ and r ∈ N)

Because the use of registers is restricted to such specific formulæ, we define
the following syntactic sugar:

G=r ϕ = G (↑r ⊃ ϕ) G6=r ϕ = G (¬↑r ⊃ ϕ)

H=r ϕ = H (↑r ⊃ ϕ) H 6=r ϕ = H (¬↑r ⊃ ϕ)

Intuitively, G=r ϕ (resp. G6=r ϕ) expresses the fact that ϕ holds in every fu-
ture position with the same (resp. a different) datum as the one stored in the
register r; and H=r ϕ, H 6=r ϕ express the same for past positions. Moreover,
since a negation before a freeze quantifier can be moved inside its scope, e.g.
¬↓rG6=r ¬ϕ ≡ ↓r¬G6=r ¬ϕ, we can also define their dual diamond modularities,
e.g. F 6=r ϕ = ¬G6=r ¬ϕ. Formulæ of the form ↓rG=r ϕ (resp. ↓rG6=r ϕ) corresponds
to formulæ denoted � =ϕ (resp. � 6=ϕ) from [4], which works over data trees.

Example 2. The formula from Example 1, forcing its models to have order type
at least ω2, does not belong to this fragment. Furthermore, there is no equivalent
formula belonging to Kd

tL`.3, as we will show later that satisfiable formulæ from
this fragment always have a model of order type strictly below ω2.

Property 2 from the introduction does not seem expressible either, since it
would require to perform nested data tests. However, property 1 can be expressed
by the following formula:

G (b ⊃ (¬↓rP=r > ∧ ¬↓rF=r b ∧ ↓rF=r (e ∧ ¬↓rF=r > ∧ ¬↓rP=r e)))

∧G ((e ∨ r ∨ w) ⊃ ↓rP=r b)

From now on, we only consider formulæ from Kd
tL`.3.

5.2 Completeness and Complexity

As in [2,3], completeness is a by-product of a rather simple proof-search strategy.
As already stated in 1, all the rules are invertible; and as we shall see, our
strategy only produce proof trees with branches that are polynomially bounded
for the restricted logic, as it will avoid any pitfall that could happen. Thus it is
useless to backtrack during proof-search. Moreover, proof attempts result in finite
(polynomial depth) partial proofs, whose unjustified leaves yield counter-models
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that amount (by invertibility) to counter-models of the conclusion. Hence the
completeness of our calculus. We detail this argument below, and its corollary:
proof-search yields an optimal coNP procedure for validity.

We characterise next the proof attempts that we consider for proof search,
and show how to extract counter-models when such attempts fail.

Lemma 1. If a hypersequent H satisfies one of these conditions, then H is
provable (and we say that H is immediately provable).

(a) There exists a formula ϕ, and two positions i ≺ j of H such that H(i) and
H(j) both contain (Gϕ) ` ϕ.

(b) There exists a formula ϕ, and two positions i ≺ j of H such that H(i) and
H(j) both contain Hϕ ` ϕ.

(c) There exists a formula ϕ, three positions i ≺ j ≺ k of H, and three registers
x, y, z ∈ N such that:
– H(i) contains (G6=x ϕ) ` ¬↑x ⊃ ϕ.
– H(j) contains (G6=y ϕ) ` ¬↑y ⊃ ϕ.
– H(k) contains (G6=z ϕ) ` ¬↑z ⊃ ϕ.

(d) There exists a formula ϕ, three positions i ≺ j ≺ k of H, and three registers
x, y, z ∈ N such that:
– H(i) contains H 6=x ϕ ` ¬↑x ⊃ ϕ.
– H(j) contains H 6=y ϕ ` ¬↑y ⊃ ϕ.
– H(k) contains H 6=z ϕ ` ¬↑z ⊃ ϕ.

We provide a proof tree for every case in Appendix A.3. The intuition behind
(d) is the following: if there exists γ where H 6=z ϕ holds, and γ′ < γ where H 6=y ϕ
holds, and if y and z stores different data, then ϕ holds in every past position
of γ′ (at any position, either ¬↑z or ¬↑y holds) and thus any G6=x ϕ holds in the
past. The intuition behind (c) is similar. This reasoning fails if y and z store the
same datum, but this cannot be assumed during proof search only when ↑y and
↑z appear on the left-hand side of the same sequent, and in this case we should
apply (↑ `) in priority.

Partial Proofs. We characterise now the proof attempts that we consider for
proof search, and show how to extract counter-models when such attempts fail.
We call partial proof a finite derivation tree whose internal nodes correspond to
rule applications, but whose leaves may be unjustified hypersequents, and that
satisfies two conditions:

(a) no rule application should be such that, if H is the conclusion hypersequent,
(i) one of the premises is also H, or
(ii) the rule being applied is (`G) on a formula Gϕ at position i such that

there exists j ∼ i such that H(j) contains (Gϕ) ` ϕ, or
(iii) the rule being applied is (`G) on a formula G (¬↑x ⊃ ϕ) at position

i such that there exists j ∼ i and y 6= x such that H(j) contains(
G (¬↑y ⊃ ϕ)

)
` ¬↑y ⊃ ϕ and does not contain ↑x on its left-hand side.

(b) If the rule (↑ `) is applicable, or if the rule (` ⊃) is applicable on a formula
of the form ↑x ⊃ ϕ, then the other rules cannot be applied.

(c) immediately provable hypersequents must be proven immediately as sketched
in the proof of Lemma 1.
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Finally, we call failure hypersequent a hypersequent on which any rule application
would not respect condition (a).

The second part of condition (b) is there to optimize the use of its first part,
which in turn is there to bound the number of registers our calculus manipulates
during a proof search. Conditions (a) and (c) amount to a simple proof search
strategy that avoids loops, and addresses especially loops arising from repeated
applications of (`H) or (`G), in branches where several new cells are created for
the same modal formula (up to maybe a different register): this results either
in immediately provable hypersequents from Lemma 1, or failure hypersequents
on which the proof strategy is stuck and for which we prove next that we can
always construct a counter-model.

Example 3. The annotation rules from [3] are subsumed by our new version of
the rule ((G)). For instance, if H has a position i that is not in a cluster such
that H(i) contains (Gϕ) ` Gϕ, the branch can be immediately closed by some
rule from [3]. Let us show that such an H is provable by HKd

tL`.3. First of all,
since (Gϕ) ∈ H(i), then either H(i) contains (Gϕ) ` ϕ, or there exist j ≺ i such
that H(j) contains it. Then:

– If (`G) cannot be applied on Gϕ, it is either because H(i + 1) contains
(Gϕ) ` ϕ, and then H is immediately provable, or because Gϕ also appears
on the right-hand side of H(i+ 1), and the same formula can also be sent on
its left-hand side (if not already present) by applying ((G)) on the annotation
(Gϕ), and then (ax) can be used.

– Else, we apply (`G) on Gϕ. All premises are immediately provable, except
for the premise sending Gϕ on the right-hand side of H(i+ 1) which can be
proved as in the previous case.

Proposition 3. Any failure hypersequent H has a counter-model.

Proof (sketch). The detailed proof is provided in Appendix A.4. We first con-
struct a counter-model M = ((α, δ), V ) of H with α = o(H) and a straight-
forward embedding M ↪→µ H. We also describe a function pos : α → dom(H)
which will act as the reverse of µ. Then, δ is chosen such that every pair of worlds
from M carry distinct data unless their corresponding sequent in H carries the
same atomic ↑r on their left-hand side; and V is constructed similarly: every
atom p is false except in worlds for which the corresponding sequent carries p on
its left-hand side. We finally prove that M is a counter-model of H by structural
induction on the subformulæ of H.

Example 4. Consider the following partial proof of the sequent ` ↓rG ↑r:

↑x ` ↓rG ↑r,G ↑x ; (G ↑x) ` ↑x
· · · ↑x ` ↓rG ↑r,G ↑x ; {(G ↑x) ` ↑x,G ↑x}

↑x ` ↓rG ↑r,G ↑x ; {(G ↑x) ` ↑x}
(`G)

↑x ` ↓rG ↑r,G ↑x
(`G)

` ↓rG ↑r
(` ↓)
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The first leaf is a failure hypersequent, since case (i) of condition (a) prevents
any rule application. Its corresponding counter-model consists of to worlds with
distinct data. The other branch will reach immediately provable hypersequent
(not displayed on the figure), and another failure hypersequent, since cases (i)
and (ii) of condition (a) prevent any rule application. Its corresponding counter-
model consists of a first world with a datum dx, followed by an infinite sequence
of worlds all carrying another datum dy 6= dx.

We now turn to establishing that proof search terminates, and always pro-
duces branches of polynomial length. For a hypersequent H, let len(H) be its
number of sequents (i.e., the size of dom(H)), and |H| the number of distinct
subformulæ occurring in H.

Lemma 2. For any partial proof of a hypersequent H, any branch of the proof
is of length at most 2|H|(4|H|+ len(H))((4|H|+ len(H))|H|+ len(H) + 1).

Proof (sketch). Each creation of a new position along a branch of the proof
search could lead to the creation of a new register later in the branch, which
in turn could create a new renamed copy of some subformula of H, which then
could lead to the creation of another position. We must make sure that such
a process cannot go ad infinitum: we first bound the numbers of free registers
that can appear along a branch respecting our proof strategy, then the size of
the hypersequents of such a branch, and finally the number of rules that can be
applied. The details are presented in Appendix A.5.

Example 5. If we did not follow our strategy, a bad case such as described at the
beginning of the previous proof could happen on the hypersequent H = ` ; ϕ `
with ϕ = H (¬↓rH=r ⊥). In practice, ϕ can send the subformula ↓rH=r ⊥ on
the right-hand side of any past position by using (H`) and then handling the
negation. A proof of H will start as follows:

H=x⊥ ` ↑x ⊃ ⊥ ; ϕ, ↑x ` H=x⊥, ↓rH=r ⊥ ; ϕ `
ϕ, ↑x ` H=x⊥, ↓rH=r ⊥ ; ϕ ` (`H)

ϕ ` ↓rH=r ⊥ ; ϕ ` (` ↓)

` ; ϕ `

Our strategy would now force to handle the formula ↑x ⊃ ⊥. If we do not
respect that, and instead send ↓rH=r ⊥ on the right-hand side of the leftmost
position and apply (` ↓) again, a new register y would be created, along with
the formula H=y ⊥, which in turn will create a new position more in the past
when applying (`H). If we never deal with a formula of the form ↑x ⊃ ⊥, this
process could go on ad infinitum, alternating between creating a new register and
creating a new position. However, if we respect our strategy, the proof search will
reach an immediately provable hypersequent after creating a fourth position. It
is not surprising, since we can prove that a counter-model of H should be such
that every datum appearing in the past do so infinitely many times, which is
impossible as our models are well-founded.

We now conclude that HKd
tL`.3 is complete for Kd

tL`.3, and also enjoys
optimal complexity proof search.
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Theorem 1 (completeness). Our calculus is complete for Kd
tL`.3: every valid

hypersequent H has a proof in HKd
tL`.3.

Proof. Assume that H is not provable. Consider a partial proof P of H that
cannot be expanded any more: its unjustified leaves are failure hypersequents.
Such a partial proof exists by Lemma 2. Any unjustified leaf of that partial proof
has a counter-model by Proposition 3, and by invertibility shown in Proposition 1
it is also a counter-model of H.

Proposition 4. Proof search in HKd
tL`.3 is in coNP.

Proof. Proof search can be implemented in an alternating Turing machine main-
taining the current hypersequent on its tape, with only universal states (choosing
a premise of the rule): by Proposition 1, we can choose an arbitrary order in which
to apply rules; and the choice of a fresh x by any application of (↓ `) or (` ↓)
does not matter (e.g., x can be taken as the next unused integer). Moreover,
by Lemma 2, the computation branches are of length bounded by a polynomial,
hence the Turing machine is in coNP.

6 Restricted Logic on Given Ordinals

We have designed a proof system that is sound and complete for Kd
tL`.3, and

enjoys optimal complexity proof search. Moreover, as in [3], we can derive a
small model property from the proof of completeness: the logic Kd

tL`.3 can only
distinguish ordinals up to ω2, as the underlying data-free logic [3].

Proposition 5 (small model property). If a hypersequent H has a counter-
model, then it has one of order type α < ω · ((4|H|+ len(H))|H|+ len(H) + 1).

Proof. This is a corollary of Theorem 1. By the proof of Lemma 2, the hy-
persequents in a failure branch—which are not immediately provable—have at
most (4|H| + len(H))|H| + len(H) + 1 non-empty sequents. The counter-model
extracted in Proposition 3 from a failure hypersequent H ′ is over o(H ′) <
ω · ((4|H| + len(H))|H| + len(H) + 1). A counter-model for H is then obtained
by Proposition 1, with a different embedding but the same structure.

In particular, for a formula ϕ, the hypersequent H = ` ϕ has |H| = |ϕ| and
len(H) = 1, hence the ω ·(4 · |ϕ|2 + |ϕ|+2) bound announced in the introduction.

Furthermore, as in [3], we can easily enrich our calculus by the following rule
to obtain a proof system for tense logic over data ordinals below a certain type α.

H
(ordα) if o(H) > α

We can also capture validity at a fixed ordinal α < ω2, by padding the
input with enough empty sequents to start with a hypersequent H of order
type α, and enriching our calculus with rule (ordα) to forbid larger ordinals
(as in [3]). The only catch is that we should check that the formula of interest
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in valid in all possible positions, i.e. considering all possible paddings leading
to a hypersequent of order type α. When checking validity of a formula ϕ in
all structures of order type exactly α, we must prove in HKd

tL`.3 extended
with (ordα) all hypersequents of order type α containing one sequent ` ϕ and
otherwise only empty sequents. For instance, when α = ω we must check ` ϕ;{`}.

7 Related Work and Conclusion

We have investigated K↓
tL`.3—the freeze tense logic over ordinals—and pro-

posed a decidable fragment, namely Kd
tL`.3, for which we designed a sound and

complete proof system.
Thanks to Indrzejczak’s ordered hypersequents [23], enriched with clusters

and annotations as in [2,3], our system enjoys optimal coNP proof search, allows
to derive small model properties, and can be extended into a proof system for
variants of the logic over bounded or fixed data ordinals.

First-Order Logic with Two Variables. Bojańczyk et al. [6] have shown that
validity in first-order logic with two variables over data words and data ω-words
is in coNEXP. The same statement can be derived from our results, since Kd

tL`.3
is exactly as expressive as FO2(<,∼). We detail this aspect in Appendix B:
converting a first-order formulæ into an equivalent Kd

tL`.3 formulæ can be done
by adapting the proof from [16]—which involves an exponential blow-up—, we
can then apply Theorem 4 to get a coNEXP decision procedure.

Other logics. Our fragment can be encoded in the Logic of Repeating Values
with Past from [13] (PLRV), for which the satisfiability problem is equivalent
to the problem of reachability in VASS, which is TOWER-hard [11], and with
an ACKERMANN complexity upper bound [32]. Kd

tL`.3 can also be encoded in
the fragment of XPath with data tests and navigation among siblings which has
been proved undecidable [17].

In both cases, the main difference is that Kd
tL`.3 cannot perform nested data

tests. However, this restriction allowed us to get a logic for which the satisfiability
problem has a smaller complexity (NP), as established by our proof system. The
complexities of various logics on data words and their inclusions is summed up
in Appendix C.

The systems most closely related to HKd
tL`.3 is obviously the calculus for

Kt4.3 [2] and KtL`.3 [3] in which we respectively introduced the notions of
clusters and annotations, and adapted them to work over ordinals. The main
contribution of the paper is being able to maintain the small branch property
of the calculus with the addition of data registers. Another contribution is the
shift of perspective about the annotations. In [3], they were only considered as
an artefact of the proof system being able to guide the proof search; but in this
paper, they are treated as a new kind of formula, and generalising the notion
of immediately provable hypersequent introduced in [3] allowed us to mimic the
syntactic condition they were previously bound to.
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A Detailed Proofs

A.1 Invertibility

Proposition 1 (invertibility). In any rule instance, if a premise has a counter-
model, then so does its conclusion.

Proof. Considering a rule instance with a counter-model (M, ν, µ) of a premise
H, we build a counter-model (M, ν′, µ′) of the conclusion H ′. Depending on the
rule that is applied, H and H ′ will either have exactly the same structure, or
H will have a new cell. Accordingly, we take µ′ to be the restriction of µ to
the positions of H ′ (and adapt it accordingly for the positions that have been
shifted). It is indeed a proper embedding of H ′ into M. Moreover, except for the
rule (↑ `), all the free ↑r of H ′ are also free registers of H, so taking ν′ = ν suffices
in these cases. For the case of (↑ `), H ′ must have two formulæ ↑x and ↑y on the
left-hand side of some sequent such that ↑y is not a subformula of H, and we can
take ν′ = ν[y 7→ ν(x)]. It is then easy to see that (M, ν′, µ′) is a counter-model
of H ′, since any sequent H ′(i) is contained in the corresponding sequent H(j)

(up to some register renaming for the rule (↑ `)): for any β, M, β 6|=(µ(j))
ν H(j)

implies M, β 6|=(µ′(i))
ν′ H ′(i).

A.2 Soundness

Not surprisingly, the following substitution lemma holds, which will be used in
the next proof.

Lemma 3. For every formula ϕ, and every model (M, ν, β, (θ)) of ϕ:

– if ν(x) = ν(y), then M, β |=(θ)
ν [x/y](ϕ).

– if no free occurrence of ↑x appears in ϕ, then M, β |=(θ)
ν[x 7→ν(y)] [x/y](ϕ).

Proposition 2. The rules of HKd
tL`.3 are sound: if the premises of a rule

instance are valid, then so is its conclusion.

Proof. We show the contrapositive: considering an application of a rule with a
conclusion hypersequent H and a counter-model (M, ν, µ) of H with M = (α, V )
and H ↪→µ α an embedding, we provide a counter-model of one of the premises
(or a contradiction when there is no premise).

Since we will often have to extend an embedding with a value for a new
position, we define µ+ (i 7→ α) as the mapping µ′ such that µ′(i) = α, µ′(k) =
µ(k) for k < i and µ′(k + 1) = µ(k) for k ≥ i in the domain of µ.

The case of propositional rules (Figure 1) is immediate: The usual reasoning
applies to the principal sequent, and the same embedding is used to obtain a
counter-model of one of the premises.

Next we turn to the modal rules of Figure 2:
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– Consider the case of (G`), applied with Gϕ, Γ ` ∆ at position i and Π ` Σ
at position j such that i - j. Remark that the rule ensures that i 6= j, but
we do not need this assumption to justify it. We show that (M, ν, µ) is an
counter-model of the premise H ′, concentrating on the only difference with
H, at position j. For clarity we distinguish two cases:

• When i ≺ j, we also have µ(i) < µ(j). Since (M, ν, µ) is a counter-model
of H, by taking an arbitrary βi < µ(i) we obtain γi such that βi ≤
γi < µ(i) such that M, γi 6|=(µ(i))

ν H(i). In particular, M, γi |=(µ(i))
ν Gϕ.

Now, considering an arbitrary β < µ(j) we need to exhibit γ such that

β ≤ γ < µ(j) and M, γ 6|=(µ(j))
ν H ′(j). By taking βj = max(β, µ(i)) <

µ(j) we obtain γj such that βj ≤ γj < µ(j) and M, γj 6|=(µ(j))
ν H(j).

Furthermore, since γi < µ(i) ≤ βj ≤ γj and M, γi |=(µ(i))
ν Gϕ, we also

have M, γj |=(µ(j))
ν ϕ and M, γj |=(µ(j))

ν Gϕ, hence M, γj 6|=(µ(j))
ν H ′(j).

• When i ∼ j we have that µ(i) = µ(j) and it is a limit ordinal because
we are considering positions in a cluster. Consider an arbitrary β < µ(i).

There exists γi such that β ≤ γi < µ(i) and M, γi 6|=(µ(i))
ν H(i). Because

µ(i) is a limit ordinal, γi + 1 < µ(i) = µ(j). Again, there exists γj such

that γi + 1 ≤ γj < µ(j) and M, γj 6|=(µ(j))
ν H(j). But, since γi < γj we

also have that γj satisfies ϕ and Gϕ, hence M, γj 6|=(µ(j))
ν H ′(j).

– The case of rule ({G`}) is covered by the second part of the previous ar-
gument, by taking i = j. Indeed, we have i ∼ i when ({G`}) applies at
position i.

– Consider now an application of rule (H`) with Π ` Σ at position i and
Hϕ, Γ ` ∆ at j. We have i - j, hence µ(i) ≤ µ(j). Consider an arbitrary

β < µ(i). There exists γi such that β ≤ γi < µ(i) and M, γi 6|=(µ(i))
ν H(i).

We claim, as before, that there exists γj such that γi < γj < µ(j) and

M, γj 6|=(µ(j))
ν H(j). Indeed, if µ(i) < µ(j) then there exists γj with µ(i) ≤

γj < µ(j) that falsifies H(j). Otherwise µ(i) = µ(j) but then this must
be a limit ordinal and, by considering γi + 1 < µ(i) = µ(j) we obtain

γi < γj < µ(j) that invalidates H(j). Having M, γj 6|=(µ(j))
ν H(j), we also

have M, γj |=(µ(j))
ν Hϕ. Thus γi satisfies ϕ and Hϕ, and M, γi 6|=(µ(i))

ν H ′(i)
as needed.

– The case of ({H`}) is covered by the previous argument.
– Consider an application of (`G) with Γ ` ∆,Gϕ at position i. For any βi <

µ(i) there exists γi with βi ≤ γi < µ(i) such that M, γi 6|=(µ(i))
ν H(i), and

thus M, γi 6|=(µ(i))
ν Gϕ. Hence there also exists γ′i > γi such that M, γ′i 6|=

(θ)
ν ϕ

for any θ. Let γ be the least ordinal that is strictly bigger than all such γ′i.
We have that µ(i) ≤ γ.
We now distinguish several cases regarding γ. When C ′;H2 is not empty let
j be the first position of the conclusion hypersequent that is in C ′.

• If µ(i) = γ, then µ(i) must be a limit ordinal (for every βi < µ(i), we
can find βi < γ′i < γ = µ(i)). Hence C 6= ? and the third premise H ′3
is available. We construct a counter-model (M, ν, µ′) for it by taking
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µ′ = µ + (k 7→ γ), where k = i + 1 is the new position in H ′3. Indeed,
we have that for any β′ < µ′(k) there exists γ′ with β′ ≤ γ′ < µ′(k)

and M, γ′ 6|=(µ′(k))
ν ϕ (the inequality can even be made strict). Moreover,

M, γ′ |=(µ′(k))
ν (Gϕ) by definition of γ = µ′(k): there cannot be any

λ ≥ γ such that M, λ 6|=(γ)
ν ϕ.

• If C ′ ;H2 is empty, or γ < µ(j), we conclude by observing that (M, ν, µ′)
is a counter-model of one of the first two premises with µ′ = µ+(k 7→ γ)
where k is the position of the new cell in these premises. We check that µ′

is monotone, because µ(i) < γ, and γ < µ(j) when it is defined. If γ is a
successor ordinal, (M, ν, µ′) is a counter-model of the first premise simply
because the predecessor of γ invalidates ϕ and satisfies (Gϕ); both hold
by construction. If γ is a limit ordinal we have a counter-model (M, ν, µ′)
of the second premise: we do have that for any β′ < µ′(k) there exists
γ′ with β′ ≤ γ′ < µ′(k) that invalidates ϕ, and (Gϕ) is satisfied by
construction.

• Otherwise µ(j) ≤ γ.
∗ If µ(j) < γ, we obtain a counter-model (M, ν, µ) of the fourth

premise H ′4. We check it for the only position whose sequent has
changed between H and H ′4, that is position j. Take any βj <
µ(j). We know that there exists γj with βj ≤ γj < µ(j) such that

M, γj 6|=(µ(j))
ν H(j). But, since γj < µ(j) < γ, there exists γ′ such

that γj < γ′ < γ and M, γ′ 6|=(µ(j))
ν ϕ. Thus M, γj 6|=(µ(j))

ν Gϕ, and

M, γj 6|=(µ(j))
ν H ′4(j).

∗ If µ(j) = γ and is a limit ordinal, we also obtain a counter-model
(M, ν, µ) of the fourth premise. This time, for any βj < µ(j), we know

that there exists γj with βj ≤ γj < µ(j) such that M, γj 6|=(µ(j))
ν

H(j). But, since γj < γ and γ is a limit ordinal, there still exists γ′

such that γj < γ′ < γ and M, γ′ 6|=(µ(j))
ν ϕ. Thus M, γj 6|=(µ(j))

ν Gϕ,

and M, γj 6|=(µ(j))
ν H ′4(j).

∗ Finally, if µ(j) = γ and is not a limit ordinal, then the position j
is not in a cluster, so the fifth premise is available. We claim that
it admits (M, ν, µ) as a counter-model. Let θ be the predecessor of

γ = θ + 1, which satisfies M, θ 6|=(µ(j))
ν ϕ by definition of γ. Since

(M, ν, µ) is a counter-model of H we also have M, θ 6|=(µ(j))
ν H(j).

This allows us to conclude, together with the fact that, as before,
the new annotation (Gϕ) is satisfied by definition of γ (there cannot

be any λ ≥ γ such that M, λ 6|=(γ)
ν ϕ).

– We now consider an application of rule (`H) with Γ ` ∆,Hϕ at position i.
Let j be the first position of C ′, if it exists. For any βi < µ(i) there exists γi
with βi ≤ γi < µ(i) that invalidates H(i), thus there exists γ′i < γi < µ(i)

such that M, γ′i 6|=
(µ(i))
ν ϕ. Let γ be the successor of the least ordinal among

all such γ′i. We have γ < µ(i).
• If H2;C ′ is empty, or µ(j) < γ, then (M, ν, µ′) is a counter-model of

the first premise with µ′ = µ + (k 7→ γ) where k is the new position
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in that premise. We do have that the predecessor of γ satisfies Hϕ (by
minimality) but not ϕ (by definition).

• If µ(j) = γ then C ′ cannot be a cluster, because γ is a successor. In that
case (M, ν, µ) directly yields a counter-model of the third premise.

• Otherwise γ < µ(j) and (M, ν, µ) is a counter-model of the second
premise.

We now consider the case of the annotation rule from Figure 3. Consider
an application of ((G)) with (Gϕ), Γ ` ∆ at position i and Π ` Σ at position
j, with i ≺ j. Because of the annotation (Gϕ) we have that, for all λ ≥ µ(i),

M, λ |=(µ(i))
ν ϕ. Hence (M, ν, µ) is a counter-model of the premise.

We finally consider the case of freeze rules (Figure 3):

– Consider an application of (↓ `) with H(i) = Γ, ↓rϕ ` ∆. If ↑x ∈ Γ , then
(M, ν, µ) is also a counter-model of the premise. Else, since (M, ν, µ) is a
counter-model of H, there exists di ∈ D such that for all β < µ(i) there exists

γ such that β ≤ γ < µ(i), δ(γ) = di, and M, γ 6|=(µ(i))
ν H(i). In particular,

M, γ |=(µ(i))
ν ↓rϕ, so M, γ |=(µ(i))

ν[r 7→di] ↑r ∧ ϕ. Let us take ν′ = ν[x 7→ di]. Since

x is fresh, it is also the case that M, γ 6|=(µ(i))
ν′ H(i); and by the second case

of Lemma 3, M, γ |=(µ(i))
ν′ ↑x∧ [x/r](ϕ). Hence, (M, ν′, µ) is a counter-model

of the premise.
– The case of (` ↓) is similar.
– Consider the application of (↑ `) with H(i) = ↑x, ↑y, Γ ` ∆. Since there

exists γ such that M, γ |=(µ(i))
ν ↑x and M, γ |=(µ(i))

ν ↑y, then ν(x) = ν(y) =
δ(γ). Hence, by the first case of Lemma 3, (M, ν, µ) is a counter-model of
the premise.

A.3 Immediately provable

Lemma 1. If a hypersequent H satisfies one of these conditions, then H is
provable (and we say that H is immediately provable).

(a) There exists a formula ϕ, and two positions i ≺ j of H such that H(i) and
H(j) both contain (Gϕ) ` ϕ.

(b) There exists a formula ϕ, and two positions i ≺ j of H such that H(i) and
H(j) both contain Hϕ ` ϕ.

(c) There exists a formula ϕ, three positions i ≺ j ≺ k of H, and three registers
x, y, z ∈ N such that:
– H(i) contains (G6=x ϕ) ` ¬↑x ⊃ ϕ.
– H(j) contains (G6=y ϕ) ` ¬↑y ⊃ ϕ.
– H(k) contains (G6=z ϕ) ` ¬↑z ⊃ ϕ.

(d) There exists a formula ϕ, three positions i ≺ j ≺ k of H, and three registers
x, y, z ∈ N such that:
– H(i) contains H 6=x ϕ ` ¬↑x ⊃ ϕ.
– H(j) contains H6=y ϕ ` ¬↑y ⊃ ϕ.
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– H(k) contains H 6=z ϕ ` ¬↑z ⊃ ϕ.

Proof. For every case, we show how to prove H.

(a) Such a hypersequent can be proved as follows:

H1 [Γ, (Gϕ) ` ϕ,∆] ;H2 [Γ ′, (Gϕ),Gϕ,ϕ ` ϕ,∆′]
(ax)

H1 [Γ, (Gϕ) ` ϕ,∆] ;H2 [Γ ′, (Gϕ) ` ϕ,∆′]
((G))

(b) This case is similar, roles of i and j being reverted, and using (`H) instead
of ((G)):

H1 [Γ,Hϕ,ϕ ` ϕ,∆] ;H2 [Γ ′,Hϕ ` ϕ,∆′]
(ax)

H1 [Γ,Hϕ ` ϕ,∆] ;H2 [Γ ′,Hϕ ` ϕ,∆′]
(`H)

(c) Let us first establish the following: if there is a formula ϕ and a register r
such that a sequent of H contains ¬↑r ⊃ ϕ ` ϕ, then we can make ↑r appears
on the left-hand side of this sequent:

H [Γ, ϕ ` ϕ,∆]
(ax)

H [Γ,¬↑r ⊃ ϕ, ↑r ` ϕ,∆]

H [Γ,¬↑r ⊃ ϕ ` ¬↑r, ϕ,∆]

H [Γ,¬↑r ⊃ ϕ ` ϕ,∆]
(⊃ `)

We now sketch in Figure 4 how to prove a hypersequent satisfying condition
(c). As the weakening rules are admissible, we omit other formulæ that could
appear at positions i, j or k, in order to make the figure more readable. The
omitted steps correspond to the ones described above, for registers x and y.
The last hypersequent satisfies condition (a), hence it is provable.

(d) This case is similar to (c), with the roles of positions i and k reverted (as well
as roles of registers x and z), and using (`H) instead of ((G)); and reducing
to an instance of (b).

[x/y](H1) [(G6=x ϕ) ` ¬↑x ⊃ ϕ] ; [x/y](H2) [(G 6=x ϕ) ` ¬↑x ⊃ ϕ] ; [x/y](H3) [(G6=z ϕ), ↑x,¬↑z ` ϕ]

H1 [(G 6=x ϕ) ` ¬↑x ⊃ ϕ] ;H2

[
(G 6=y ϕ) ` ¬↑y ⊃ ϕ

]
;H3

[
(G 6=z ϕ), ↑x, ↑y,¬↑z ` ϕ

] (↑ `)

....
H1 [(G6=x ϕ) ` ¬↑x ⊃ ϕ] ;H2

[
(G6=y ϕ) ` ¬↑y ⊃ ϕ

]
;H3

[
(G 6=x ϕ), (G6=y ϕ), (G 6=z ϕ),¬↑x ⊃ ϕ,¬↑y ⊃ ϕ,¬↑z ` ϕ

]
H1 [(G6=x ϕ) ` ¬↑x ⊃ ϕ] ;H2

[
(G6=y ϕ) ` ¬↑y ⊃ ϕ

]
;H3

[
(G6=x ϕ), (G 6=y ϕ), (G6=z ϕ),¬↑x ⊃ ϕ,¬↑y ⊃ ϕ ` ¬↑z ⊃ ϕ

] (` ⊃)

H1 [(G 6=x ϕ) ` ¬↑x ⊃ ϕ] ;H2

[
(G 6=y ϕ) ` ¬↑y ⊃ ϕ

]
;H3 [(G 6=x ϕ), (G 6=z ϕ),¬↑x ⊃ ϕ ` ¬↑z ⊃ ϕ]

((G))

H1 [(G 6=x ϕ) ` ¬↑x ⊃ ϕ] ;H2

[
(G 6=y ϕ) ` ¬↑y ⊃ ϕ

]
;H3 [(G 6=z ϕ) ` ¬↑z ⊃ ϕ]

((G))

Fig. 4. Proof tree sketch for a hypersequent satisfying condition (c).

A.4 Failure Hypersequents

Proposition 3. Any failure hypersequent H has a counter-model.
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Proof. Let α = o(H). We define µ : dom(H)→ α+ 1 \ {0} as follows:

µ(i) = m if i is the m-th cell of H
and appears before its first cluster;

µ(i) = ω · k if i belongs to the k-th cluster of H;
µ(i) = ω · k +m if i is the m-th cell appearing between

the k-th and the next cluster (if any).

Now let pos : α→ dom(H) be a function such that:

(a) ∀β < β′ < α, pos(β) - pos(β′)
(b) ∀β < α, ∀i ∈ dom(H), β < µ(i)⇔ (pos(β) - i or pos(β) = i)
(c) ∀β < α, ∀i ∈ dom(H), pos(β) - i⇒ ∃β < γ < µ(i), i = pos(γ)

There always exists one such function. Its choice is quite constrained due to
the definitions of α and µ. Positions i that are not in a cluster will be such
that i = pos(β) for a single β, typically the predecessor of µ(i). A position i
appearing in a cluster must correspond to an infinite sequence of ordinals of
limit µ(i), so that for all i ∼ j and β, if pos(β) = i then there exists γ with
β < γ < µ(i) = µ(j) such that pos(γ) = j; informally, this ensures that positions
i and j inside a cluster are ‘infinitely interleaved’ within µ(i) = µ(j).

We now define the data assignment δ of α. Since the rule (↑ `) cannot be
applied on H, each position of H must have at most one atomic formula of the
form ↑r on its left-hand side. For each position i of H, we chose a datum di ∈ D
with the following constraints:

– If H(i) and H(j) have the same atomic ↑r on their left-hand side, then
di = dj ;

– Else, di 6= dj .

We can now define δ by δ(β) = dpos(β), for all β < α. From this, we fix a fresh
datum d⊥ different from all the di, and we can define a register valuation ν
defined for every free register that appears in H by:

– ν(r) = di if ↑r appears on the left-hand side of H(i),
– ν(r) = d⊥ otherwise.

We finally define a valuation V : Φ → ℘(α) by V (p) = {β < α | ∃Γ,∆ .

H(pos(β)) = (p, Γ ` ∆)} and let M = ((α, δ), V ). We now claim that M, γ 6|=(µ(pos(γ)))
ν

H(pos(γ)) for all γ < α: we prove by induction on ψ that, if ψ appears in the left-

hand (resp. right-hand) side of the turnstile in H(pos(γ)), then M, γ |=(µ(pos(γ)))
ν

ψ (resp. M, γ 6|=(µ(pos(γ)))
ν ψ).

– If ψ is an atom p ∈ V the results follow by definition of V , and because
(ax) does not apply to H. The propositional cases are obtained by induction
hypothesis, because the corresponding rules of Figure 1 have already been
applied.

– If ψ is an atomic formula ↑r, then:
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• If ψ appears on the left-hand side of the turnstile, the results follows by
definition of ν.

• If ψ appears on the right-hand side of the turnstile at position i, then
either ψ also appears on the left-hand side of some position j, and i 6= j
because (ax) does not apply, so ν(r) = dj 6= di; or ψ never appears on
the left-hand side of some sequent of H and ν(r) = d⊥ 6= di. Either way,

M, γ 6|=(µ(i))
ν ↑r for γ such that pos(γ) = i.

– Because (↓ `) and (` ↓) do not apply on H, there are no formula of the form
↓rψ′ anywhere in H for which (↓ `) or (` ↓) has not been applied (such
rules could also be prevented by having two formulæ ↑x and ↑y on the left-
hand side of a sequent, but this cannot happen here since (↑ `) does not
apply). This means that every such ↓rψ′ appears along with [x/r](ψ′) on
the same side of the turnstile, and ↑x on the left-hand side of the turnstile,
for some x. Let us assume that ↓rψ′ and [x/r](ψ′) appear on the right-
hand side of H(pos(γ)) (the other case is similar). By induction hypothesis,

M, γ |=(µ(pos(γ)))
ν ↑x and M, γ 6|=(µ(pos(γ)))

ν [x/r](ψ′), hence M, γ 6|=(µ(pos(γ)))
ν

↓rψ′.
– Assume that ψ = (Gϕ) appears on the left-hand side of the turnstile in
H(pos(γ)) (an annotation cannot appear on the right-hand side). Then,
because ((G)) does not apply, ϕ appears on the left-hand side of H(i) for

any i such that pos(γ) ≺ i, so M, γ′ |=(θ)
ν ϕ for every γ′ ≥ µ(pos(γ)) and for

any θ, hence M, γ |=(µ(pos(γ)))
ν (Gϕ).

– The cases of modal formulæ on the left-hand side are similar, we only detail
that of H . If ψ = Hϕ occurs on the left-hand side of H(pos(γ)) then by
(H`) and ({H`}), the formula ϕ must occur on the left-hand side of any
H(i) with i - pos(γ). Moreover, for all γ′ < γ, we have pos(γ′) - pos(γ) by

(a), so M, γ′ |=(µ(pos(γ′)))
ν ϕ, and thus M, γ |=(µ(pos(γ)))

ν ψ.
– Assume that ψ = Hϕ occurs on the right of H(pos(γ)). We prove by a sub-

induction on pos(γ) that M, γ 6|=(µ(pos(γ)))
ν Hϕ. Since (`H) does not apply,

and since the first premise necessarily differs from the conclusion, it must
be that there is a cell C ′ preceding the cell that contains pos(γ), and that
the last two premises (if available) would coincide with H. Let i be the
first position in C ′. Take an arbitrary λ < µ(i) such that pos(λ) = i (such
a λ always exists, thanks to (b) and (c) instantiated with β = 0). Since
i ≺ pos(γ) it must be that λ < γ. As noted above, we have either that Hϕ
belongs to the right-hand side of H(i), or that ϕ belongs to its left-hand side.

In the first case, we obtain M, λ 6|=(µ(pos(λ)))
ν Hϕ by induction hypothesis on

i < pos(γ). In the second case we directly have M, λ 6|=(µ(pos(λ)))
ν ϕ. We

conclude either way that M, γ 6|=(µ(pos(γ)))
ν Hϕ.

– Assume finally that ψ = Gϕ occurs on the right-hand side of H(pos(γ)).
Let us first assume that there does not exist any i � pos(γ) such that Gϕ
appears on the right-hand side of H(i).

• If (`G) does not apply on ψ because of case (i) of condition (a), it
cannot be because of the fourth premise by the previous assumption, so
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an annotation (Gϕ) must appear at some position i in H on the left-hand
side of the turnstile, along with ϕ on its right-hand side. By rule ((G))
we must have pos(γ) - i (or else (ax) could by applied). By (c), there

exists γ′ > γ such that i = pos(γ′). We then have M, γ′ 6|=(µ(pos(γ′)))
ν ϕ,

thus M, γ 6|=(µ(pos(γ)))
ν Gϕ.

• If (`G) does not apply on ψ because of case (ii) of condition (a), there
exists i ∼ pos(γ) such that H(i) contains (Gϕ) ` ϕ, and we can conclude
the same way we did above for case (i).

• If (`G) does not apply on ψ because of case (iii) of condition (a), then
ϕ is of the form ¬↑x ⊃ ϕ′, and there exists i ∼ pos(γ) and y 6= x such
that H(i) contains (G6=y ϕ

′) ` ¬↑y ⊃ ϕ′, and does not contain ↑x on
its left-hand side. By (c), there exists γ′ > γ such that i = pos(γ′);
and by definition of ν and δ, ν(x) 6= δ(γ′) (because ↑x does not appear

on the left-hand side of H(pos(γ′))); hence M, γ′ 6|=(µ(i))
ν ↑x. Moreover,

M, γ′ 6|=(µ(i))
ν ¬↑y ⊃ ϕ′, so in particular M, γ′ 6|=(µ(i))

ν ϕ′. Thus, in the end,

M, γ′ 6|=(µ(i))
ν ¬↑x ⊃ ϕ′, and we have M, γ 6|=(µ(pos(γ)))

ν G (¬↑x ⊃ ϕ′).
Now, if there exists a position i � pos(γ) such that Gϕ appears on the right-

hand side of H(i), since we just proved that M, γ′ 6|=(µ(i))
ν Gϕ for any γ′ with

pos(γ′) = i (in particular, γ′ > γ), then we indeed have M, γ 6|=(µ(pos(γ)))
ν Gϕ.

We can check that H ↪→µ α: the conditions of an embedding are met by
construction.

Finally, (M, ν, µ) is a counter-model of H. Indeed, for all i ∈ dom(H) and
β < µ(i) there exists γ with β ≤ γ < µ(i) such that pos(γ) = i, and hence

M, γ 6|=(µ(i))
ν H(i): if pos(β) = i, we can take γ = β, else (b) enforces pos(β) - i,

and (c) provides one such γ.

A.5 Small branch property

Lemma 2. For any partial proof of a hypersequent H, any branch of the proof
is of length at most 2|H|(4|H|+ len(H))((4|H|+ len(H))|H|+ len(H) + 1).

Proof. Let H be a hypersequent, P a partial proof of it, and B a branch of
P. We note ΦH the set of subformulæ of H. Remark that all the formulæ that
appear in B belongs to ΦH , up to the renaming of some registers that appear
in B. We have to be careful about the following: each creation of a new position
along B could lead to the creation of a new register later in B, which in turn
could create a new renamed copy of some formula of ΦH , which then could lead
to the creation of another position. We must make sure that such a process
cannot go ad infinitum. Let us first establish that the number of free registers
in hypersequents of B is bounded by 4|H| + len(H). Because we always unify
registers with (↑ `) as soon as possible in B (condition (b) of being a partial
proof), and because the only way to introduce new registers is via rules (↓ `)
and (` ↓) when no thaw appear on the left-hand side, we always have less free
registers than positions. We have at most len(H) positions initially; and we must
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now bound the creations of positions that can effectively lead to the creation of
a new register later in B (new positions can only be created by rules (`H) and
(`G)):

– For any Hϕ among the subformulæ of B that do not contain a free register
(so among |H| formulæ), a new position can only be created once without
creating an immediately provable hypersequent.

– For any Gϕ among the subformulæ of B that do not contain a free register,
a new position can only be created once in the same cluster (because of case
(ii) of condition (a)). A second position cannot be created elsewhere either
without creating an immediately provable hypersequent.

– For any ↓rH 6=r ϕ ∈ ΦH , many formulæ of the form H 6=x ϕ could appear along
B (as many as free registers), and they could all lead to the creation of a new
position. However, only 2 such positions can be created along B (each time
for a different x) without creating an immediately provable hypersequent.

– Similarly, for any ↓rG6=r ϕ ∈ ΦH , many formulæ of the form G6=x ϕ could
appear along B. Let us prove that a new position can only be created at
most 4 times by such formulæ (each time for a different x) without creating
an immediately provable hypersequent (the worst case being two different
clusters, both containing two such sequents). First of all, we cannot create
3 such positions with i ≺ j ≺ k without creating an immediately provable
hypersequent, so the worst case indeed involve at most two clusters. More-
over, we cannot create more than two such positions in the same cluster.
Let us look at the evolution of such a cluster along B. A first position i is
created for a formula G6=x ϕ, and a second position j ∼ i could be created
later for a formula G6=y ϕ (with y 6= x) only if the ith position of the current
hypersequent has ↑y on its left-hand side. But then, a third creation of such
a position (for a formula G6=z ϕ, with z 6= y) will be prevented since j is an
instance of (iii) (the jth position of the current hypersequent cannot contain
↑z on its left-hand side, since it already contains ↑y and we always unify
registers as soon as possible).

– One more (overall) position could be created, leading to an immediately
provable hypersequent. In such a case, a new register will not be created
since the hypersequent as to be proved immediately as sketched in the proof
of Lemma 1.

– Because of condition (b), whenever a new cell is created by a formula H=x ϕ
or G=x ϕ, ↑x will appear on its left-hand side from the next step in B. Hence,
such new cells will not lead to new registers, and the number of registers is
bounded by 4|H| + len(H). Moreover, at most one such cell can be created
for every ϕ (among |H| formulæ), and every register appearing in B, i.e.
(4|H|+ len(H))|H| in total.

This also proves that the number of positions of hypersequents in B is at most
(4|H| + len(H))|H| + len(H) + 1. Now, any other rule application adds some
subformulæ among (4|H|+ len(H))|H| to the left or to the right of the turnstile
at a position among (4|H| + len(H))|H| + len(H) + 1, hence with 2(4|H| +
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len(H))|H|((4|H| + len(H))|H| + len(H) + 1) choices. Thus B is of length at
most 2|H|(4|H|+len(H))((4|H|+len(H))|H|+len(H)+1).

B First-Order Logic with Two Variables

In this section, we show that Kd
tL`.3 is exactly as expressive as the two-variable

fragment of first-order logic over data ordinals from [6].

B.1 Syntax and Semantics

We consider first-order formulæ with two variables x and y over the signature
(=,∼, <, (p)p∈Φ) where =, < and ∼ are binary relational symbols and each p is
a unary relational symbol:

ψ ::= z = z′ | z < z′ | z ∼ z′ | p(z) | ⊥ | ψ ⊃ ψ | ∀z.ψ (first-order formulæ)

where z, z′ range over {x, y} and p over Φ. We call this logic FO2(∼, <).
We interpret our formulæ over structures M = ((α, δ), V ) where = is inter-

preted as the equality over α, < as the canonical strict total ordering of α, ∼ as
the equality with respect to δ, and each p as V (p) for the valuation V : Φ→ 2W .

That is, we say that M satisfies ψ under an assignment σ : {x, y} → α,
written M, σ |= ψ, in the following inductive cases:

M, σ 6|= ⊥
M, σ |= z = z′ if σ(z) = σ(z′)

M, σ |= z < z′ if σ(z) < σ(z′)

M, σ |= z ∼ z′ if δ(σ(z)) = δ(σ(z′))

M, σ |= p(z) if σ(z) ∈ V (p)

M, σ |= ψ ⊃ ψ′ if M, σ |= ψ implies M, σ |= ψ′

M, σ |= ∃z.ψ if ∃w ∈W, M, σ[w/z] |= ψ

where σ[w/z] is the updated assignment mapping z to w and the remaining
variable z′ ∈ {x, y} \ {z} to σ(z′).

B.2 Equivalence with Kd
tL`.3

Given an FO2(∼, <) formula ψ(z) with one free variable z, we show how to
construct a Kd

tL`.3 formula ϕ such that, for all data ordinals M = ((α, δ), V ),
M, [w/z] |= ψ if and only if M, w |= ϕ, where [w/z] is the variable assignment
mapping z to w.

Theorem 2. Every FO2(∼, <) formula ϕ(x) can be converted to an equivalent
Kd

tL`.3 formula ϕ′ with |ϕ′| ∈ 2poly(|ϕ|).
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Proof. The proof from [16] consist first in putting ϕ(x) in Scott normal form,
and then constructing its translation by structural induction. After multiples
steps—involving an exponential blow-up—, they obtain the following formula
equivalent to ϕ(x):

∨
γ̄∈{>,⊥}s

(∧
i<s

(ξi(x)↔ γi) ∧
∨
τ∈Υ
∃y . (τ(x, y) ∧ βτ (y, γ̄))

)

where each of the ξi have a quantifier depth strictly lower than ϕ (hence can
be translated by induction hypothesis), and where τ(x, y) is what they call an
order type, and expresses which relations hold between x and y (in [16], τ(x, y)
expresses which order relation holds between x and y, but it can now also ex-
press which relation holds between the data of x and y). By βτ , we denote the
formula β where every atomic order formula have been replaced by either > or
⊥, according to τ .

At this point, assuming by induction hypothesis that ψ′ is the translation
of some formula ψ(x), we need to provide translation to a formula of the form
∃y(τ(x, y)∧ψ(y)). We consider 9 mutually exclusive cases of such τ(x, y) in the
following table, where τ〈ψ〉 denotes the translation of ∃y(τ(x, y) ∧ ψ(y)):

τ(x, y) τ〈ψ〉
x = y ψ′

x ∼ y ψ′ ∨ ↓rF=r ψ
′ ∨ ↓rP=r ψ

′

¬(x ∼ y) ↓rF 6=r ψ′ ∨ ↓rP6=r ψ′
x < y Fψ′

x < y ∧ x ∼ y ↓rF=r ψ
′

x < y ∧ ¬(x ∼ y) ↓rF 6=r ψ′
y < x Pψ′

y < x ∧ x ∼ y ↓rP=r ψ
′

y < x ∧ ¬(x ∼ y) ↓rP6=r ψ′

Any other τ(x, y) can be reduced to either these cases, or trivially to ⊥ or >.

Conversely, Kd
tL`.3 formulæ can be easily translated into FO2(∼, <) for-

mulæ. Hence, Kd
tL`.3 and FO2(∼, <) are equally expressive.

Thus, Theorem 4 yield an optimal NEXP upper bound for the satisfiability
of FO2(∼, <).

C Other Data Logics

On the following figure, Kd
tL`.3 is contained in the Logic of Repeating Values

with Past navigation (PLRV) [13], which is evaluated on linear structures with
multiple attributes (when working with only one attribute, these structures co-
incide with data words). The logic is able to navigate to a future position with
an attribute equal (resp. different) to an attribute of the current position. Demri
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Kd
tL`.3

PLRV

PLTL↓1

BD-LTL

BRAFµ

XPath(←+,→+,=)

FO2(<,∼)

FO2(<,+1,∼)

NP-complete

NEXP-complete

TOWER-hard,

in ACKERMANN Undecidable

Fig. 5. Inclusions and complexities of some logics on data words.

et al. [13] shows that the satisfiability problem of LRV is equivalent to the reach-
ability problem in VASS, which is currently known to be TOWER-hard [11] and
in ACKERMANN [32]. Our fragment is also contained in the fragment of XPath
on words XPath(←+,→+,=) [17], which features data joins and can navigate
along the following-sibling and preceding-sibling axes, which is undecid-
able [17]. They are both contained in Freeze LTL with Past (PLTL↓1) [14], which
is also undecidable.

Kd
tL`.3 is equally expressive as FO2(<,∼) [6], but is only NP-complete

whereas this two variable fragment is NEXP-complete. When enriched with the
next operator +1, the satisfiability problem for this logic also becomes equivalent
to the reachability problem in VASS [6].

PLRV and FO2(<,+1,∼) are also contained in BD-LTL from [26], which
is itself contained in the bounded-reversal alternation-free fragment of the µ-
calculus from [10]—denoted by BRAFµ on Figure 5.
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