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Abstract

The flow of non-Newtonian fluids is ubiquitous in many applications in the
geological and industrial context. We focus here on yield stress fluids (YSF),
i.e. a material that requires minimal stress to flow. We study numerically
the flow of yield stress fluids in 2D porous media on a macroscopic scale
in the presence of local heterogeneities. As with the microscopic problem,
heterogeneities are of crucial importance because some regions will flow more
easily than others. As a result, the flow is characterized by preferential
flow paths with fractal features. These fractal properties are characterized
by different scale exponents that will be determined and analyzed. One
of the salient features of these results is that these exponents seem to be
independent of the amplitude of heterogeneities for a log-normal distribution.
In addition, these exponents appear to differ from those at the microscopic
level, illustrating the fact that, although similar, the two scales are governed
by different sets of equations.

1. Introduction

The flow of non-Newtonian fluids is ubiquitous in many applications in
geological and industrial context. In this study, we focus on yield stress
fluid (YSF), viz. material that requires a minimum amount of stress to flow.
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When the stress is below a critical value, the material behave as solid. Once
the stress is above this threshold, the material can be sheared and thus flow.

These materials have many implications for industrial processes. Indeed
mud, polymers, oil, foam suspension may present a yielding threshold [1].
The most important is certainly the extraction of heavy oil and has been
the subject of many studies since the 1960s [2]. Yield stress fluids are also
used for enhanced oil recovery where foam or polymers are injected into the
ground to block preferential flow paths [3, 4]. Another application is the
hydraulic fracking where the yield stress properties is used to prevent the
closing of the fractures [5].

Because of the many applications, flow of yield stress fluids has been
investigated in many studies [2, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Most of these
studies focused on flow at the microscopic (pore) scale. The main objective
was to establish a constitutive equation to relate the flow within the medium
to the applied pressure drop, which represents a generalization of the Darcy’s
law to yield stress fluids.

Yield stress fluids are usually described by the Herschel-Bulkley model
which relates the shear rate, γ̇, to the applied shear stress τ :

γ̇ =

{

0 if τ < τ0
( 1
C
(τ − τ0))

1/n if τ > τ0
, (1)

where τ0 is the yield stress, C the consistency and n an exponent. Here,
we choose to restrict to the Bingham rheology which corresponds to n = 1
(Bingham fluid) and C = η0, the dynamic viscosity.

The usual governing equation for the flow of yield stress fluid at the field
scale has been proposed by Entov [2] and Pascal [15]. They proposed a
modified Darcy’s equation (see also [16, 17]) in the form:

~u =

{

− k
η0
(~∇P −G

~∇P

|~∇P |
) = − k

η0
(~∇P +G ~u

|~u|
) if |~∇P | > G

~0 if |~∇P | < G
, (2)

where k is the permeability and G a positive scalar representing the limiting
pressure gradient related to the yield stress. Here, we have used the fact
that the velocity vector and the gradient of pressure are opposed direction.
Since its introduction, this law has been validated by several experimental
studies (see for instance [6, 7, 10]). It is important to note that both the
limiting pressure and the permeability depend on the local topology of the
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material. These quantities may thus be subject to spacial variations at the
macroscopic geological scale.

In recent studies [11, 18, 19], we have, however, demonstrated that, if the
medium in sufficiently disordered, the flow curve might be non-linear close to
the limiting pressure. Because of the structural disorder, some channel paths
may be easier to flow than others. For a certain range of pressure, there is
thus a non-linear increase of flowing paths responsible for the non-linearity
of the flow rate curve. At sufficiently high pressure, once all the fluid has
yielded, the flow curve becomes linear again and eq. (2) is valid.

One of the characteristics of these study was to demonstrate that the
flow curve and structure were governed by a power law. Indeed, the flow
rate satisfies Q ∝ (∇P −G)α, where α is an exponent close to 2. Moreover,
the size (S) distribution of the cluster of the fluid at rest follow : P (S) ∝
S−τ expS/S0 with S0 ∝ Q−γ. This distribution law characterizes the multi-
scale aspect (fractal) of this problem. It is also reminiscent to other problems
like percolation [20] or the avalanche dynamic [21, 19, 22]. It should also be
noted that the exponent α, τ and γ were found to be independent of the type
of disorder.

The aim of this study is to investigate the flow of a Bingham fluid at a
macroscopic level, i.e by solving a modified Darcy’s law in a heterogenous
permeability field. As noted above, the permeability and the limiting pres-
sure gradient depends on the local topology of the medium. We therefore
investigate the effect of spatial variations in these quantities on the flow. For
example, one could expect some similarities with the microscale aspect such
as the appearance of preferential paths. In their interesting work [23], He-
witt et al. studied Bingham fluids in the Hele-Shaw cell in the presence of
obstacles where they observed an increase in preferential paths with pressure
in fractures (Hele-Shaw with open variations).

The article is divided as follows. First, we will present the problem, the
flow equations and the description of the porous medium. Secondly, we will
present the numerical methods based on a Lattice Boltzmann scheme with
two relaxation times. We will then present and discuss the results and the
conclusion.
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2. Governing equations

2.1. Darcy’s law

The purpose of this paper is to study the flow of Bingham fluid at a
macroscopic scale. To this goal, we solve the modified Darcy’s equation
which relates the local mean flow rate to the local mean gradient of pressure.

In the introduction, we have presented the standard Darcy’s equation (2)
proposed in the literature. As discussed, this equation is not true close to
the limiting pressure gradient, where one should expect a transitory regime
which is more complex. However, because the transition is not yet fully
understood and because it appears in a short range of pressure, for the sake
of simplicity, we will assume that the standart eq. (2) is valid.

This equation can then be reformulated homogeneous to a balance of
momentum:

~0 = −~∇P − η0
k

(

1 +
kG

η0|u|

)

~u. (3)

Here, we can see that the contribution of the yield stress can be seen as a
constant body force opposed to the flow.

We have thus,

~0 = −~∇P − ηeff(|u|)
k

~u, (4)

where ηeff(|u|) = η0

(

1 + kG
η0|u|

)

is a scalar effective viscosity that depends on

the local velocity field. The model of effective viscosity is also very common
to solve non-linear rheology in porous media. Following the experimental
work of Hirasaki and Pope [24] or the one of Chauveteau [25], the idea is
to introduce an effective shear rate related to the local mean velocity. The
usual Darcy’s law is then modified with an effective viscosity varying with
the local mean velocity.

However, we have introduced two modifications to this equation. First,
like the Stokes equation for Bingham fluids, the effective viscosity has a zero
velocity divergence point which can lead to numerical instabilities. We have
tackled this problem by capping the viscosity by a maximum value ηmax

eff

which is several order of magnitude larger than η0 (typically 109 larger).
Another common technique to overcome this problem would have been to
regularize this function around zero with an exponential term as proposed
by Papanastasiou [26]. We tried both methods which gave similar results but
the second was much slower.
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The second comment is a general problem of the Darcy equation, which
is a first order differential equation, in disorder media. Indeed, any discon-
tinuity in the permeability field then leads to a discontinuity in the velocity
field, which is not physical but also introduces numerical instabilites. To
overcome this problem, one possibility is to introduce a diffusive term into
the momentum equation as proposed by Brinkman [27]:

~0 = −~∇P − ηeff(|u|)
k

~u+ ηB∆~u, (5)

where ηB is a coefficient that depends on the viscosity and the geometry.
Here, for the sake of simplicity, we keep it constant with ηB = η0.

2.2. Porous medium

For the heterogenous permeability field, we use a log-normal distribution
that has been widely used since the work of Gehlar [28] or Dagan [29] to
describe heterogeneity at macroscopic scale. The permeabilty map is dis-
tributed according to:

pdf(f = log k) =
1√
2πσ

exp−(f − f0)
2

2σ2
, (6)

where f0 and σ are the mean and the standard deviation of log(K).
The field f = log(k) is correlated with a Gaussian function, set by the

correlation length λ:

∫

f(~r + ~r0)f(~r0))dxdy = e−
π

8λ2
(x2+y2) (7)

The field is generated using a standard Fast Fourier Method (see Yiotis et

al. [30] for details). The permeability field k(~r) is thus parametrized by
three parameters, the mean f0, the amplitude of the heterogeneities σ and
the correlation length λ. Moreover, we define k0 = ef0

From a phenomenological aspect, local critical pressure is expected to be
related to permeability. However, no clear relationship has been proposed in
the literature. We have therefore chosen to relate them using dimensional
arguments. Indeed, one expects that the critical pressure can be written as
G = τ0/d, where d is a geometrical factor that has the dimension of a length
(the typical pore size) [31]. Since permeability has the dimension of a length
to the power 2, a natural relationship is to assume G = A/

√
k, where A
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is a prefactor. This relationship is, of course, purely phenomenological and
cannot be true for any types of porous media. We expect to hold for media
with same topology such has mono disperse bead packing.

From the distribution of permeability eq. (6), the probability density
function of the limiting pressure also follows a log-normal distribution:

p(lnG) =

√

2

πσ
exp (−2(lnG− lnA/

√
k0)

2

σ2
). (8)

2.3. Non-dimensionalization

In the following, we will use dimensionless quantities. For this, we nondi-
mensionalize any lengths with the correlation length, λ, any pressure with
the average critical pressure gradient A/

√
k0λ and any velocities with the

average permeability and the average critical pressure gradient :

X = λX̃, P = λA/
√

k0P̃ and u =
A
√
k0

η0
ũ,

where .̃ indicates dimensionless quantities.

3. Numerical method

To solve the Brinkman equation eq. (5), we used an improved two-
relaxation time Lattice Boltzman method (IBF-TRT) proposed by I. Ginzburg
[32, 33]. The basic idea of the Lattice Boltzmann method is to discretize the
particle velocity distribution function on a grid. Here we used a 2-dimensional
scheme with 9 different velocities (~cq). We then introduce the population fq
as the density of particles moving with the velocity ~cq. The algorithm con-
sists of a succession of two main steps. The first is the propagation step
Eq. (9), where we move the density on the grid according to its velocity.
The second is the collision step Eq. (10), where populations meeting at the
same node are redistributed using a collision operator. This collision part is
described as a relaxation toward an equilibrium state that depends on local
macroscopic quantities (pressure, speed...).

The main idea of the TRT scheme is to decompose each population into
a symmetrical and an antisymmetrical part. Each component relax toward
their equilibrium with its own relaxation rate. We define the even and odd
part respectively as f+

q = fq+fq̄
2

and f−
q = fq−fq̄

2
. Denoting by q̄ the direction

opposite to q (~cq = −~c̄q) and assuming ~c0 = ~0 and that the 8 nonzero
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velocities are ordered so that the first four directions are opposite to the last
four.

The propagation step is described as:

fq(~r + ~cq, t+ 1) = f̂q(~r, t), q = 0 . . . 8, (9)

and the collision step:

f̂q(~r, t) = [fq − s+n+
q − s−n−

q ], q = 0 . . . 4

f̂q̄(~r, t) = [fq̄ − s+n+
q + s−n−

q ], q = 0 . . . 4, (10)

with

n±
q = (f±

q − e±q ) , when ~cq̄ = −~cq , q = 0 . . . 4 , (11)

where e±q are the equilibrium distributions. The model has several param-
eters, cs the numerical sound speed, ν0 the Brinkman viscosity and Λ a
numerical parameter, from which we define Λ+ = 3η0 and Λ− = Λ/(3η0).
The determination of the equilibrium function requires to compute the local
pressure P and momentum ~u:

P = ρc2s with ρ =
8

∑

0

fq (12)

and

~u =
2 ~J

2 +
ηeff (~u)

k

with ~J =
8

∑

0

fq~cq, (13)

where the effective viscosity has be determined using the local velocity at the
previous step.

The equilibrium function are then defined as:

e+q = tqP, e0 = ρ−
8

∑

1

e+q (14)

and
e−q = tq(~u.~cq + Λ−Fq). (15)
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Fq is the body force which takes into accound the Darcy drag force (second
term in eq. (5)) and is defined by:

Fq = −tq
ηeff(~u)

k
~j.~cq. (16)

Finally, the two relaxation rates are defined as:

s+ =
2

2Λ̃+ + 1
with Λ̃+ =

9(4 + ηeff (~u)
η0k

)

4(3 + 2Ληeff (~u)
η0k

)
η0 (17)

and

s− =
2

2Λ− + 1
.

The main difference between the standard BF-TRT and the improved
IBF-TRT scheme is the use of Λ̃+ instead of Λ+ for the relaxation parameter
s+. Indeed, the standard BF-TRT scheme leads to an error in the viscosity
which depends on the local parameter. The change of Λ+ is to compensate
for this error [32, 33].

In this study, the typical porous medium size is 1024× 4096 nodes. The
typical duration time is between 2 and 100 hours with 32 CPUs.

3.1. Validation

To validate our numerical code, we simulated a Bingham fluid in a strat-
ified porous medium with permeability distributed according to a sinusoidal
function in the normal direction (y) and invariant in the flow direction (x),
namely:

κ(x, y) = sin(2πy)
κmax − κmin

2
+ 2κmin.

We used different numbers of grid nodes, Ny ∈ {5, 8, 16, 32, 64, 128}, to vary
the spatial resolution. To perform a quantitative analysis, we solve eq. (5)
using a standard second order finite difference method discretized with a
fixed finer resolution of 512 points.

In Fig. 1, we have plotted the velocity profile for different applied pressure
field for a fixed resolution Ny = 16. As we can see in this figure, the difference
with the finite difference is quite satisfactory. We also compute in Fig. 2 the
error difference between the total flow rate QLBM and QFD from the Lattice
Boltzmann and the finite difference method respectively:

Err =
QLBM −QFD

QFD

.
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The error remains quite low. The maximum of errors is reached close to the
critical pressure where both solutions tend to zero.

Considering eq. (7) with λ = 5, we can estimate that our simulations
correspond to a periodicity of Ny ≃ 20. We expect thus an error of 1 − 2%
close to the first path opening, and of less than 0.1% above.

4. Results

4.1. Problem description

We simulate the flow in domain size of 4096 × 1024. The permeability
distribution is log-normal with a mean k0 = e−1, a correlation length λ = 5
and a mean square deviation σ2 ranging from 0.1 to 3. The constant A was
set to A = 10−5. A constant pressure difference ∆P is then imposed at
the inlet and outlet of the domain. After the simulation has converged, we
compute the mean flow rate: q̃ = 1

V

∫

udV , where V is the domain size.
When the imposed pressure is too low, the whole domain is in the solid

state which results in a zero mean velocity (very small in fact due to the
capping of the viscosity). Above this macroscopic threshold, the fluid then
starts to flow in few channels. Figure 3 displays snapshots of the flow field for
different σ and different applied pressure above this threshold. As it can be
seen, close to this threshold the number of flowing paths is small. In principle,
it should reduce to a single path but, due to numerical precision, the precise
critical point is difficult to determine, particularly for low σ. As the pressure
is increased, the number of flowing paths increase with the applied pressure.
We also observe in these snapshots that the flowing paths seem to be more
tortuous as the heterogeneity parameter, σ, is increased.

In the following, we will first present the evolution of the mean flow char-
acteristics by increasing the pressure. Then we will study some geometrical
aspect of the flow field.

4.2. Onset of flow

The first characteristic is the critical global pressure difference required to
initiate the flow. Because of the yield stress property, we observe a minimal
pressure drop ∆P̃c below which there is no flow (within the regularization
error bar). As already described in other papers [34, 11, 23], this pressure
corresponds to the appearance of the first flowing path. It can be formally
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Figure 1: Top: Velocity profile ũ(ỹ) in a sinusoidal stratified permeability field with
(κmax;κmin) = (0.04; 0.01) simulated with LBM with Ny = 16 nodes (crosses) and finite
difference method with 512 nodes (lines) at different applied pressure. Bottom: Dashed
line represents the distribution of the local critical pressure and the horizontal continuous
line is the different applied pressure. As expected, the velocity is non-zero where the
pressure gradient is higher than the local critical pressure.
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Figure 2: Relative total flow rate error for different discretisation number nodes Ny as
function of the applied pressure drop.
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Figure 3: Snapshot of the velocity map at increasing pressures beyond ∆P̃c. Flowing
paths are grey and white (color online), clusters are in black. Different line correspond to
different σ: from top to bottom σ2 = 0.1, σ2 = 1, σ2 = 3. The different columns are for
increasing applied pressure difference from left to right.
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defined as being the path which has the minimal critical pressure:

∆P̃c = min
C

∫

G̃(~r)ds, (18)

where the path C are taken among all possible paths connecting the inlet to
the outlet.

Several comments must be made on this critical path. We expect that
the path and the associated critical pressure should depend on the disorder
since they result from the competition of two opposite effects.

On the one hand, the minimal path tends to connect regions of low G̃(~r)
(i.e. high permeability). But on the other hand, as indicated by eq. (18),
the total length of the path has a contribution. The optimal path results
thus from a balance between the search of the most permeable areas and the
cost of increasing the length of the path.

This competion can clearly be observed in Fig. 3, where we have plot
the first path for different σ. At lower σ, the path is almost straight because
the lower G̃(~r) regions are not low enough to compensate for an increase of
length. As σ increases, the optimal path becomes more tortuous because the
value of the lowest G̃(~r) regions decreases, which could be worth the detour.

We may note that the tortuosity of the first path may not necessarily
increase with the amplitude of the disorder. A simple example would be to
multiply the G̃ field by a constant value (or by changing A), which has the
effect of increasing the standard deviation but not the shape of the optimal
path (see eq. (18)).

Finally, we should also note that the path selection of eq. (18) is very close
to a standart problem in statistical physics named directed polymer problem
[35], which consist in the finding of a minimal path in an energy lanscape.
The minimization is however perform among ”directed” paths, meaning that
their slope is bounded to avoid any overhangs. In this context, the directed
polymer is known to be self-affine with a roughness exponent equal to 2/3.
This exponent is ”universal” in the sense that it does not depend on the
distribution of the energy (see [35, 36]), provided that the distribution is not
too ”extreme” (like power law, fat tail, distributions [37]). The roughness of
our flowing paths will be discussed in section 4.4.

In Fig. 4, we plot the value of ∆P̃c as function of the amplitude of the
disorder. As expected, ∆P̃c decreases with the amplitude of the disorder,
starting from ∆P̃c(σ = 0) = G̃L̃, where L̃ is the dimensionless total length
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Figure 4: Semilog plot of th global critical pressure as function of the heterogeneity pa-
rameter σ. As we can see, this pressure exponentially decreases with ∆P̃c(σ = 0) = 1.

of the system. Moreover, as indicated in the figure, the critial pressure seems
to follow a gaussian function with σ.

Note that for low value of σ, the critical pressure and the path associated
to it become more difficult to determine precisely. Indeed, since the disorder
is small, all the possible paths are quite similar in term of pressure threshold.
As a result, all flow paths appear very quickly in a narrow pressure range.

4.3. Flow regimes

We now study the evolution of the flow rate by increasing the pressure
difference above the threshold. We have plotted in Fig. 5, the mean flow
rate q as function of the applied pressure substracted by the critical pressure
∆P̃ − ∆P̃c. As it can be seen, the mean debit follows a power-law over a
certain range of pressure:

q̃ = B(∆P̃ −∆P̃c)
α. (19)
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More remarkable, we note that the exponent seems to be constant with the
heterogenity paramter σ (within the error bar) α = 2.8± 0.05.

This flow behaviour is reminiscent of what has been observed at the pore
scale [18]. However, there is a major difference that lies in the value of the
exponent which is significantly higher (α ≃ 2 at the pore scale). We believe
that this is due to the contribution of the increase in the number of flow
paths but also to the increase of the flow rate in each of them. As in the case
of pore scale, a significant contribution is due to the increase in the number
of flow paths with the applied pressure. However, while at the pore scale,
the flow rate of each path is expected to increase linearly with pressure, this
is not necessarily the case at the macroscopic level because the paths can
also widen. Indeed, since the permeability field and the limit pressure are
correlated, it is also expected that regions near open paths will also be easier
to flow. The width of each individual path therefore increases with pressure,
similarly to the stratified permeability distribution case considered in the
validation section. This effect was quantified in Fig. 6 where we measured
the distribution of the channel width W̃c as a function of the applied pressure.
We can clearly see the broadening of the distribution with the increase in
pressure.

Finally, for large enough pressure, once most of the domain is flowing,
the number of the paths and their width cannot increase anymore, the flow
rate then recover a linear behavior q̃ ∝ (∆P̃ −∆P̃c).

It should be noted that the amplitude of the disorder modifies the pressure
range over which the intermediate regime is observed. Indeed, the decrease in
σ results in a faster transition to the linear regime. The effect is particularly
strong for σ = 0.1, where most of the flow paths open very quickly after
the first one. As we have discussed above, since the environment is more
homogeneous, most of the possible paths are roughly equivalent.

4.4. Geometrical propeties of the flow field

We now study the statistical properties of the flow field. If the main
quantity of interest should be the flow paths, their characteristics (branch
length, rugosity, etc.) are quite difficult to define and measure precisely.
Hence, it is more convenient to focus on the fluid at rest. We study the
statistics of the non-flowing fluid clusters, i.e. the areas of fluid at rest that
are surrounded by flowing channels. Using a standard Hoshen-Kopelman
algorithm on the velocity map allows us to determine the cluster of fluid at
rest. For each cluster, we then extract its size S̃. Its length L̃ and width W̃
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Figure 5: Flow rate as function of the pressure difference q̃(∆P̃ ) in a log-log scale for
different σ. The intermediate continous line corresponds to a power-law of exponent 2.8,
the last one corresponds to a linear law.
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Figure 6: Probability distribution of the channel width, Wc, for different applied pressure
difference.
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Figure 7: Left: Cluster size probability distribution versus cluster size P (S̃) and(inset)
clusters cut size versus flow rate S̃0(q̃). Right: Normalized and collapsed cluster size
probability distributions: P (S̃).q̃−τγ verus S̃.q̃γ .

Figure 8: Renormalized cluster size probability distributions as function of the applied
pressure for different σ: from left to right σ = 0.5, 2 and 3.. The continous line corresponds
to a fit with eq. (20). S̃∗ is a renormalisation size proportional to σ2: S̃∗ = 3σ2.

are then determined by fitting it into a rectangle. Where the length, L̃, is
defined as the dimension along the flow direction and the width, W̃ , as the
dimension transverse to it.

4.4.1. Probability distribution

We first study the size distribution. In Fig. 7 (left), we plot the cluster size
distribution P (S̃) for a given σ = 1 at different applied pressure difference.
We can see that for any pressure difference, the distribution follows a power
law for small sizes but with a cut-off at larger sizes. The value of this cut-off
size decreases with the pressure difference. We then fit each distribution with
the following law:

P (S̃) ∝ S̃−τe−S̃/S̃0 , (20)
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where S̃0 is the characteristic cut-off size. As it can be seen in the inset of
Fig. 7, the cut-off size is found to follow a power law with the flow rate:

S̃0 ∝ q̃−γ. (21)

In Fig. 7 (right), we plot the same distribution but using rescaled vari-
ables according to the eqs. (20) and (21). We can then see that all the
data are collapsing on a master curve. In addition, in Fig. 8, we traced
the rescaled distribution for different heterogeneity parameter σ. As can be
seen, the size of the clusters follows the same distribution function with the
same exponents: τ and γ for any sigma. We note, however, that the pref-
actor of the cut-off function varies with the disorder: S̃0 = D(σ) q̃−γ, where
D(σ) = 3σ2.

Eqs. (20) and (21) are thus reminiscent of what has been observed at the
microscale. The power law distribution characterizes the multi-scale nature of
the problem. At any pressure, cluster sizes are distributed within large range
of sizes. The higher bound, S̃0 decreases with the flow rate (or pressure).
Thus the closer we get to the global critical pressure, the wider the range of
the power law distribution. Qualitatively, this decrease can be understood
by the fact that the non-flowing areas are divided into smaller ones with the
appearance of new branches as the pressure increases.

As for the flow rate - pressure cure, it is worth mentioning that if the
general trend is similar to the miscroscale, the main difference lies in the
exponent value. Indeed, for σ = 1, we measure here τ = 1.15 ± 0.05 and
γ = 1 ± 0.05. The γ is thus similar the microscale (γ = in [18]) but the
exponent τ is significantly different (τ = 1.5 at microscale). This indicates
again that the process of branching is physically different for the two scales
because the equations which are different (Stokes vs. Darcy) but also because
the disorder is different (correlated log-normal field vs. random cylinder
packing).

4.4.2. Cluster shape and Roughness

Now that we have shown that the cluster size is a multi-scale problem, we
investigate the geometrical aspect of each cluster, as function of the applied
pressure but also as function of the scale considered. For a given length scale
L̃, we average the maximum width over clusters sharing the same length,
〈W̃ 〉L̃. Moreover, we also study the shape of each cluster, w̃(x), defined as
the local width as function of the relative x coordinate. We also average this
width function over many clusters sharing the same total length: < w̃(x) >L̃.
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Figure 9: Averaged shape of the clusters as function of their length. The continuous line
corresponds to the fit witheq. (22).
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In Figure 9, we plot the contour shape 〈w̃(x)〉L̃ for different total lengths
L̃. As expected, the cluster shape has a non-monotonic shape starting and
ending with zero (e.g. 〈w̃(x = 0)〉L̃ = 〈w̃(x = L̃)〉L̃). The most interesting
feature about the cluster shape is the fact that it is invariant to the scale
as shown in Fig. 9. In this figure, we renormalize the contour shape by the
maximum width and the x coordinate by the total length L̃. All the contours
then collapse on a parabolic-like master curve. This curve can be reasonably
fitted to:

Bxζ(1− x)ζ , (22)

with ζ = 0.75±0.05. We also observed that the renormalized clusters’ shape
(not shown) is also invariant with σ and can be fitted with the same exponent.

In addition, in Fig. 10, we plot the maximum width according to the
length of the cluster for different σ. We observe that the maximum width
also follows a power law:

L̃ ∝ W̃ ζ, (23)

with an exponent independent of the disorder. The curve is, however, shifted
with σ, reflecting the fact that the aspect ratio varies with σ. At low σ, the
clusters are more elongated in the direction of flow, as can be clearly seen in
the snapshot of the figure 3.

These results demonstrate the fractal (self-affine) nature of the flow field.
At a given pressure, the size of the clusters is very widely distributed but
with a shape which is invariant with the scale considered.

It is important to note that this behavior results from the self-affine rough-
ness of the flowing paths surrounding the cluster. For instance, if one would
assume that a cluster is delimited by two paths from a random walk model,
as proposed by [38] in another context, the cluster shape would then be de-
scribed by a first-time return random walk. It would thus follow relationships
like eqs. (22) and (23) but with an exponent ζ = 1/2, which is the roughness
of a random walk path.

Similarly as what has been observed earlier, the trend is comparable to
the microscale. But here also, the main difference lies in the exponent value
(ζ = 2/3±0.03 at the pore scale) which is slightly higher. At the microscopic
scale, the exponent could be justified with the roughness of the directed
polymer problem.

We can put forward the following arguments to explain this small discrep-
ancy. First, due to numerical constraints, our statistical average is relatively
low (ten realizations). Secondly, the difference could also come from the
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log-normal distribution of the threshold, which might be considered as suffi-
ciently ”extreme” to deviate from the standard directed percolation.

It can also be argued that the paths are not necessarily directed in our
problem. But, as it can be seen in the snapshots of Fig. 3, for low σ,
overhangs are no longer present but the roughness still remains the same.

5. Discussion/Conclusion

We have studied the flow of Bingham fluid in heterogeneous macroscopic
porous media. We have shown that at the macroscppic level (Darcy’s scale)
the flow properties share common features with the problem at the pore
level. First, due to the disorder, the mean flow rate - pressure curve evolves
non-linearly over a certain pressure range. Secondly, in this range, the ve-
locity field exhibits multi-scale (fractal) properties that are reminiscent to
other statistical physical problems with a critical transition (e.g percolation,
avalanches, etc.). These multi-scale properties are described by power-law
which are characterized by their exponent, α, τ , γ and ζ. Yet, a significant
difference between the two scales lies in the value of these exponents. At
the macroscopic level, the mean flow rate increases with a power α close
to 3 whereas at the microscale this exponent is close to 2. We attribute
this difference to the fact that at the macroscopic level, each individual flow
path widen as the pressure increases. The exponents describing the flow ge-
ometry are also relatively different. At the macroscopic level, we observed
(τ , γ, ζ) = (1.15±0.05, 1±0.05, 0.75±0.03), whereas at the microscopic level
we had (τ , γ, ζ) = (1.5± 0.05, 1.1± 0.05, 0.69± 0.03). Thus, the distribution
of sizes (τ) is very different, the cluster roughness is slightly different and the
evolution of the cut-off size with the flow rate is similar. Another interesting
results is the evolution of these scaling laws with the parameter of disorder
σ. Indeed, despite the fact that the flow field is at first sight very different
when we vary σ, we observed that the exponents remain the same. Only the
prefactor of the different scaling laws are varying with σ.

We plan to extend this work in several directions. First, it would be in-
teresting to investigate different types of permeability disorder. Even though
the log-normal distribution is a very popular model in geostatitics it would
be interesting to investigate other distributions. Since the branching mech-
anism results from the balance between finding the most favorable regions
and the length to reach them, it should depend on the statistics of the large
permeability events. One could thus expect to observe different scaling laws
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if the distribution presents fat tails (e.g power law). Another direction could
be to investigate the transport phenomena (temperature, chemical species,
etc.) associated with this type of flow. Since the flow structure is very com-
plex, one would expect a non-linear transport properties depending on the
applied pressure.
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