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In this work, we studied experimentally and numerically the pressure–flow rate rela-
tionship for yield stress fluids in porous media. We developed and validated 3D numerical
simulations of the velocity field via a lattice Boltzmann method based on the TRT scheme,
and a specific experimental setup allowing yield stress fluids to flow in a closed-loop
system to obtain stable rheological properties over a wide range of flow rates (4 decades).
The porous medium studied experimentally is a sandstone. The flow properties were also
simulated on a regular sphere packing and a random sphere packing as well as on a 3D
geometry of a sandstone obtained by x-ray tomography. These different geometries allow
highlighting the role of the heterogeneity of the pore structure on the flow properties. All
results are expressed as the flow rate Q̃ versus the difference of the pressure gradient to
the critical pressure (�P̃ − �P̃c ); Pc defines the pressure below which there is no flow.
We observed both numerically and experimentally three specific scaling regimes, already
identified by Talon and Bauer [Eur. Phys. J. E 36, 139 (2013)] for a Bingham fluid in 2D
porous media. We also evidenced the existence of two critical pressures: the “true” critical
pressure P̃c defined as the pressure below which there is no flow and the “pseudo” critical
pressure threshold P̃∞

c determined by fitting the data in the high-flow-rate regime. We show
that the “true” critical pressure is always lower than the “pseudo” one in heterogeneous
porous media and can be equal only in the case of regular porous structures. We explain
these observations using an energy minimization principle.

DOI: 10.1103/PhysRevFluids.4.063301

I. INTRODUCTION

Among the very large variety of non-Newtonian fluids, many of them display a yield-stress
behavior. If the applied stress is below the plastic threshold, then the response might be a
deformation but not a rate of deformation (shear rate). Once the applied stress is sufficiently
high, the material is sheared and thus flowing. The yield-stress property is shared by different
physical systems, such as emulsions, suspensions, polymer solutions, gels, foams, or granular
media. Yield-stress fluids, also named viscoplastic fluids, are thus encountered in many applications,
such as cosmetics or food industry, civil engineering, soil mechanics, etc. In the context of porous or
fractured media, mud, cement, or heavy oil are noticeable yield-stress materials. Important processes
like water filtration in clay, well drilling, hydraulic fracturation, ground cementing, or enhanced
oil recovery involve viscoplastic flow in porous media. It is then not surprising that the study of
yield-stress fluid has been the subject of numerous studies for over half a decade [1–15]. As often
in problems dealing with porous media, a major task is the derivation of a constitutive equation at
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large scale which relates the applied pressure drop, �P, to the average flow rate in the medium, Q,
which generalizes Darcy’s law to yield stress fluid.

A common constitutive law describing yield-stress fluids is the Herschel-Bulkley law, which
states that the material responses like a nondeformable solid below the threshold (τ0) and like a
power-law fluid above,

{
γ̇ n = 1

k (τ − τ0) if τ � τ0

γ̇ = 0 otherwise,
(1)

τ is the shear stress, τ0 the critical yield stress, γ̇ the shear rate, k the consistency, and n the flow
index.

Using this rheological law, most of the constitutive equations based on theoretical, numerical, or
experimental data have the same structure. They are referred to as limiting pressure gradient (LPG)
[2] and given by

Qn = A(�P − �Pc), (2)

where �Pc is a critical threshold pressure below which there is no flow.
With regard to the highly nonlinear constitutive rheology, it is striking that such simple law

allows the correct description of flow in heterogeneous porous media. Indeed, if one considers a
single tube, which represents the simplest porous medium, then the variation of the flow rate as a
function of the applied pressure drop is more complex as it involves, in contrast to Eq. (2), several
power-law terms [see Eq. (C8)].

For instance, as reported by [14,16], one important consequence of these extra-terms is that in
the high-flow-rate limit, the LPG is valid but with a value of the critical pressure that does not
correspond to the onset of flow. Following [14], we will refer to this value as the “pseudo” critical
pressure to distinguish from the “true” critical pressure. In this paper, we will discuss the physical
origin of these two thresholds.

To take into account the disorder of the porous medium, fiber bundle models with randomly
distributed radii predict a more sophisticated expression due to variations in the number of flowing
channels when the applied pressure is increased [4,6,12]. The apparent simplicity of the Darcy’s
law [Eq. (2)] has been thus the subject of controversies. For instance, in Chevalier et al. [11], using
NMR measurements in monodisperse glass bead packing, the authors conclude to the “breaking” of
the non-Newtonian character of the fluid in porous media.

Yet, in an almost simultaneous work, using simulations of Bingham fluid (n = 1) in stochastic
porous media, Talon and Bauer [1] have demonstrated the existence of at least three scaling regimes:

�P = AiQ
αi + B. (3)

By increasing the flow rate, αi equals successively to 1, 2, and 1. The physical origin of these
exponents have been investigated in Chevalier and Talon [17] and are attributed to the structural
disorder of the medium. The statistical properties of the flow structure is indeed characterized by
power-law distributions reminiscent to critical systems (e.g., percolation). A notable result of this
work is the independence of these power exponents with the type of disorder. B is equal to the true
critical pressure required for the onset of the flow in one channel.

To our knowledge, the existence of such regimes has never been observed, neither experimentally
nor numerically, in 3D natural porous media and with Herschel-Bulkley fluids which is the
purpose of this paper. We have developed an experimental setup allowing the investigation of the
flow regimes in sandstone. In parallel, we have also performed 3D LB simulations of Hershel-
Bulkley fluid in monodispersed sphere packing and in a 3D microstructure determined from x-ray
microtomography of a sandstone. The structure of the article is as follows. We first present the
experimental setup and the different porous structures used for the experiments and numerical
investigation. In the result section, we show the obtained flow-rate pressure relation and the critical
pressure. Finally, we discuss the influence of the irregular structure on the critical pressure. In the
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Appendix, we present in detail the rheology measurement, the numerical method and its validation
in 3D structures, and the analytical determination of the critical pressure.

II. MATERIALS AND METHODS

A. The Stokes equations

Let us first recall the governing equations defining the creeping flow for Herschel-Bulkley fluids:

∇ · � − ∇P = 0, (4)

where � is the shear stress tensor and P is the pressure. The shear stress tensor for a Herschel-
Bulkley fluid follows:

�i j = 2ρνeff�i j, (5)

where the effective viscosity νeff is given by

νeff =
(

kγ̇ n−1 + τ0

γ̇

)
. (6)

�i j is the deformation rate tensor expressed as

�i j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (7)

and, using Einstein’s summation convention,

γ̇ = √
2�i j�i j (8)

is the shear rate. u is the velocity field, τ0 the yield stress, k the consistency index, n the flow index,
and ρ the density.

B. Nondimensional flow rate and pressure difference

Hereinafter, the total flow rate and the pressure will be nondimensionalized using the rheological
properties of the fluid and the porous medium geometry. The total flow rate is nondimensionalized
as

Q̃ = Q

Sλ

(
k

τ0

)1/n

, (9)

where S is the entry section area and λ a characteristic length scale which corresponds either to
the average sphere radius for FCC and irregular bead packing or the estimated average grain size
for the sandstones (λ = 16.9 μm). Notably, this nondimensional flow rate is related to the standard
definition of the Bingham number Bi = ( Sλ

Q )n( τ0
k ) = Q̃−1/n.

Similarly, the pressure difference is nondimensionalized as

�P̃ = �Pλ

τ0L
, (10)

where L is the length of the sample in the flow direction.

C. Experimental investigation

1. Rheology

Carbopol gels, a polymer based on polyacrylic acid (−CH2 − CHCOO−)n, is a typical yield
stress fluid. As their rheological properties can easily be represented by a Herschel Bulkley model
[18], Carbopol gels have attracted the focus of researchers over the past decade [19] and became
a reference fluid in the literature [19,20]. The nature of its yielding behavior [19] comes from a
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FIG. 1. Schematic diagram of the closed-loop setup used for Carbopol injection in the porous medium. The
inset displays a photograph of the real system.

microstructure made of a high concentration of individual, elastic sponges (with a typical element
size of 2−20 μm). The advantage of this gel is that it shows limited thixotropy and phase migration,
making it a quite appropriate yield stress fluid for fundamental studies.

Carbopol rheology was determined for different concentrations (0.1%, 0.25%, 0.5%, and 1%
in weight) using a MCR 300 rheometer. More details on the fluid preparation, measurements, and
rheological properties are given in Appendix A.

2. Experimental setup: The closed-loop system

The experimental setup is mainly composed of a flooding cell in which a porous medium
is inserted, a reference tube for monitoring the rheological properties of the flowing fluid, and
a continuous flow pump made of two glass tubes in which two pistons are sliding in opposite
directions (see Fig. 1). The tested fluid is flowing through the porous medium and the reference
tube in a closed-loop circuit with an internal pressure set by a buffer in which about half the volume
is occupied by nitrogen at the desired pressure (between 5 and 10 bars), and the other half is filled
with the tested fluid. In this buffer, an elastomer membrane is present between the gas and the liquid
to avoid gas dissolution into the flowing fluid. For the flooding cell, an elastomer membrane is also
present around the sample with a confining pressure of 50 bar, much higher than the pore pressure
(standard Hassler type cell). All these elements were put in an oven to stabilize the temperature at
30 ◦C. Temperature is measured with a thermometer placed close to the flooding cell. The variations
were within 0.1 ◦C.

The porous media sample is a sandstone with a water permeability of 2050 mD and a porosity
of ∼20% (length 40.0 mm, diameter 19.8 mm). The reference tube has a length of 27.3 cm and
an inner diameter of 2.0 mm determined by gravimetric method (the tube was weighted empty and
water filled).
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The closed-loop circuit under moderate pressure was a key for successful experiments: First
it allowed the pump to run at high flow rate (up to 500 ml/h) without degassing problems of
the fluid. Indeed, one of the cylinders of the pump must be filled while the other is pushing the
fluid into the porous sample. Without the pressure imposed by the buffer, this would not have been
possible due to the high effective viscosity of the investigated fluid. The glass tubes of the pump
also allowed to visually control that no air was present. Second, a fluid with stabilized rheological
properties could be analyzed. The rheological properties of the Carbopol mixture changed first
during a transient regime flowing through the porous system and stabilized after some time. The
pressure drop measurements were also carefully validated. Specific lines connected to the inlet and
outlet faces of the porous medium were used independently of the injection tubings.

However, in theory, if the tubings connecting the pressure transducer to the inlet/outlet face are
filled with the yield-stress fluid, then there is a possibility that the pressure drop is not measured
correctly because the fluid at rest could act as a solid barrier not transmitting the pressure. To
avoid this potential ambiguity, the lines and tubings connected to the pressure transducers were
filled with a refined oil (dodecane). Doing so and without porous media, we verified that the
rheological properties determined from the reference tube were identical to those determined from
the rheometer.

3. Experimental procedure

The experimental procedure is as follows. First, the porous sample is saturated with a brine
solution (20 g/l NaCl) and its porosity measured by weight difference between the dry and saturated
state. Then it is put in the flooding cell with a confining pressure. In parallel the Carbopol mixture
is injected with a syringe in the buffer and the two cylinders of the pump are filled. Bypassing
the flooding cell, a closed loop circulation is first realized to remove air bubbles trapped in the
circuit. Then the flooding cell is connected to the system and the brine present in the porous
medium replaced by the Carbopol mixture. Then, the reference tube is connected. The scanning
of different flow rates is only started when the pressure drop at a moderate flow rate (20–50 ml/h)
is stabilized; otherwise, the process is repeated. For a given fluid mixture, we first start at high flow
rate (500 ml/h), then decrease it step by step to the lowest flow rate (0.01 ml/h). For each flow rate,
the pressure drop is taken as an average of all stable values over a certain time period (about 1 h
for low flow rate and 20 min for the rest). From one mixture to another, we checked after careful
washing with brine that the permeability was unchanged, showing that no polymer was adsorbed
in the porous medium or that no flow path was clogged by the polymer. Additionally, identical
experiments were performed with glycerol as reference fluid for comparison.

D. Numerical implementation

1. Lattice-Boltzmann scheme: Two relaxation time

To solve the Stokes equation, we use a numerical approach based on a two relaxation time
(TRT) scheme, which is well detailed in previous works of Talon and Bauer [1] or Ginzburg et al.
[21–23]. Such works considered a two-dimensional (2D) Stokes flow of a Bingham fluid in porous
media. In this work, we develop a 3D numerical code to solve Stokes flow of a Herschel-Bulkley
fluid in porous medium. A brief description of the lattice-Boltzmann TRT scheme is presented in
Appendix C 1.

2. Regularization of the effective viscosity

From a numerical point of view, Eq. (6) is a source of instabilities for very low shear rate due to a
diverging term (τ0/γ̇ ) in the effective viscosity expression. This is a well-known problem for yield
stress fluids such as Bingham or Herschel Bulkley, that may be circumvented by using a regularized
viscosity function. We use the one proposed by Papanastasiou et al. [24], which introduces an
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FIG. 2. Different porous media used in the simulation: (a) FCC packing of spheres; (b) random array of
overlapping spheres; (c) 3D μ-CT image of sandstone.

exponential function with a small parameter γ̇0:

νeff(γ̇ ) = kγ̇ n−1 + τ0

γ̇

(
1 − e− γ̇

γ̇0
)
. (11)

Strictly speaking, the fluid is thus never solid below the critical shear rate in numerical
simulations but remains extremely viscous, and its viscosity is characterized by the parameter γ̇0.
Physically, this parameter represents the typical shear rate below which the rheological law deviates
from the original Herschel-Bulkley. Validations can be seen in Appendix C 3.

3. Porous medium

In this section, we present the different porous configurations used in our simulations: two com-
puted idealized microstructures and a digital image of a real rock obtained by 3D microtomography.
To mimic real porous media containing an interconnected solid phase and an interconnected porous
phase, we first consider numerically generated sphere packings. We propose herein the use of two
types of idealized porous media: a regular array of solid spheres positioned in a face-centered cubic
(FCC) system [Fig. 2(a)] and a porous medium consisting of a random array of overlapping spheres
[Fig. 2(b)]. Each cube has the dimension L3. The radius of the sphere is R = 0.36L for the FCC
structure. For the random array of packing spheres 950 identical spheres of radius R = 0.055L were
used. The generation of such random porous media can be seen in Ref. [25]. Porosity of the porous
medium is φ = 21.8 for the FCC and φ = 42.9 for the random packing array.

We finally consider the porous structure of a sandstone [Fig. 2(c)]. To this goal a 3D image
of a small sample of sandstone was acquired by an x-ray microtomography system using a
spatial resolution of 6 μm. Segmentation of the acquired gray level image was then performed
by thresholding at the minimum between the two peaks of the gray level histogram resulting in a
porosity of 14.5%. The experimentally obtained permeability of this sandstone is ∼600 mD.

As LB methods use a regular, cubic grid, the voxel map obtained from the micro-CT image
of the sandstone was directly used for LBM simulations. Thus, the resolution of the average
channel restriction of the sandstone is fixed by the resolution of the micro-CT equipment. To have a
comparable discretization error, synthetic microstructures in the simulations were discretized with
a similar number of voxels for the average channel restriction. We used 403 voxels for the FCC
system, 2563 for the random packing, and 5123 for the sandstone.

Validation of the code as well as the influence of the grid resolution are given in
Appendix C 2.
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FIG. 3. Experimental flow rate of the sandstone as a function of the pressure drop. Stars represent
experimental data, and dashed lines represent the fit with Eq. (12) considering the high flow rate.

III. RESULTS

A. Experimental results

We present the results of the 1% solution, as its yield stress is sufficiently significant to be
measured. For lower concentrations, this behavior is less pronounced and its determination becomes
therefore more imprecise with our equipment. Thus, we present only the results obtained with the
1% solution.

1. Fluid evolution due to the porous structure

Before analyzing the data, we first discuss an important aspect which is the evolution in time of
the fluid while flowing through the porous medium. Indeed, when the flow rate Q is imposed by the
pump, the pressure drop �P might take a significant time to stabilize both in the porous medium
and reference tube.

By continuously monitoring the pressure drop across the reference tube at imposed constant flow
rate during 1 week, we can distinguish between a transient regime and a stationary regime. Only
the data of the stationary regime is later on used for the determination of the generalized Darcy
equation. In addition, rheological measurements were performed before and after the experiments
for glycerol and Carbopol. For the yield stress fluid, there is an evolution of the critical shear
stress τ0 and consistency k. The n exponent varied only slightly (see Appendix B). However, no
evolution of the glycerol has been observed. We believe that the evolution of the yield stress fluid
is due to a slight degradation of the polymer gel structure caused by the flow in the porous sample
and not to the hydraulic circuit before and after the porous medium in which various valves and
connectors are present. Indeed, such evolution was not observed in the absence of porous medium
with the same circuit. In addition, since the permeability of the porous medium did not change
during the entire experimental program, adsorption effects cannot explain such evolution. Most
likely, the pore throats might provoke some breakage of the polymer sponges or interconnection
causing a decrease of the yield stress properties. A detailed explanation is outside the scope of this
article. The important aspect is that the rheological properties are stable in the stationary regime in
all investigated flow rates.

2. Flow-rate-pressure relationship

Figure 3 shows the nondimensional flow rate Q̃ as a function of the nondimensional pressure
drop �P̃. To determine the pseudocritical pressure �P̃∞

c the experimental data were fitted using
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FIG. 4. Numerical flow rate as function of the nondimensional pressure drop. Top left: FCC; Top right:
irregular bead packing; Bottom: sandstone. Stars represent numerical data, and dashed lines represent the fit
with Eq. (12) considering only the high flow rate. The open circles correspond to simulations of a Newtonian
fluid (τ0 = 0).

Eq. (2) in the following form:

Q̃n = A
(
�P̃ − �P̃∞

c

)
, (12)

by setting a weight on the higher values of Q̃. We imposed n = 0.53 obtained from rheological
measurements with the tube. The best fit for the higher flow rate is rather good within an error of
�10−3. The reason why we only consider the higher flow rate is because one cannot achieve such
a small error with the whole data using this fitting function. The best fit at higher rates implies
a significant discrepancy of the experimental data at lower rate. In particular, the pseudocritical
pressure P̃∞

c is larger than the true critical pressure which means that the fluid is indeed flowing at
lower pressure than the one predicted by the LPG model.

B. Simulation by LB-TRT

For the simulations we chose the following parameters for the fluid rheology: τ0 = 10−3, k =
10−3, and n = 0.5 (in lattice units). Figure 4 shows Q̃ as a function of �P̃ for the different porous
structures and the fit using Eq. (12) with n = 0.5. For the irregular sphere packing and particularly
for the sandstone, results are similar to those obtained experimentally: the fit is quite good (error
�10−2) if we restrict it to higher flow-rate data. An important difference between numerical data
and the fit is then observable for lower flow rates. The threshold pressure of the numerical data is
also much lower than the one obtained by the fit. However, it is important to note that for FCC, the
LPG model, Eq.(12), fits quite well the numerical data even at lower flow rate (error ∼10−2). This
supports the contention that the difference between the true and pseudo critical pressure is related
to the disorder of the medium.
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TABLE I. Values of the “true” and “pseudo” pressure thresholds.

Porous structure �P̃c �P̃∞
c

FCC 22.8 22.8
Irregular packing 4.59 5.79
Sandstone (simulation) 0.97 1.29
Sandstone (exp) 1.6 2.58

C. Determination of the true critical pressure threshold �P̃c

The determination of the true critical pressure �P̃c is based on Eq. (3) but by focusing on the
lower-flow-rate data. The fit must, however, be performed differently. The main reason is that we
do not know a priori the exponent αi at the true critical pressure. We used the fact that the flow
rate must tend to zero when the pressure reaches the critical pressure. Namely, we plot the function
Q̃ = f (�P̃ − �P̃c) on a log-log scale and vary �P̃c until the curve becomes a straight line in the
limit Q̃ → 0 and �P̃ − �P̃c → 0, characterizing a power-law.

Values of �P̃c and �P̃∞
c are given in Table I. As can be seen values of the true pressure threshold

are smaller than the pseudo pressure threshold except for FCC.

IV. DISCUSSION

A. Significance of the pressure threshold: True pressure versus pseudopressure threshold

In a previous work, Talon and Bauer [1] have shown numerically in a 2D porous medium that
�P̃c corresponds to the minimal pressure required for the onset of the flow in a single channel.
Here, Fig. 5. shows the streamlines in the 3D random packing for different pressure drops. As can
be seen, for values close to �P̃c the fluid is flowing in only one channel. With increasing pressure
the number of open channels increases. This reflects the occurrence of preferential paths introduced
by the disorder of the heterogeneous structures which are easier to yield. In contrast to the latter,
for FCC we obtain �P̃c = P∞

c . This stands for the fact that in the homogeneous structure fluid is
flowing in the entire porous medium once the critical pressure threshold is reached because all paths
are equivalent. The difference between the “true” and “pseudo” critical pressure threshold can be
formally explained by means of an energy balance.

1. Energy balance

Following Chevalier et al. [11], at imposed pressure difference, one can relate the flow rate to the
viscous and plastic dissipation in the medium (see also Appendix D for details):

�P Q(�u) =
∫

[kγ̇ n+1(�u) + τ0γ̇ (�u)]dv, (13)

where Q(�u) is the mean flow rate and γ̇ (�u) the shear rate field.

FIG. 5. Streamlines inside a random packing of spheres for increasing applied pressure drop.
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Introducing the nondimensional shear rate distribution gu(�r,�P) = Sλ
Q(�u) γ̇ (�u), it follows

�P = k
Qn(�u)L

Snλn+1

〈
gn+1

u

〉 + τ0L

λ
〈gu〉 (14)

or
�P

L
= AuQn + Bu, (15)

where 〈.〉 stands for the volume average 1
SL

∫
.dv, Au = k

Snλn+1 〈gn+1
u (�r,�P)〉 and Bu =

τ0
λ
〈gu(�r,�P)〉.
This relation leads to an expression of the flow rate as well as of the critical pressure providing

the knowledge of the two moments of the shear rate distribution. It is important to emphasize that,
Au and Bu are not constant as it is the case in Eq. (2). Indeed, moments of the shear rate distribution
are a priori a function of the applied pressure. Their determination therefore requires to solve the
full Stokes equation.

2. Functional minimization

Alternatively, one might deduce some properties of gu(�r,�P) via a variational principle [26],
which is a generalization of the well-known minimum energy dissipation of Stokes flows [27].
Namely, at imposed pressure difference, it states that the flow field �u, solution of the Stokes equation
for Herschel-Bulkley fluid, minimizes the following functional (see Appendix D):

�[�v,�P] = 1

n + 1
k

Qn+1(�v,�P)

Sn+1λn+1

∫
gn+1

v (�r,�P)dr3

+ τ0

Sλ
Q(�v,�P)

∫
gv (�r,�P)dr3 − �PQ(�v,�P), (16)

where �v is taken among all the admissible velocity fields (i.e., satisfying specific boundary
conditions defined in Appendix D and the free divergence). It is worth mentioning that this
functional differs from the viscous and plastic dissipation Eq. (13).

The comparison between the first and second term in Eq. (16) allows us to distinguish two
limiting cases.

(1) Low-flow-rate regime Q 	 ( τ0
k )1/nSλ

In this case, the first term in Eq. (16) is negligible compared to the second one. The function
reduces to

�[�v,�P] = Q(�v,�P)

[
τ0

Sλ

∫
gv (�r,�P)dr3 − �P

]
, (17)

which defines the “true” critical pressure formally as

�Pc = min
�v

τ0

Sλ

∫
gv (�r,�P)dr3, (18)

where we have used the fact that when �P < �Pc the term in brackets in Eq. (17) is positive for any
nontrivial velocity field. The minimum of � is then the trivial one: �v = �0, Q = 0 and �(�v,�P) = 0.

(2) High-flow-rate regime Q 
 ( τ0
k )1/nSλ

Here the second term in Eq. (16) becomes negligible compared to the first one. The problem
reduces to minimizing the functional

�PL[�v,�P] = 1

n + 1
k

Qn+1(�v,�P)

Sn+1λn+1

∫
gn+1

v (�r,�P)dr3 − �PQ(�v,�P). (19)

As can be seen, the latter equation is independent of τ0 (or τ0 = 0), the problem is thus identical
to solving a power-law fluid (or Newtonian flow when n = 1) which results in the shear rate

063301-10



EXPERIMENTAL AND NUMERICAL DETERMINATION OF …

distribution gPL
u (�r,�P) (PL stands for power law). This result should be compared to the approach

of Chevalier et al. [11], which used the knowledge of the shear rate distribution of a power-law fluid
to determine the coefficients Au and Bu in the generalized Darcy’s law of a yield stress fluid. More
specifically the authors used the shear rate distribution of a Newtonian fluid (n = 1) to compute
the coefficients. This assumption might be formally difficult to justify. However, the consistency of
their experimental results with this assumption could be interpreted from the fact the moments of
order 2 and n + 1 � 1.5 used to minimize Eq. (19) are relatively close.

At this point, we may make an additional comment regarding the dependence of the coefficients
Au and Bu on the applied pressure drop. We note that the determination of the minimum of Eq. (19)
is homogeneous with respect to �P. Indeed, for any α, multiplying by α1/n+1, we have

arg min
v

1

n + 1
k

Qn+1(�v,�P)

Sn+1λn+1

∫
gn+1

v (�r,�P)dr3 − �PQ(�v,�P)

= arg min
v

1

n + 1
k

[α1/nQ(�v,�P)]n+1

Sn+1λn+1

∫
gn+1

v (�r,�P)dr3 − (α�P)[α1/nQ(�v,�P)]. (20)

The flow field solution is thus identical for any rescaling of the imposed pressure α�P. It
follows that the flow rate in this regime is a homogeneous function of degree 1/n: QPL(α�P) =
α1/nQPL(�P) and thus Q(�P) ∝ (�P)1/n. We deduce that at high Q, when all the fluids is flowing,
the normalized shear rate field, gPL

u (�r), is invariant of the applied pressure. Au and Bu are thus
independent of Q or �P, leading to the generalized Darcy’s law:

�P

L
= AQn + �P∞

c

L
, (21)

where A is a constant and �P∞
c is the “pseudo” critical pressure defined by

�P∞
c = τ0

Sλ

∫
gPL(�r)dr3. (22)

We note that based on the expressions of the “true” and “pseudo” critical pressure [Eqs. (18) and
(22)], we deduce �Pc � �P∞

c . The equality is achieved when the two distributions, resulting from
the minimization of different functionals, have the same first moment.

Finally, we may derive identical conclusions if we consider flow induced by an imposed flow rate
Q. Indeed, one can show (see Appendix D for details) that the flow field minimizes the functional:

�[�v, Q] = 1

n + 1
k

Qn+1

Sn+1λn+1

∫
gn+1

v (�r, Q)dr3 + τ0

Sλ
Q

∫
gv (�r, Q)dr3, (23)

which defines the same “true” and “pseudo” critical pressure.

B. Disorder and macroscopic scaling law: Flow rate versus distance to the critical pressure

A major evidence of the effect of even slight disorder occurs when we substract the true critical
pressure, obtained using the procedure described in Sec. III C, from the imposed pressure. Figure 6
displays the nondimensional flow rate Q̃ as function of the distance of the pressure to the measured
critical pressure (experimental and numerical results). By doing so, we deduce a common law
between the flow rate and the applied pressure under the following form: Q̃ versus (�P̃ − �P̃c)1/n,
which demonstrates the existence of at least three flowing regimes. While for the FCC packing,
the flow curve displays a single power-law behavior of exponent 1/n = 2, the other curves show a
different behavior. For the irregular packing the curve initially starts with a power-law of exponent
2, then there is an intermediate regime for Q̃ ∈ [10−5; 10−1]. We have fit this regime with a power
law Q̃ ∝ (�P̃ − �P̃c)3. Finally, as mentioned above, the last regime corresponds to the power-law
fluid limit Q̃ ∝ �P̃1/n.

As it is the case for the random packing, the numerical flow curve of the sandstone displays
three power-law behaviors. The exponents 1/n are successively equal to 2.0, 2.6, and 2.0. It is worth
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FIG. 6. Top left: FCC sphere packing; top right: random sphere packing; bottom left: sandstone simulation;
bottom right: sandstone experiments. Stars correspond to numerical or experimental data, and dashed and solid
lines correspond to the power-law fit. (Please refer to the text for values of the exponents.)

mentioning that the exponent in the intermediate regime is different for the random packing and
the sandstone. This contradicts the results of the 2D simulations which led to the same exponent
for different disorder. We note, however, that the range of flow rate of the intermediate regime is
relatively small, which makes the measurement of the exponent of this regime quite imprecise.

As it has been discussed in Ref. [17], the range of the second regime can be related to the size of
the system. In particular, it depends on the ratio of the pore size to the system size. One natural way
to increase the range of the second regime and thus the precision would be to increase the system
size. Unfortunately, this could not be achieved with our numerical resources.

Considering the experimental data we also obtain three regimes where the exponents successively
equal to 1.89, 2.45, and 1.89. Interestingly, we note that despite the difference of the rheological
index between the simulation (n = 0.5) and experiments n = 0.53, the increase between the first
and second exponent is comparable.

Despite the exponents’ values, these flow regimes are identical to the flow regimes observed by
Refs. [1,17] in 2D porous media. The fact that these regimes occur only in the random packing and
the sandstone supports the contention that they are the consequence of the disorder of the medium.
Indeed, even in homogeneous, however slightly disordered porous structures as sandstones, the three
regimes can be observed.

V. CONCLUSION

In this work, we investigated numerically and experimentally Herschel-Bulkley fluid flow in
porous media of different structure. To this goal, we performed 3D Lattice Boltzmann simulations
using a TRT scheme and developed a specific experimental set-up allowing the fluid to flow in a
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closed-loop system. Initially, fluid properties are modified when flowing in the porous medium,
however after a transient regime, fluid rheology remains stationary. The closed-loop system permits
measurements in the stationary regime necessary for the determination of a generalized Darcy
equation.

We have shown that for three-dimensional heterogeneous structures, identically as for 2D
structures, a “true” critical pressure P̃c exists, that is lower than the “pseudo” threshold pressure P̃∞

c
commonly used in LPG models. In the homogeneous porous medium (FCC) we obtained P̃c = P̃∞

c ,
however in the heterogeneous structures we have P̃c < P̃∞

c . Additionally, for the sandstone and the
irregular sphere packing we observed numerically and experimentally the three scaling regimes
when plotting the flow rate Q̃ as a function of the difference of the pressure to the critical
pressure (�P̃ − �P̃c). However, for the FCC packing the LPG model describes perfectly the
flow-rate-pressure behavior.

We explained this difference in critical pressure inducing the existence of the scaling regimes
by means of an energy minimization principle. Indeed, it states that the first opening pathway in a
heterogeneous porous medium is characterized by the minimal energy loss of the fluid when flowing
in this structure.

In the Appendices, we present in detail measurements of the Carbopol rheology, the TRT Lattice
Boltzmann method and its validation in 3D structures, and the analytical determination of the critical
pressure.
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APPENDIX A: CARBOPOL GELS—PREPARATION AND RHEOLOGY

Carbopol ETD 2050, kindly provided by Lubrizol, was chosen in the present work. The
preparation starts with the introduction of some distilled water in a mixer. The mixing rotation
velocity is set to 90 rpm and the appropriate amount of raw Carbopol powder is slowly added to
the stirring water. After about 2–4 h, depending on the final quantity of the gel, the incorporation
of the powder is done and the pH drops to a value of 3–4. Then, an appropriate amount of sodium
hydroxide (NaOH 1 mol/l) is quickly added to the solution. The pH of the solutions is set to 7.0
(with 0.2 error bar). With a pH range between 6 and 8, it has been shown that the rheological
properties of Carbopol gels are stable [19]. The mixing is then maintained for 1 day to allow a full
homogenization of the mixture. Such a procedure makes it possible to obtain a reproducible material
which remains stable in time. The gels were kept away from light in a refrigerator at a temperature
of 4 ◦C.

Rheological tests were performed with a MCR 300 rheometer equipped with a Mooney-Ewart
(or Searle) cylinder. The sample was carefully set up and the gap was fixed at 0.6 mm taking care
not to entrap air bubbles. The measurements were performed by imposing a range of shear rate,
γ̇ , from 10−6 s−1 to 10−3 s−1 in logarithmically increasing and decreasing plateaus. Except for the
first part of the increasing curve associated with deformations in the solid regime, the increasing
and decreasing shear-stress versus shear-rate curves almost superimpose. A hysteresis phenomenon
or the thixotropic nature of Carbopol is observed when the applied force is lower than the critical
stress (τ0): the return to the solid state involves a relaxation time. We retained the decreasing part of
the flow curve to measure the rheological fluid parameters of the Herschel Bulkley model.

APPENDIX B: EXPERIMENTAL VALIDATION FOR A NON-NEWTONIAN FLUID

Figure 7 shows the rheology obtained before and after the experiments by means of a rheometer
as well as the data obtained from measurements in the reference tube once the pressure was
stabilized.

Table II shows the rheological parameters obtained by the different measurements.
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FIG. 7. Carbopol rheology obtained before and after the experiments by means of a rheometer and data
obtained from the reference tube.

APPENDIX C: NUMERICAL METHOD

1. A brief of the TRT scheme

The principle of the lattice Boltzmann (LB) method for solving Stokes equation is based on
a discretization of the velocity distribution function of particles on a grid. For this purpose, fq is
introduced as the density of particles moving with the velocity cq. The numerical algorithm of LB
methods is a succession of two steps. (i) The propagation step, where the particle density is moved
on the grid according to their velocity:

fq(r + cq, t + 1) = f̃q(r, t). (C1)

(ii) The second step is the collision step, where in each node of the grid, the velocity distribution
of particles is redistributed using a collision operator C which depends on the local macroscopic
quantities (pressure, velocity,...):

f̃q(r, t) = C[fq(r, t)]q. (C2)

In this paper, we used a three-dimensional scheme with 15 velocities (D3Q15), cq, q = 1,..,15.
To compute the collision operator, populations are arranged such that the first 7 vectors are opposite
to the second set of 7 other vectors, defined as cq̄ = −cq. For the two-relaxation-times (TRT)
scheme, the population distribution is decomposed in symmetric components fq

+ = (fq̄ + fq)/2,
and antisymmetric components fq

− = (fq̄ − fq)/2. For immobile population, the velocity is defined
as cq = 0, and the density function is f0

+ = f0 and f0
− = 0. The collision step is performed by

prescribing the equilibrium distributions eq
± and two collision eigenvalues s± ∈]0, 2[, with s+ for

all symmetric and s− for all antisymmetric nonequilibrium components, n+ and n−, respectively.

TABLE II. Rheological properties measured before and after flowing in the porous media at various flow
rates.

τ0 [Pa] k [Pa sn] n []

Tube 20.5 7.5 0.53
Rheometer before 24.5 9.5 0.51
Rheometer after 19.2 7.5 0.54
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We obtain the following relations:

f̃q(r, t) = fq(r, t) − s+nq
+ − s−nq

−,

f̃q̄(r, t) = fq(r, t) − s+nq
+ + s−nq

−,
(C3)

with the nonequilibrium components

nq
± = fq

± − eq
±. (C4)

The equilibrium functions eq
± of the Stokes equation are

e+
q = c2

s t∗
q ρ,

eq
− = t∗

q ( j · cq),

e0 = ρ − 2
7∑

q=1
eq

+,

(C5)

where the weights t∗
q take the values 1/3 for the first neighbor link and 1/24 for the second (diagonal)

neighbor link in the D3Q15 model.
The TRT scheme solves Stokes equation with the kinematic viscosity, given by νeff = 1

3 ( 1
s+ − 1

2 ),
the pressure P is defined as P = c2

s ρ, and the macroscopic momentum u = j/ρ0, where ρ0

is the mean density of the fluid (ρ0 = 1, here). The sound velocity is set to
√

1/3, and the
relaxation parameter � = ( 1

s+ − 1
2 )( 1

s− − 1
2 ) is kept constant (� = 3/16). The fluid takes initially a

homogeneous effective viscosity νeff, but it varies with the local shear rate γ̇ . The local deformation
rate tensor is obtained from the nonequilibrium components:

�i j = 1

2ρ0
(∇ j + ∇ jT ) = −s+ 3

2ρ0

15∑
1

n+
q cqicq j = −s+ 3

ρ0

7∑
1

n+
q cqicq j . (C6)

The TRT algorithm is implemented as follows. After taking an initial value of a homogeneous
effective viscosity νeff, the pressure gradient is applied between the inlet and the outlet of the sample.
For each time step, the shear rate at each node of the grid is computed using Eq. (C5) to update the
local viscosity following Eq. (11). The convergence is reached when the difference of the flow field
between two iterations is lower than a typical criteria (ε < 10−3 in our code). This might take around
104 and 109 time steps, depending on the size of the microstructures.

2. Validation of the TRT code and influence of the grid resolution

Because the resolution of the μ-CT images is limited by the microtomography, we want to
estimate the error induced by the rather low grid resolution in different type of geometries.

a. Cylindrical Poiseuille flow

The velocity field of a Herschel-Bulkley fluid in a cylindrical tube is known analytically and is
given by

for r � rc : vmax = n

n + 1

(
1

2k

�P

L

)1/n

(R − rc)1+ 1
n ,

(C7)

for r � rc : v(r) = vmax

(
1 −

(
r − rc

R − rc

)1+ 1
n
)

,

where rc = 2τ0L
�P is the radius at which the yield stress is reached.
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FIG. 8. Comparison of the numerical and theoretical velocity profile (left) and flow rate (right) (top: parallel
planes; bottom: 3D cylindrical tube).

The flow rate is given by

Q = πR3

k1/n(1/n + 3)
τ 1/n
w

(
1 − τ0

τw

)1+ 1
n
[

1 + A
τ0

τw

+ B

(
τw

τ0

)2]
, (C8)

with

A = 2

2 + 1
n

B = 2(
2 + 1

n

)(
1 + 1

n

) . (C9)

Velocity profile and flow rate between two parallel planes can be calculated identically.
Simulations are performed between two parallel planes and in a 3D cylindrical tube and

compared to the theoretical velocity profiles and flow rates (see Fig. 8). Velocity profiles are in
very good agreement with the theoretical prediction [Eq. (C7)]. Also, the difference between the
theoretical flow rate [Eq. (C8)] and the numerically computed flow rate remains small even for the
very coarse grid.

b. Sinusoidal 2D channel

Cylindrcal tubes and parallel plates are not very representative of real porous media. We therefore
investigate flow in a channel with spatially varying aperture as in Refs. [28,29]. We consider the
same 2D wavy channel whose aperture follows a cosine function between the 2R and 2R + 2H
values.
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FIG. 9. Top: flow field in a wavy cosine channel for two different resolution (left: R = 16.5; right R = 8.5).
The black dots represent the unyielded regions. Bottom: flow rate as function of the pressure drop for different
resolution.

We perform flow simulations for a Bingham rheology (n = 1) using different resolutions with
R = 4.5, 8.5 and 16.5 voxels, R being the radius of the restriction. As shown in Fig. 9, all simulations
capture the main effect of the change in aperture on the flowfield, which is to break the central plug
due to the elongation rate. As we have shown in the previous section, in the center of a straight
channel, there is always a region where the plug has not yielded. But when the aperture varies, the
conservation of the flow rate induces a rate of elongation that tends to unyield the fluid.

In addition, with regard to the flow in the channel, Fig. 9 shows that the flow curve remains
relatively accurate even for a very coarse grid. The difference between the critical pressure between
high and low resolution is only about 10%.

Moreover, in this figure it can be seen that each resolution leads to a specific translation of the
curve but not to a significant modification of its shape. As a result, the numerical error mainly affects
the critical pressure but not the overall physics. The following qualitative interpretation is based on
Refs. [22,30], indicating that one of the main sources of error in the TRT scheme is the uncertainty
about the actual position of the wall between two voxels. The flow curve of each resolution therefore
corresponds to a channel whose width is slightly different from that expected.

c. FCC packing

We now investigate the influence of the resolution on the flow in the FCC packing. In Fig. 10, we
plot the the flow curve for different bead resolutions, R = 14, 28, and 56 voxels. It can be seen that
the flow curve, while maintaining a similar trend, is also shifted by a factor of about 15% depending
on the resolution.

In conclusion of this resolution study, it can be said that one of the main advantages of the
TRT scheme is its robustness. Even at low resolution, simulations lead to physically reasonable
solutions. Estimating an equivalent pore diameter for an actual rock structure is very difficult.
However, considering the flow field near the critical pressure (Fig. 5), it can be estimated that the the
average streamtube diameter is about 15 voxels, which represents a numerical error of about 15%
for the critical pressure.
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FIG. 10. Flow rate as function of the pressure drop for different resolution of FCC packing.

3. Validation of the regularization

Figure 11(a) shows the flow rate Q of the FCC packing as a function of the pressure difference
�P for different values of τ0. Figure 11(b) represents the nondimensionalized flow curves. It can be
seen that the curves superimpose on the same master curve except some points for τ0 = 10−6 for
low �̃P. The good collapse demonstrates that the numerical TRT scheme is correctly invariant of
the effective viscosity, as opposed to the classical BGK. This curve also points out the significance
of the numerical parameter γ̇0. The fact that some points for the low yield stress value τ0 = 10−6

do not coincide with the master curve is a consequence of the regularization technique and the
choice of the different parameters. As described before, γ̇0 represents the shear rate below which
the regularization will be observable. However, if the shear rate is much higher than yield stress
( τ0

k )1/n, then the role of plasticity becomes negligible. It exists thus a bounded range of flow rates
over which the effect of plasticity is apparent. This requires us to choose the numerical parameters
such that γ̇0 	 ( τ0

k )1/n. As described in the manuscript, the different flow regimes involve at least
six orders of magnitude for the flow rate. We used the set [k; τ0; γ̇0 = (10−3; 10−3; 10−9) in lattice
units], which permits a range of nine orders of magnitude for the flow rate.

FIG. 11. Flow rate of the FCC packing as a function of the pressure difference for different values of τ0
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APPENDIX D: ENERGY MINIMIZATION

In this section, we derive the minimization principle applied to Herschel-Bulkley fluid flow. From
an arbitrary velocity field �u, we define the strain tensor operator

�i j (�u) = 1
2 (∂iu j + ∂ jui ). (D1)

The stress tensor operator is then given by the Herschel-Bulkley law:

�(�u) = −PI + S(�u), (D2)

with

S(�u) =
[

2kγ̇ (�u)n−1 + 2τ0

γ̇ (�u)

]
�(�u) (D3)

and γ̇ (�u) = √
2‖�(�u)‖.

We may now consider a rectangular porous medium of volume V , with length L and base surface
S (inlet and outlet of the flow).

In the stationary regime, the bulk flow satisfies the momentum balance

∀i ∈ {x, y, z},
∑

j

∂ j�i j (�u) + fi = 0, (D4)

where �f is a body force.
We consider two possibilities for driving the flow: imposing a constant pressure difference �P

or a constant flow rate Q.

1. Constant pressure difference

We first define the ensemble of admissible solutions � composed of every velocity field
satisfying the divergence free

∑
i ∂ivi = 0 and the no-slip condition at the solid interface �v = �0.

From Eq. (D4), we have for any velocity field of �:

∀�v ∈ �,
∑

i

∫ ⎛
⎝∑

j

vi∂ j�i j (�u) + fivi

⎞
⎠dr3 = 0, (D5)

∀�v ∈ �,
∑

i

∮ ∑
j

�i j (�u)v jn jdS +
∫ ⎛

⎝−
∑

i j

�i j (�u)
1

2
(∂ jvi + ∂iv j ) + fivi

⎞
⎠dr3 = 0, (D6)

where the first term is a surface integral applied at the boundaries of normal �n. Thus,

∀�v ∈ �,
∑

i

∮
(tividS) +

∫
fividv =

∫
�i j (�u)�i j (�v)dr3, (D7)

where ti = ∑
j �i jn j is the imposed normal constraint applied to the fluid. The relation is usually

called the principle of virtual work. Given an arbitrary virtual displacement, the virtual work of the
internal constraints equals the virtual work of the external constraints.

We now define the internal energy function:

φ(γ̇ (�v)) =
∫ γ̇ (v)

0
(kγ̇ (�v)n + τ0)d γ̇ = 1

n + 1
kγ̇ n+1(�v) + τ0γ̇ (�v). (D8)
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In the following, we will show that, for a given external constraint, the flow field �u, solution of
Eq. (D4), is the minimum of the functional:

�P[�v] =
∫

{φ[γ̇ (�v)] − �f .�v}dv −
∮

�t .�vdS. (D9)

Indeed, for any �v ∈ �, using the virtual work Eq. (D7), we have

�P[�v] − �P[�u] =
∫

{φ[γ̇ (�v)] − φ[γ̇ (�u)] − �(u) : [�(v) − �(u)]}dr3. (D10)

Using the concavity of the function φ and the free divergence, we deduce

�P[�v] − �P[�u] �
∫ {

φ′[γ̇ (�u)][γ̇ (�v) − γ̇ (�u)] + [kγ̇ (�u)n + τ0]γ̇ (�u)

−
[

2kγ̇ (�u)n−1 + 2τ0

γ̇ (�u)

]
�i j (�u) : �i j (�v)

}
dr3.

From the Cauchy-Schwarz inequality, �i j (�u) : �i j (�v) � ‖�(�u)‖‖�(�v)‖, we obtain

∀�v ∈ �,�P[�v] − �P[�u] �
∫ {

φ′[γ̇ (�u)]γ̇ (�v) −
[

2kγ̇ (�u)n−1 + 2τ0

γ̇ (�u)

]
‖�(�u)‖‖�(�v)‖

}
dr3

� 0.

Thus, �u is the global minimum of �P[�v]. This result is generic to any kind of external constraint or
applied body force. For the particular case of the imposed pressure condition [ �f = 0 and

∮ �t · �vdS =
(Pin − Pout)Q(�v)], the functional reads

�P[�v] =
∫ [

1

n + 1
kγ̇ n+1(�v) + τ0γ̇ (�v)

]
dr3 − (Pin − Pout)Q(�v). (D11)

Introducing the nondimensional shear rate distribution gu(�r,�P) = Sλ
Q(�u) γ̇ (�u), it follows

�[�v,�P] = 1

n + 1
k

Qn+1(�v,�P)

Sn+1λn+1

∫
gn+1

v (�r,�P)dr3

+ τ0

Sλ
Q(�v,�P)

∫
gv (�r,�P)dr3 − �PQ(�v,�P). (D12)

2. Constant flow rate

The idea is similar as in the previous case, however, it is necessary to define a more restrictive
subspace of the admissible velocity field. We define �(Q) as the ensemble of velocity field satisfying∑

i

∂ivi = 0,

vi = 0, at the solid interfaces,∑
j

�i j (�v)n j = −λv
inni, across the inlet surface Sin,

∑
j

�i j (�v)n j = −λv
outni, across the outlet surface Sout,

∑
i

∮
Sout

vinidS = −
∑

i

∮
Sin

vinidS = Q

for any real number (λv
in, λ

v
out).
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Multiplying Eq. (D4) by any �v ∈ �(Q), we obtain (assuming �f = �0)

∀�v ∈ �(Q),
∑

i

∮ ∑
j

�i j (�u)v jn jdS −
∫ ∑

i j

�i j (�u)�i j (�v))dr3 = 0. (D13)

Thus,

∀�v ∈ �(Q),
(
λu

in − λu
out

)
Q −

∫ ∑
i j

�i j (�u)�i j (�v)dr3 = 0. (D14)

Substracting this relation applied to �u leads then to

∀�v ∈ �(Q),
∫ ∑

i j

�i j (�u)�i j (�v − �u)dr3 = 0, (D15)

or

∀�v ∈ �(Q),
∫ ∑

i j

Si j (�u)�i j (�v − �u)dr3 = 0, (D16)

because of the free divergence of �u and �v.
We will now demonstrate that �u is the minimum of the functional:

�Q[�v] =
∫

φ[γ̇ (�v)]dr3 =
∫ [

1

n + 1
kγ̇ n+1(�v) + τ0γ̇ (�v)

]
dr3. (D17)

Indeed, we have

∀�v ∈ �(Q),�Q[�v] − �Q[�u] �
∫

{φ′[γ̇ (�u)][γ̇ (�v) − γ̇ (�u)]}dr3, (D18)

from the concavity of φ[γ (�v)]. And thus

∀�v ∈ �(Q),�Q[�v] − �Q[�u] �
∫ {[

kγ̇ (�u)n−1 + τ0

γ̇ (�u)

]
[γ̇ (�v)γ̇ (�u) − γ̇ (�u)2]

}
dr3

�
∫ {[

kγ̇ (�u)n−1 + τ0

γ̇ (�u)

]
[2‖�(�v)‖‖�(�u)‖ − 2‖�(�u)‖2]

}
dr3

�
∫ ⎧⎨

⎩2

[
kγ̇ (�u)n−1 + τ0

γ̇ (�u)

] ∑
i j

[�i j (�v) − �i j (�u)]�i j (�u)

⎫⎬
⎭dr3

�
∫ ∑

i j

Si j (�u)�i j (�v − �u)dr3

� 0,

where we have applied the Cauchy-Schwartz inequality and the relation Eq. (D16).
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