N

N
N

HAL

open science

Decentralized Learning for Pricing a RED Buffer

Patrick Maillé, Bruno Tuffin, Yiping Xing, Rajarathnam Chandramouli

» To cite this version:

Patrick Maillé¢, Bruno Tuffin, Yiping Xing, Rajarathnam Chandramouli. Decentralized Learning for
Pricing a RED Buffer. ICCCN’07 - 16th International Conference on Computer Communications and

NetworkS, Aug 2007, Hawaii, United States. pp.346 - 351. hal-02165254

HAL Id: hal-02165254
https://hal.science/hal-02165254

Submitted on 25 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02165254
https://hal.archives-ouvertes.fr
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Abstract—We study a buffer that implements the Random The second issue addressed by RED is related to fairness:
Early Detect/Discard (RED) mechanism to cope with conges- RED is considered more fair than the tail drop scheme, as

tion, and offers service differentiation by proposing a finite ; dina rates are more likelv to
number of slopes at different prices for the RED probability. As the flqws with the largest sending y
experience packet losses.

a characteristic, the smaller the slope, the better the resulting . . .
QoS. Users are sensitive to their average throughput and to ~ RED is therefore a tool for congestion avoidance but not

the price they pay. Since the study of the noncooperative for service differentiation. The idea of extending it tolumbe
game played is rendered difficult by the discrete nature of service differentiation has already been proposed in the
the strategy sets, and since it is not likely that users have a |iiarature. For instance RIO deploys several drop proigbil

perfect knowledge of the game but only know their experienced functi d di th : | for inst
utility, we introduce a decentralized learning algorithm to unctions depending on the service class (see for instance

progressively reach a Nash equilibrium over time. We examine [2]). However, a disadvantage is that a there is (at least
the effect of prices on the final game outcomes. directly) no incentive for users to select classes progdin

lower quality of service (QoS), meaning that everyone will
. INTRODUCTION choose the one with the highest level, resulting in the
Random Early Discard/Detection (RED) is an activelassical RED. Weighted RED (WRED) [3] generally drops
gueue management technique advocated for telecommuypackets selectively based on IP precedence, so that packets
cation flows, when the goal is to avoid congestion, bwith a higher IP precedence are less likely to be dropped than
controlling the average queue length at a router through ratackets with a lower precedence. Thus, higher prioritfitraf
adaptation. The basic idea behind RED is simple. It drojs delivered with a higher probability than lower priority
packets randomly, with dropping probability proportiomal traffic. Again, no incentive is directly associated to enéor
the buffer/queue length if the length is between a certapeople to some classes. In [4], the authors have made an
minimum and maximum threshold values [1]. Packets agdternative proposition where there is a mapping between
dropped with probability 1 if the length exceeds the maxthe RED function used (more exactly the slope in the linear
mum threshold. For flows conforming to the Transmissiopart of the loss probability) and the declared willingness t
Control Protocol (TCP), packet drops indicate to the sourpay of users: the higher the price, the lower the slope, i.e.
that its rate has to be reduced. As a consequence, TCRhis less likely the packets will be dropped. Here again, the
a good candidate for the application of RED: when thischeme has a drawback: it requires that the declared price, a
mechanism is applied to several sources in the network, tieal number in the aforementioned model, is carried by each
overall input rate is controlled, thereby avoiding congest packet when going through the router implementing RED.
Notice that for real-time flows sent via the User Datagrafrom a practical side, it means that a non negligible part
Protocol (UDP), packet losses are not taken into accowftthe packet has to be devoted to this price information in
by the source since the sending rate of each user is fixpthce of data to transmit. This implementation issue leads t
despite the fact that more packets are dropped in caseaddignalling burden.
higher congestion. In this paper, we consider the same kind of model as in
With respect to the traditionahil drop mechanism that [4], offering service differentiation by proposing diftart
drops only the packets arriving when the buffer is full, REBlopes — at different prices — for the drop probability in the
offers two advantages. First, the randomness introduceshgestion avoidance mode. The main difference is that here
avoids situations where packet losses occur exactly at thdinite number of slopes are proposed to users instead of
same time, i.e. when the buffer is full, for several sourcea.free choice, so that the signalling issue can be addressed
The TCP sources experiencing a loss consequently redibbgeusing a very small number of bits in each packet, i.e.,
their sending rate, and the network may become under-very small overheadPricing is again used so that not
utilized for a while, then flooded again periodically. Thisll users do choose the best slope, and we study the user
problem is known agylobal synchronization[1], and is behaviour within the framework of noncooperatigame
solved by RED since the continuous increase in packet Iasgory[5], where the strategy of each flow/user is the choice
probability spreads losses over time as the buffer fills iof a RED slope, and its utility depends on the experienced



throughput and the price paid. Due to the discrete naturegf.. (or equivalently of the slope in the linear region)

the game now, the analysis is much trickier than in [4]. Weaccording to the service class a user belongs to. The idea is
then suggest that users learn how to make their decisiontlirerefore to provide a smaller value @f,... (i.e.,t) to users

a decentralized manner, following the principles devesmpp who pay more than the others so that, on average, they will
in [6], [7], [8], so that a Nash equilibrium of the game isexperience less losses.

reached. The two cases, when the flows using the buffer ar&Ve denote the set of users (players) bye 7T =
TCP flows and when they are UDP flows are considerefll,--- ,I}. Let ¢; be the strategy chosen by usethere,

The case when a mix of those types of flows share the sathe slope of the RED mechanism). We denote Qy[{]_;)

RED buffer is left for future work. the strategy profile where uséplayst; and all other flows

Note that pricing telecommunication networks has rg- # i uset; from vector [t]_,. The utility of a player:
cently been the subject of an extensive literature (see [@pends on the whole strategy profile, which determines the
[10] for surveys) and that to our knowledge, this paper @sverage throughput of each useand the price user will
besides [4] the only attempt to tackle the problem througiay. We denote by/;(¢;, [t]—;) this utility, that user: will
RED. try to maximize.

The paper is organized as follows. Section Il presents theln [4], such a model was considered, where each user
basic model taken from [4] and discusses results previouslyuld operate for aontinuousvalue of theslopet; in the
obtained for a continuous strategy set. The new discretizitear region between,,;, andgu.. For a TCP flow:, the
version of the game is then presented in Section Ill. Thesulting transmission rat¥; is then given by
decentralized learning mechanism for the discrete game is 1 ’a
described in Section IV, and simulation results are pravide A= —4]—, Q)
in Section V, enabling to illustrate the behavior of the Ri Y pi
algorithm and to discuss the influence of prices on the gaméere R; andp; are TCP flowi's round trip time and drop
outcomes. Some conclusions and directions for future wopkobability, respectively« is typically taken as3/4 (when
are given in Section VI. delayed ack option is enabled, i.e. an acknowledgement
packet is sent by the TCP receiver every two incoming
) . _ packets) or3/2 (when it is disabled) [11]. For UDP flows,

A very basic model of the RED algorithm that we Willihe rate), is uncontrolled. We assume in this paper that all
use throughout the paper is as follows. Consider a buffer (&p flows have the same sending rate (corresponding to a
router) represented by a (virtudluid queue with service given service), that we denote by
rate u. The average virtual queue lengthis compared |, general, since the bottleneck queue is seen as a fluid

to two thresholdsgmin and gmax, With gmin < gmax: N queue, we can write that at equilibrium
order to decide whether or not the incoming packet should

be dropped. The drop probability is then as illustrated in Z/\j(l —p;) = p.
Figure 1: it equals0 if ¢ < quin, 1 if ¢ > Gumax, and jeT
Pmax (¢ = min)/ (¢max = Gmin) if gmin < ¢ < gmax; the latter  This jeads to a system df+ 1 equations with? + 1 un-
being called the congestion avoidance mode of operatiQiyowns. The average throughput that each user experiences
The parametepy,.. denotes the value of the drop probability; 5 function of the strategy profile has been determined in
[4]. We quote here those results, that will be used in the
remaining of the paper.

Case of only UDP userstn this case again, the sources

Il. M ODEL AND PREVIOUS RESULTS

% LT do not take into account packet losses, so the sending rate
] A for each user is fixed.
& ok Proposition 1 ([4]): If all flows are UDP flows and the
® RED slope of each user e 7 is t;, then the packet loss
probability p; for a player; is
‘ _average deue fength « if n x A < (no congestion), thep; = 0,
q 9 max . else nh—
R P —
Fig. 1. Drop probability in RED as a function qf Pi T\ % Zk tr

Case of only TCP usersTCP flows take into account
as the average queue length tendsg,tg. (from the left). In packet losses: they are considered as congestion sigaals th
a best-effort network, the value of, .. is the same for all indicate the source to reduce its sending rate. Therefare th
flows sharing the buffer. A simple principle to bring servicénteraction between TCP transmission rates and the RED
differentiation to the network is to use different values ofmechanism are more complex than for UDP. The following



result gives the expression of the average transmissien rBt Utility model for users

of each user. We assume here that each ugds sensitive to his mean

Proposition 2 ([4]): If all flows are TCP flows and the throughput);(1 — p;) via a logarithmic function, i.e., user
RED slope of each usére 7 is t;, then the loss probability ; has utility

for a given player; is
) Uj(t;, [t]-5)) = log(1+ A;(1 —p;(t;, [t]-;))) — d(t;) (2)
(M + \/MQ + 4o (Zj Rﬂiﬁ) (Zj \{5)) whered(t;) is the price for slope;.

p; =t 5 C. RED slopes and prices
dav <Zj é’?) Since there is a finite numbé¥ of different RED slopes,
we number them by, ..., N, such thatt! > ¢ > ... > ¢V,
Other results obained in [4] are: (The superscript indicates the order of the slope while the

o . - . subscript is for the user index: if usgichoose thécth slope
« For some forms of utility functions, sufficient condi- . & : .
then we writet; = ¢*). In our numerical experiments, the

tions were found under which the game converges to a . N . . .

. . . -~ - minimum slopet” is determined using Theorem 1 of [4], in

strategy profile for which no user has an incentive tQ . . .

. . A order to ensure that the system operates in the linear region
deviate, i.e. a Nash equilibrium.

Parameters optimizing the network revenue for s ecifOf RED. We choose the maximum slopeto be such that
* . P 9 . PECifie discard probability tends tb as the virtual queue size
families of price functions! were determined numeri-

call tends tog.x. The slopes between are equally spaced.
Y- Prices are chosen to be of the form

I1l. GAME FOR A FINITE NUMBER OF SLOPES L . _ v
= d(t") = price factorxy [ ~———.

A. Discretized RED Game ~

=7

Again, for reasons such as signalling or implementabilitfor example withN = 4, A = 20s™!, gmin = 10 and
because not too many overhead informations can be carrigd, = 40, we obtain the RED curves and prices of Figure 2.
on each packet, it is unlikely that a user could ask for a slope
value in a continuous set. It seems indeed more realistic RED curves and prices
choose from a finite set of predefined values (discretiz ‘ ‘ ‘ ‘ ‘ ‘
RED). The strategy set available to users then becor | — oD Priceprice facor L
discrete, and the study carried out in [4] for the gam 0.9 - . Sk,ge;o:om: price;gnce:famrﬂgl“
played among users does not hold anymore. In particular, 1 L Slope=0.007, Price=price_factorx 2
determination of the Nash equilibria becomes analytical
intractable, and we therefore use different tools to rea 0.7
those equilibria. o6

We suggest in this paper to use a decentralized learni £
mechanism [6], [7] to reach a Nash equilibrium of the gamE 0.5
similarly to the approach taken in [8] in the context o0 30.4f
wireless power control (such an approach has also be®
considered in [12] for the game where players select
number of TCP sessions to open). We consider that tir 0-2f
is discretized, and suggest that users select their syratt g1
according to a vector of probabilities that is updated i ‘ ‘ ‘ ‘ ‘ ‘
each time period of the game in order to privilege “good 00 5 10 15 20 25 30 35 40
strategies over “bad” ones. q (virtual queue size)

Let T denote the (common) finite strategy set of each user
j. Userj has a probability vectoP;(k) = (Pj.(k))ier
(over T) for the strategy choice ak-th time step. The

expectgd utility of.use‘rj at k-th time step given Fhaﬂj, D. Bound for the Maximum Price Factor
player j chooses its strategy from the probability vector

Fig. 2. RED curves and prices.

P;(k) is then We assume that the network users are rational in the sense
that they will not try to access the network when their payoff
I U; < 0. This imposes a maximum price factey,,, for the
E[U;(t;,[t-)] = > Ut .t1) [[Pie.(k).  network operator. When this price is exceeded no network

t1, - tr€T i=1 users will have any incentive to access the network. That



is, when the network operator sets> m. the network In the algorithm, parameteb is the step size of the
revenue will be0, therefore an optimal price factor in termsupdating rule, and;; s is a normalized utility

of network revenue is smaller than, ... We give a formula U — A

for mmax iN the next proposition. U g = o o—212

Proposition 3: Let all the users have the same round-trip Bis — Ais
time R and there maximum sending rate be bounded lwith A; ; = ming_,,,<;<sU;; and B; s = max,_,<i<s Ui
Amax- Then, with a discrete strategy SBt mmax < log(1+ for a parameter value: that represents the memory of the
Amax)- user: A; s (resp. B; ) is the minimum (resp. maximum)

Proof: A rational user;j will be willing to access the utility that user: obtained in the lastn time slots. When
network choosing slopg; = t* only whenU; (t;, [t]—;)) > A; s = B; ; then we setu; ; := 0 and no update is done on
0. Then from (2) this implies that the probability vectorP;.
Note that no knowledge of the number of playefs
d(t;) < log(1+A;(1 = p(ty, [t]-5))). is required, nor any specific knowledge of otr?er users’
log(14 A;(1 — p(ty, [t]=5))) strategies. Each user just needs to keep track of the best
\/T and worse utilities he recently obtained.

N+1-k Again, the above game is difficult to study analytically.
Hencer,ax cannot exceed the maximum value of the rightNote nevertheless that this is a finite game [5]. From a
hand side of (3), which is obtained when the numeratéfassical result in game theory, we know that there always
is_maximized and the denominator is minimized. Sincexists a Nash equilibrium in mixed strategies for such a

ﬁ is monotonica”y increasing irk, its minimum game. Fo'r general 'Ut?lity functio_ns, no results of uniqlﬂne
is attained ak = 1. The obvious majoratiotog(1 -+ \; (1 — can be given, but it is proven in [7] that whéntends to

p(t;, [t]—;))) <log(l + Amax) then gives the result. m 0, the above algorithm converges to a Nash equilibrium. We
= therefore suggest to use that learning algorithm to discove

V. LEARNING MECHANISM an equilibrium of the game.

We introduce here the user strategy decision and learning
mechanism over time. The algorithm consists for each user
i in updating a probability vectoP;(s) at each time slot  All our simulations use the setting described in Figure 2.
s, Pi(s) being the probability that userchooses strategy The memory parameter is set 20 time slots.

(slope)t* at instants (the strategy” corresponds to the case .

where the user does not establish any connection). Sigilaft: Convergence of the algorithm

to [8], [12], we assume that the following discrete learning We use the above algorithm to discover some equilibria
algorithm is used by each player: of the game in the two settings TCP users only and UDP

1) Set the initial probability vecto;(0) for each user users only. . _ '
i. In this paper we will (arbitrarily) choose uniform For all the simulations we have run, it has turned out

i.€.

V. SIMULATION RESULTS

initial distributions over{0,..., N}. that the probability vectors for the strategy choice of each
2) At each time step, the RED slope; ; is chosen by user conv_erged to a Dirac_, ie. a strgtegy where the player
useri according to probability vectaP(s). plays a single strategy with probability 1 (pure strategy).
3) Useri then monitors his throughput and determineslowever, having checked the resulting situation, we have
his utility U; , at time steps. observed that when the value of the paraméter Step 4
4) Useri updates his probability vector according to th@f the learning algorithm is too large, the learned situatio
rule may not be a Nash equilibrium. Thésposterioriverification

illustrates the trade-off that relies in the choicebpbetween

P; — bu; s P; . - s
ik () = buti,s P (5) the insurance of converging to a Nash equilibrium (wlbaen

if ;5 #tF . ,
Pir(s+1)= Pa(s) + bui o 3° )P?é(s) tends to0) and the rapidity of convergence. For our setting,
ik i Hgt’ﬁeri/f/ise a value ofb around0.01 seems to be satisfying, since it has

always led to an equilibrium in our simulations.
In words, this step consists in adjusting the probability 1) Case of UDP sessiongzigure 3 shows the evolution
of choosing one’s strategy in the next step, consideringth time of the strategies (the number of the selected slope
the utility brought by the current strategy: if that utilitystrategy 0 denoting the fact that the user prefers not to
is high (u; s is large, see below) then the probabilityconnect at all) chosen by the players, with the slopes and
of the current strategy is increased, otherwise it jgrices of Figure 2 and a price factor equalltdRemark that
lowered. users try all the strategies at the beginning, and then Isapid
5) If the algorithm has not converged goto step 2)end to favour strategy 1, trying out the other ones less and
otherwise stop. less often.
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Fig. 3. Evolution of the strategies played (4 UDP users) Fig. 5. Evolution of the strategies played (4 TCP users)
Evolution of the virtual queue size
Figure 4 shows the evolution of the virtual queue siz 100025 ‘
during the convergence phase. Since the strategies pla
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0 500 1000 1500 2000 2500

_ 3000 show respectively fof = 4 UDP users and = 4 TCP users
Time (slots) the influence of the price factor on the network revenue.
Fig. 4. Evolution of the virtual queue size (4 UDP users) As an example, the equilibria of the game in the case

of 4 UDP sessions, corresponding to Figure 7, are given in
Table | (when the equilibria are not symmetric, we write
2) Case of TCP sessiongFigures 5 and 6 show thethe equilibria strategies - number of the slope chosen - in
evolution of the strategies played and the virtual queue sian ascending order). It appears that the effect of the price
in the case of TCP sessions (price factgr=with similar factor on the equilibrium is not easy to study, because the
conclusions. discrete nature of the game implies that the user equiliwia
) not change while the price factor is between two thresholds
B. Effect of the price factor over which changes of equilibrium occur. It is therefore
Due to the discontinuity of the available RED prices, thbeneficial to the network to fix the price factor as close as
equilibria of the game are also not continuous in terms pbssible to one of those thresholds in order to maximize his
the price factor. When the Nash equilibria are the same fevenue. However determining analytically the optimateal
different values of the price factor, then the network rexen of the price factor in terms of network revenue appears to be
is simply proportional to that price factor. Figures 7 and 8omplicated since no regularity properties such as cotycavi
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Fig. 8. Network revenue as a function of the price factor (4TiGers)

[ Price factorr | Equilibrium strategies|

7 €0,0.52] 4,4,4,4)
7 € [0.52,0.62 (3,3,3,3)
7 € [0.62,0.71 (2,2,2,2)
7 € [0.71,2.83 (1,1,1,1)
7 € [2.83,3.10 (0,1,1,1)
7 € [3.10,3.49 (0,0,1,1)
7€ [3.49,4.17 (0,0,0,1)
m € [4.17, +c0 (0,0,0,0)

TABLE |
EQUILIBRIA OF THE GAME AS A FUNCTION OF THE PRICE FACTORT,
FOR4 UDPUSERS(EACH STRATEGY PERMUTATION AMONG USERS IS
ALSO AN EQUILIBRIUM).

hold, as illustrated in Figures 7 and 8. Though, a numerical
evaluation can be performed as done here.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we have presented a pricing scheme where
service differentiation is provided by proposing differen
slopes for the RED Active Queue Management (AQM)
algorithm at different prices. A finite number of choices is
proposed in order to limit the signalling overhead in each
packet. Analyzing the resulting game has been proved to
be difficult and we have proposed a decentralized learning
algorithm that converges to a Nash equilibrium among users.

We plan to work towards several directions in the future.
First, we would like to study through ns-2 simulations if
our fluid model is a good approximation of the packet-level
and how the presented scheme can be implemented. Second,
we would like to provide a more theoretical insight on the
convergence of the decentralized learning algorithm. drhir
we plan to investigate how such a pricing scheme could also
be provided to other AQM schemes, such as gentle RED or
RIO for instance.
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