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Abstract—We study a buffer that implements the Random
Early Detect/Discard (RED) mechanism to cope with conges-
tion, and offers service differentiation by proposing a finite
number of slopes at different prices for the RED probability. As
a characteristic, the smaller the slope, the better the resulting
QoS. Users are sensitive to their average throughput and to
the price they pay. Since the study of the noncooperative
game played is rendered difficult by the discrete nature of
the strategy sets, and since it is not likely that users have a
perfect knowledge of the game but only know their experienced
utility, we introduce a decentralized learning algorithm to
progressively reach a Nash equilibrium over time. We examine
the effect of prices on the final game outcomes.

I. I NTRODUCTION

Random Early Discard/Detection (RED) is an active
queue management technique advocated for telecommuni-
cation flows, when the goal is to avoid congestion, by
controlling the average queue length at a router through rate
adaptation. The basic idea behind RED is simple. It drops
packets randomly, with dropping probability proportionalto
the buffer/queue length if the length is between a certain
minimum and maximum threshold values [1]. Packets are
dropped with probability 1 if the length exceeds the maxi-
mum threshold. For flows conforming to the Transmission
Control Protocol (TCP), packet drops indicate to the source
that its rate has to be reduced. As a consequence, TCP is
a good candidate for the application of RED: when this
mechanism is applied to several sources in the network, the
overall input rate is controlled, thereby avoiding congestion.
Notice that for real-time flows sent via the User Datagram
Protocol (UDP), packet losses are not taken into account
by the source since the sending rate of each user is fixed,
despite the fact that more packets are dropped in case of
higher congestion.

With respect to the traditionaltail drop mechanism that
drops only the packets arriving when the buffer is full, RED
offers two advantages. First, the randomness introduced
avoids situations where packet losses occur exactly at the
same time, i.e. when the buffer is full, for several sources.
The TCP sources experiencing a loss consequently reduce
their sending rate, and the network may become under-
utilized for a while, then flooded again periodically. This
problem is known asglobal synchronization[1], and is
solved by RED since the continuous increase in packet loss
probability spreads losses over time as the buffer fills in.

The second issue addressed by RED is related to fairness:
RED is considered more fair than the tail drop scheme, as
the flows with the largest sending rates are more likely to
experience packet losses.

RED is therefore a tool for congestion avoidance but not
for service differentiation. The idea of extending it to include
service differentiation has already been proposed in the
literature. For instance RIO deploys several drop probability
functions depending on the service class (see for instance
[2]). However, a disadvantage is that a there is (at least
directly) no incentive for users to select classes providing
lower quality of service (QoS), meaning that everyone will
choose the one with the highest level, resulting in the
classical RED. Weighted RED (WRED) [3] generally drops
packets selectively based on IP precedence, so that packets
with a higher IP precedence are less likely to be dropped than
packets with a lower precedence. Thus, higher priority traffic
is delivered with a higher probability than lower priority
traffic. Again, no incentive is directly associated to enforce
people to some classes. In [4], the authors have made an
alternative proposition where there is a mapping between
the RED function used (more exactly the slope in the linear
part of the loss probability) and the declared willingness to
pay of users: the higher the price, the lower the slope, i.e.
the less likely the packets will be dropped. Here again, the
scheme has a drawback: it requires that the declared price, a
real number in the aforementioned model, is carried by each
packet when going through the router implementing RED.
From a practical side, it means that a non negligible part
of the packet has to be devoted to this price information in
place of data to transmit. This implementation issue leads to
a signalling burden.

In this paper, we consider the same kind of model as in
[4], offering service differentiation by proposing different
slopes – at different prices – for the drop probability in the
congestion avoidance mode. The main difference is that here
a finite number of slopes are proposed to users instead of
a free choice, so that the signalling issue can be addressed
by using a very small number of bits in each packet, i.e.,
a very small overhead.Pricing is again used so that not
all users do choose the best slope, and we study the user
behaviour within the framework of noncooperativegame
theory[5], where the strategy of each flow/user is the choice
of a RED slope, and its utility depends on the experienced



throughput and the price paid. Due to the discrete nature of
the game now, the analysis is much trickier than in [4]. We
then suggest that users learn how to make their decision in
a decentralized manner, following the principles developped
in [6], [7], [8], so that a Nash equilibrium of the game is
reached. The two cases, when the flows using the buffer are
TCP flows and when they are UDP flows are considered.
The case when a mix of those types of flows share the same
RED buffer is left for future work.

Note that pricing telecommunication networks has re-
cently been the subject of an extensive literature (see [9],
[10] for surveys) and that to our knowledge, this paper is
besides [4] the only attempt to tackle the problem through
RED.

The paper is organized as follows. Section II presents the
basic model taken from [4] and discusses results previously
obtained for a continuous strategy set. The new discretized
version of the game is then presented in Section III. The
decentralized learning mechanism for the discrete game is
described in Section IV, and simulation results are provided
in Section V, enabling to illustrate the behavior of the
algorithm and to discuss the influence of prices on the game
outcomes. Some conclusions and directions for future work
are given in Section VI.

II. M ODEL AND PREVIOUS RESULTS

A very basic model of the RED algorithm that we will
use throughout the paper is as follows. Consider a buffer (a
router) represented by a (virtual)fluid queue with service
rate µ. The average virtual queue lengthq is compared
to two thresholdsqmin and qmax, with qmin < qmax, in
order to decide whether or not the incoming packet should
be dropped. The drop probability is then as illustrated in
Figure 1: it equals0 if q ≤ qmin, 1 if q ≥ qmax, and
pmax(q−qmin)/(qmax−qmin) if qmin < q < qmax; the latter
being called the congestion avoidance mode of operation.
The parameterpmax denotes the value of the drop probability
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Fig. 1. Drop probability in RED as a function ofq.

as the average queue length tends toqmax (from the left). In
a best-effort network, the value ofpmax is the same for all
flows sharing the buffer. A simple principle to bring service
differentiation to the network is to use different values of

pmax (or equivalently of the slopet in the linear region)
according to the service class a user belongs to. The idea is
therefore to provide a smaller value ofpmax (i.e., t) to users
who pay more than the others so that, on average, they will
experience less losses.

We denote the set of users (players) byi ∈ I =
{1, · · · , I}. Let ti be the strategy chosen by useri (here,
the slope of the RED mechanism). We denote by (ti, [t]−i)
the strategy profile where useri playsti and all other flows
j 6= i use tj from vector [t]−i. The utility of a playeri
depends on the whole strategy profile, which determines the
average throughput of each useri and the price useri will
pay. We denote byUi(ti, [t]−i) this utility, that useri will
try to maximize.

In [4], such a model was considered, where each user
could operate for acontinuousvalue of theslopeti in the
linear region betweenqmin andqmax. For a TCP flowi, the
resulting transmission rateλi is then given by

λi =
1

Ri

√
α

pi

, (1)

whereRi andpi are TCP flowi’s round trip time and drop
probability, respectively.α is typically taken as3/4 (when
delayed ack option is enabled, i.e. an acknowledgement
packet is sent by the TCP receiver every two incoming
packets) or3/2 (when it is disabled) [11]. For UDP flows,
the rateλi is uncontrolled. We assume in this paper that all
UDP flows have the same sending rate (corresponding to a
given service), that we denote byλ.

In general, since the bottleneck queue is seen as a fluid
queue, we can write that at equilibrium

∑

j∈I

λj(1 − pj) = µ.

This leads to a system ofI + 1 equations withI + 1 un-
knowns. The average throughput that each user experiences
as a function of the strategy profile has been determined in
[4]. We quote here those results, that will be used in the
remaining of the paper.

Case of only UDP users:In this case again, the sources
do not take into account packet losses, so the sending rate
λ for each user is fixed.

Proposition 1 ([4]): If all flows are UDP flows and the
RED slope of each useri ∈ I is ti, then the packet loss
probability pj for a playerj is

• if n × λ ≤ µ (no congestion), thenpj = 0,
• else

pj = tj
nλ − µ

λ ×∑k tk
.

Case of only TCP users:TCP flows take into account
packet losses: they are considered as congestion signals that
indicate the source to reduce its sending rate. Therefore the
interaction between TCP transmission rates and the RED
mechanism are more complex than for UDP. The following



result gives the expression of the average transmission rate
of each user.

Proposition 2 ([4]): If all flows are TCP flows and the
RED slope of each useri ∈ I is ti, then the loss probability
for a given playerj is

pj = tj

(

−µ +

√

µ2 + 4α

(
∑

j
1

Rj

√
tj

)(
∑

j

√
tj

Rj

))2

4α

(
∑

j

√
tj

Rj

)2
.

Other results obained in [4] are:

• For some forms of utility functions, sufficient condi-
tions were found under which the game converges to a
strategy profile for which no user has an incentive to
deviate, i.e. a Nash equilibrium.

• Parameters optimizing the network revenue for specific
families of price functionsd were determined numeri-
cally.

III. G AME FOR A FINITE NUMBER OF SLOPES

A. Discretized RED Game

Again, for reasons such as signalling or implementability,
because not too many overhead informations can be carried
on each packet, it is unlikely that a user could ask for a slope
value in a continuous set. It seems indeed more realistic to
choose from a finite set of predefined values (discretized
RED). The strategy set available to users then becomes
discrete, and the study carried out in [4] for the game
played among users does not hold anymore. In particular, the
determination of the Nash equilibria becomes analytically
intractable, and we therefore use different tools to reach
those equilibria.

We suggest in this paper to use a decentralized learning
mechanism [6], [7] to reach a Nash equilibrium of the game,
similarly to the approach taken in [8] in the context of
wireless power control (such an approach has also been
considered in [12] for the game where players select a
number of TCP sessions to open). We consider that time
is discretized, and suggest that users select their strategy
according to a vector of probabilities that is updated at
each time period of the game in order to privilege “good”
strategies over “bad” ones.

Let T denote the (common) finite strategy set of each user
j. User j has a probability vectorPj(k) = (Pj,t(k))t∈T

(over T ) for the strategy choice atk-th time step. The
expected utility of userj at k-th time step given that∀j,
player j chooses its strategy from the probability vector
Pj(k) is then

E [Uj(tj , [t]−j)] =
∑

t1,··· ,tI∈T

Uj(t1, · · · , tI)

I∏

i=1

Pi,ti
(k).

B. Utility model for users

We assume here that each userj is sensitive to his mean
throughputλj(1 − pj) via a logarithmic function, i.e., user
j has utility

Uj(tj , [t]−j)) = log(1 + λj(1− pj(tj , [t]−j)))− d(tj) (2)

whered(tj) is the price for slopetj .

C. RED slopes and prices

Since there is a finite numberN of different RED slopes,
we number them by1, ..., N , such thatt1 > t2 > ... > tN .
(The superscript indicates the order of the slope while the
subscript is for the user index: if userj choose thekth slope
then we writetj = tk). In our numerical experiments, the
minimum slopetN is determined using Theorem 1 of [4], in
order to ensure that the system operates in the linear region
of RED. We choose the maximum slopet1 to be such that
the discard probability tends to1 as the virtual queue size
tends toqmax. The slopes between are equally spaced.

Prices are chosen to be of the form

πk = d(tk) = price factor
︸ ︷︷ ︸

=π

×
√

N

N + 1 − k
.

For example withN = 4, λ = 20s−1, qmin = 10 and
qmax = 40, we obtain the RED curves and prices of Figure 2.
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Fig. 2. RED curves and prices.

D. Bound for the Maximum Price Factor

We assume that the network users are rational in the sense
that they will not try to access the network when their payoff
Ui < 0. This imposes a maximum price factorπmax for the
network operator. When this price is exceeded no network
users will have any incentive to access the network. That



is, when the network operator setsπ > πmax the network
revenue will be0, therefore an optimal price factor in terms
of network revenue is smaller thanπmax. We give a formula
for πmax in the next proposition.

Proposition 3: Let all the users have the same round-trip
time R and there maximum sending rate be bounded by
λmax. Then, with a discrete strategy setT , πmax ≤ log(1 +
λmax).

Proof: A rational userj will be willing to access the
network choosing slopetj = tk only whenUj(tj , [t]−j)) ≥
0. Then from (2) this implies that

d(tj) ≤ log(1 + λj(1 − p(tj , [t]−j))),

i.e. π ≤ log(1 + λj(1 − p(tj , [t]−j)))
√

N
N+1−k

. (3)

Henceπmax cannot exceed the maximum value of the right-
hand side of (3), which is obtained when the numerator
is maximized and the denominator is minimized. Since√

N
N+1−k

is monotonically increasing ink, its minimum
is attained atk = 1. The obvious majorationlog(1+λj(1−
p(tj , [t]−j))) ≤ log(1 + λmax) then gives the result.

IV. L EARNING MECHANISM

We introduce here the user strategy decision and learning
mechanism over time. The algorithm consists for each user
i in updating a probability vectorPi(s) at each time slot
s, Pik(s) being the probability that useri chooses strategy
(slope)tk at instants (the strategyt0 corresponds to the case
where the user does not establish any connection). Similarly
to [8], [12], we assume that the following discrete learning
algorithm is used by each player:

1) Set the initial probability vectorPi(0) for each user
i. In this paper we will (arbitrarily) choose uniform
initial distributions over{0, . . . , N}.

2) At each time steps, the RED slopeti,s is chosen by
useri according to probability vectorPi(s).

3) User i then monitors his throughput and determines
his utility Ui,s at time steps.

4) Useri updates his probability vector according to the
rule

Pik(s + 1) =







Pik(s) − bui,sPik(s)
if ti,s 6= tk

Pik(s) + bui,s

∑

ℓ 6=ti,s
Piℓ(s)

otherwise.

In words, this step consists in adjusting the probability
of choosing one’s strategy in the next step, considering
the utility brought by the current strategy: if that utility
is high (ui,s is large, see below) then the probability
of the current strategy is increased, otherwise it is
lowered.

5) If the algorithm has not converged goto step 2),
otherwise stop.

In the algorithm, parameterb is the step size of the
updating rule, andui,s is a normalized utility

ui,s =
Ui,s − Ai,s

Bi,s − Ai,s

with Ai,s = mins−m≤l≤s Ui,l andBi,s = maxs−m≤l≤s Ui,l

for a parameter valuem that represents the memory of the
user: Ai,s (resp. Bi,s) is the minimum (resp. maximum)
utility that useri obtained in the lastm time slots. When
Ai,s = Bi,s then we setui,s := 0 and no update is done on
the probability vectorPi.

Note that no knowledge of the number of playersI
is required, nor any specific knowledge of other users’
strategies. Each user just needs to keep track of the best
and worse utilities he recently obtained.

Again, the above game is difficult to study analytically.
Note nevertheless that this is a finite game [5]. From a
classical result in game theory, we know that there always
exists a Nash equilibrium in mixed strategies for such a
game. For general utility functions, no results of uniqueness
can be given, but it is proven in [7] that whenb tends to
0, the above algorithm converges to a Nash equilibrium. We
therefore suggest to use that learning algorithm to discover
an equilibrium of the game.

V. SIMULATION RESULTS

All our simulations use the setting described in Figure 2.
The memory parameter is set to20 time slots.

A. Convergence of the algorithm

We use the above algorithm to discover some equilibria
of the game in the two settings TCP users only and UDP
users only.

For all the simulations we have run, it has turned out
that the probability vectors for the strategy choice of each
user converged to a Dirac, i.e. a strategy where the player
plays a single strategy with probability 1 (pure strategy).
However, having checked the resulting situation, we have
observed that when the value of the parameterb in Step 4
of the learning algorithm is too large, the learned situation
may not be a Nash equilibrium. Thisa posterioriverification
illustrates the trade-off that relies in the choice ofb, between
the insurance of converging to a Nash equilibrium (whenb
tends to0) and the rapidity of convergence. For our setting,
a value ofb around0.01 seems to be satisfying, since it has
always led to an equilibrium in our simulations.

1) Case of UDP sessions:Figure 3 shows the evolution
with time of the strategies (the number of the selected slope,
strategy0 denoting the fact that the user prefers not to
connect at all) chosen by the players, with the slopes and
prices of Figure 2 and a price factor equal to1. Remark that
users try all the strategies at the beginning, and then rapidly
tend to favour strategy 1, trying out the other ones less and
less often.
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Fig. 3. Evolution of the strategies played (4 UDP users)

Figure 4 shows the evolution of the virtual queue size
during the convergence phase. Since the strategies played
converge, the corresponding virtual queue size also rapidly
converges.
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Fig. 4. Evolution of the virtual queue size (4 UDP users)

2) Case of TCP sessions:Figures 5 and 6 show the
evolution of the strategies played and the virtual queue size
in the case of TCP sessions (price factor=1), with similar
conclusions.

B. Effect of the price factor

Due to the discontinuity of the available RED prices, the
equilibria of the game are also not continuous in terms of
the price factor. When the Nash equilibria are the same for
different values of the price factor, then the network revenue
is simply proportional to that price factor. Figures 7 and 8
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Fig. 5. Evolution of the strategies played (4 TCP users)
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Fig. 6. Evolution of the virtual queue size (4 TCP users)

show respectively forI = 4 UDP users andI = 4 TCP users
the influence of the price factor on the network revenue.

As an example, the equilibria of the game in the case
of 4 UDP sessions, corresponding to Figure 7, are given in
Table I (when the equilibria are not symmetric, we write
the equilibria strategies - number of the slope chosen - in
an ascending order). It appears that the effect of the price
factor on the equilibrium is not easy to study, because the
discrete nature of the game implies that the user equilibriado
not change while the price factor is between two thresholds
over which changes of equilibrium occur. It is therefore
beneficial to the network to fix the price factor as close as
possible to one of those thresholds in order to maximize his
revenue. However determining analytically the optimal value
of the price factor in terms of network revenue appears to be
complicated since no regularity properties such as concavity
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Price factorπ Equilibrium strategies

π ∈ [0, 0.52] (4, 4, 4, 4)
π ∈ [0.52, 0.62] (3, 3, 3, 3)
π ∈ [0.62, 0.71] (2, 2, 2, 2)
π ∈ [0.71, 2.83] (1, 1, 1, 1)
π ∈ [2.83, 3.10] (0, 1, 1, 1)
π ∈ [3.10, 3.49] (0, 0, 1, 1)
π ∈ [3.49, 4.17] (0, 0, 0, 1)
π ∈ [4.17, +∞] (0, 0, 0, 0)

TABLE I
EQUILIBRIA OF THE GAME AS A FUNCTION OF THE PRICE FACTORπ,
FOR 4 UDP USERS(EACH STRATEGY PERMUTATION AMONG USERS IS

ALSO AN EQUILIBRIUM ).

hold, as illustrated in Figures 7 and 8. Though, a numerical
evaluation can be performed as done here.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we have presented a pricing scheme where
service differentiation is provided by proposing different
slopes for the RED Active Queue Management (AQM)
algorithm at different prices. A finite number of choices is
proposed in order to limit the signalling overhead in each
packet. Analyzing the resulting game has been proved to
be difficult and we have proposed a decentralized learning
algorithm that converges to a Nash equilibrium among users.

We plan to work towards several directions in the future.
First, we would like to study through ns-2 simulations if
our fluid model is a good approximation of the packet-level
and how the presented scheme can be implemented. Second,
we would like to provide a more theoretical insight on the
convergence of the decentralized learning algorithm. Third,
we plan to investigate how such a pricing scheme could also
be provided to other AQM schemes, such as gentle RED or
RIO for instance.
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