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Abstract
We describe the computation of post-Minkowskian Hamiltonians in General Relativity from scat-

tering amplitudes. Using a relativistic Lippmann-Schwinger equation, we relate perturbative am-

plitudes of massive scalars coupled to gravity to the post-Minkowskian Hamiltonians of classical

General Relativity to any order in Newton’s constant. We illustrate this by deriving a Hamilto-

nian for binary black holes without spin up to 2nd order in the post-Minkowskian expansion and

demonstrate explicitly the equivalence with the recently proposed method based on an effective

field theory matching.
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I. INTRODUCTION

The detection of gravitational waves by the LIGO/Virgo collaboration has opened up

the exciting possibility of testing Einstein’s theory of general relativity at a new and un-

precedented level, including the regime of strong gravity as probed by black holes just prior

to merging. A combination of Numerical Relativity and analytical methods is needed in

order to push theory to the level where it can provide best-fit templates from which physical

parameters can be extracted. This has spurred interest in new and innovative ideas that can

facilitate computations of the required two-body interaction Hamiltonians to high accuracy.

Conventionally, the calculations of effective interaction Hamiltonians have been carried

out in the systematic post-Newtonian expansion of General Relativity. The problem can,

however, be attacked from an entirely different angle, that of relativistic scattering ampli-

tudes as computed by standard quantum field theory methods in a quantum field theory of

gravity coupled to matter [1]. Modern methods of amplitude computations greatly facilitate

this program [2–9]. Incoming and outgoing particles in the scattering process are taken to

past and future infinity where the metric by definition is flat Minkowskian, and the full

metric is treated perturbatively around that Minkowskian background. The classical piece

of the scattering amplitude solves the scattering problem of two black holes to the given

order in Newton’s constant GN . When expanding to the appropriate post-Newtonian order

and defining the interaction potential with the inclusion of the required lower-order Born

subtractions as explained in detail in the next section, the amplitude also contains all the

information of the bound state problem of two massive objects to the given order in the ex-

pansion in Newton’s constant. For the bound-state regime one has, on account of the virial

theorem, a double expansion in both Newton’s constant and momentum. However, a more

daring angle of attack is to treat the bound state problem as not expanded in momentum

while still expanding to fixed order in Newton’s constant. Such an approach has recently

been proposed by Cheung, Rothstein and Solon [8], and it has already been pushed one order

higher in the expansion in Newton’s constant [9] (and compared to the post-Newtonian ex-

pansions in [10]). Here the method of effective field theory is used to extract the interaction

Hamiltonian: the underlying Einstein-Hilbert action coupled to matter produces the classi-

cal part of the scattering amplitude while an effective theory of two massive objects define

the interaction Hamiltonian. The correct matching between the two theories is performed
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by insisting that the two theories produce the same scattering amplitude to the given order

in Newton’s constant.

The post-Newtonian expansion (see, e.g., refs. [11–13] for recent comprehensive reviews)

of General Relativity dates back to the founding days of the theory. Its perturbation theory

is ideal for the low-velocity situations of planetary orbits, satellites, and large-distance effects

of General Relativity that occur at velocities far below the speed of light. In contrast to

this, the computation of observables in General Relativity based on relativistic scattering

amplitudes is valid for all velocities and in particular this is the proper framework for high

energy scattering where kinetic energies can exceed potential energies by arbitrarily large

amounts. This leads naturally to what has become known in the theory of General Relativity

as the post-Minkowskian expansion [14–20].

Extracting the interaction energy from the relativistic scattering amplitude, for con-

sistency with the virial theorem in the bound-state problem one would perform a double

expansion where velocity v and GN are both kept to the appropriate order. To any given

order in GN this would imply a truncation of a Taylor-expanded amplitude in powers of

momenta. There is no general argument for whether keeping higher powers of only one of

the expansion parameters in the regime where they are of comparable magnitude will in-

crease the accuracy. Considering its potential impact, it is nevertheless of much interest to

explore the consequences of keeping higher-order terms of momenta even in the bound state

regime where they would not ordinarily have been included [8–10]. We will here show how

that post-Minkowskian Hamiltonian also follows directly from the full relativistic amplitude

without having to perform the amplitude matching to the effective field theory, thereby

explicitly showing equivalence between the two approaches [7, 8].

II. PERTURBATIVE GRAVITY AS A FIELD THEORY

We start by introducing the Einstein-Hilbert action minimally coupled to massive scalar

fields φa

S =

∫
d4x
√
−g
[

R

16πGN

+
1

2

∑
a

(
gµν∂µφa ∂νφa −m2

aφ
2
a

)]
, (1)

where R defines the Ricci scalar and g ≡ det(gµν). Perturbatively, we expand the metric

around a Minkowski background: gµν(x) = ηµν +
√

32πGNhµν(x). At large distances we can
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treat the scattering of two massive objects ma and mb as that of two point-like particles with

the same masses. This has all been well elucidated in the literature (see, e.g., refs. [21, 22]),

although most focus until now seems to have been on considering the quantum mechanical

effects. The way classical terms appear from the quantum mechanical loop expansion is sub-

tle [1, 23]; see ref. [24] for a very nice and clear discussion of this issue. Instead of expanding

the action (1) in terms of ordinary Feynman rules, it pays to use modern amplitude methods

to extract the needed non-analytic pieces in momentum transfer ~q through the appropriate

cuts at loop level [2–4].

The scattering ma +mb → ma +mb mediated by gravitons at an arbitrary loop order is

described by

M =
p1 p3

p4p2

<latexit sha1_base64="9jZdKXrQUNruzT8aXYXAg30ZUcM=">AAAET3icjVJNb9NAEB03Adrw0RSOXKwmSAVFlp0g0UukCi4ci9S0lZoqstfjZNW111rbQcHyH+TGkX8AnLghOCBmNw4USgMbxX7zZt4bz9hBKniWu+57a6PRvHHz1uZW6/adu/e22zv3jzNZKIYjJoVUp4GfoeAJjnKeCzxNFfpxIPAkuHih8ydzVBmXyVG+SPE89qcJjzjzc6ImOxYbBzjlSRnFUcQFVmWEi2Sq/HRWtX6lDPGk2vNct7fvPm7ZyzOmlMAoL6XXk/1qRRte8eksL7nX45TQBDmrmJr2hB+gGHbTyaBb6YK5d13B0+4SOxkPcag7VeV8naP3F4Fc16HfNY6ydpyXITKpnGzmpzhkXDGBvSVF2xEYDgduHWf8DQ6dwWutJzEm4aVF/YzNTiftjuu45thXgVeDDtTnULY/wRhCkMCggBgQEsgJC/Aho98ZeOBCStw5lMQpQtzkESpokbagKqQKn9gLuk4pOqvZhGLtmRk1oy6C/oqUNjwijaQ6RVh3s02+MM6avc67NJ762RZ0D2qvmNgcZsT+S7eq/F+dniWHCPbNDJxmSg2jp2O1S2G2op/cvjRVTg4pcRqHlFeEmVGu9mwbTWZm17v1Tf6DqdSsjlldW8DHtdNFdF1QZUwZ/Rl4f770q+C473gDp/+q3zl4Xn8Qm/AQdmGP3vozOICXcAgjYNZb67P11frWeNf40vjerEs3rBo8gN9Oc+sHMIYXAg==</latexit>

=
+∞∑
L=0

ML−loop , ML−loop ∼ O(GL+1
N ), (2)

We choose the center-of-mass frame and parametrize the momenta as follows:

pµ1 = (Ea, ~p ) , pµ2 = (Ea, ~p
′) ,

pµ3 = (Eb,−~p ) , pµ4 = (Eb,−~p ′) ,
(3)

and |~p | = |~p ′|. We also define

qµ = pµ1 − p
µ
2 = pµ4 − p

µ
3 ≡ (0,−~q ) , ~q ≡ ~p ′ − ~p , (4)

and the total energy Ep = Ea + Eb.

III. THE LIPPMANN-SCHWINGER EQUATION

It is a classical problem in perturbative scattering theory to relate the scattering ampli-

tudeM to an interaction potential V . This is typically phrased in terms of non-relativistic

quantum mechanics, but it is readily generalized to the relativistic case. Crucial in this

respect is the fact that we shall consider particle solutions to the relativistic equations only.
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There will thus be, in the language of old-fashioned (time-ordered) perturbation theory, no

back-tracking diagrams corresponding to multiparticle intermediate states. This is trivially

so since we neither wish to treat the macroscopic classical objects such as heavy neutron

stars as indistinguishable particles with their corresponding antiparticles, nor do we wish

to probe the scattering process in any potential annihilation channel. The classical objects

that scatter will always be restricted to classical distance scales.

We now briefly outline a systematic procedure for connecting the scattering amplitude

in perturbative gravity with post-Minkowskian potentials in classical General Relativity.

We start by introducing a bit of notation. First, we assume the existence of a relativistic

one-particle Hamiltonian of only particle states describing what in bound-state problems is

known as the Salpeter equation,

Ĥ = Ĥ0 + V̂ , Ĥ0 =

√
k̂2 +m2

a +

√
k̂2 +m2

b (5)

where V̂ is a so far unspecified potential describing our post-Minkowskian system. We also

define, on a proper subset of the complex plane, the following C-valued operators

Ĝ0(z) ≡ (z − Ĥ0)
−1, Ĝ(z) ≡ (z − Ĥ)−1, (6)

T̂ (z) ≡ V̂ + V̂ Ĝ(z)V̂ (7)

Here Ĝ0 and Ĝ are the Green’s operator for the free and interacting case, while T̂ is the

off-shell scattering matrix whose on-shell matrix elements provide the non-trivial S-matrix

elements. We can relate the two Green’s operator by means of the following operator identity

A−1 = B−1 +B−1(B − A)A−1 ⇒ Ĝ = Ĝ0 + Ĝ0V̂ Ĝ (8)

Multiplying both sides of (7) by Ĝ0, combined with (8), one has

Ĝ0T̂ = Ĝ0V̂ + Ĝ0V̂ ĜV̂ = ĜV̂ , (9)

T̂ (z) = V̂ + V̂ Ĝ0(z)T̂ (z) (10)

which is the basis for a perturbative knowledge of T̂ and it usually known as Lippmann-
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Schwinger equation.

We now take the inner product on scattering states |p〉, |p′〉

〈p|T̂ (z)|p′〉 = 〈p|V̂ |p′〉+

∫
d3k

(2π)3
〈p|V̂ |k〉〈k|T̂ (z)|p′〉

z − Ek
(11)

and use the crucial relation

lim
ε→0
〈p|T̂ (Ep + iε)|p′〉 =M(p, p′) (12)

which provides the link to the conventionally defined scattering amplitudeM in quantum

field theory restricted to the particle sector. Substituting (12) into (11) we have a recursive

relation between the amplitude and the post-Minkowskian potential

M(p, p′) = 〈p|V |p′〉+

∫
d3k

(2π)3
〈p|V |k〉M(k, p′)

Ep − Ek + iε
(13)

Solving this equation iteratively, we can invert it in order to arrive at a relativistic equation

for the potential V

〈p|V |p′〉 =M(p, p′)−
∫

d3k

(2π)3
M(p, k)M(k, p′)

Ep − Ek + iε
+ · · · (14)

or, in position space,

V (p, r) =

∫
d3q

(2π)3
eiq·rV (p, q), (15)

with

V (p, q) ≡ 〈p|V |p′〉 (16)

At this stage there has not been any restriction to a non-relativistic limit. The anti-particle

sector has been eliminated by hand, as dictated by the physical scattering process. We can

thus regard (15) as defining a post-Minkowskian potential.
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IV. POST-MINKOWSKIAN HAMILTONIANS

A. The post-Minkowskian potential to first order

We are now ready to use the above definition of the relativistic interaction potential to

describe the post-Minkowskian Hamiltonian to the trivial lowest order for two massive scalars

of masses ma and mb interacting with gravity. With the non-relativistic normalization of

external states,

Mtree =
q

p1

p2

p3

p4

<latexit sha1_base64="ww/FD5UnUiDCGap7pbv05iXx8Nw="></latexit>

=
4πGN√

Ea(p1)Ea(p2)Eb(p3)Eb(p4)

A(p1, p2, p3, p4)

q2
, (17)

with

A(p1, p2, p3, p4) = (p1·p3)(p2·p4)+(p1·p4)(p2·p3)−(p1·p2)(p3·p4)+(p1·p2)m2
b+(p3·p4)m2

a−2m2
am

2
b

(18)

In the center-of-mass frame this reduces to

Mtree = −4πGN

EaEb

[2(p1 · p3)2 −m2
am

2
b − |~q |2(p1 · p3)]

|~q |2
, (19)

with p1 · p3 = Ea(p)Eb(p) + |~p |2.

In order to facilitate a comparison with [8] we can write the Fourier transform as

V1PM(p, r) =
1

E2
pξ

GNc1(p
2)

r
+ · · · (20)

with

c1(p
2) ≡ m2

am
2
b − 2(p1 · p3)2 , ξ ≡ EaEb

E2
p

(21)

The terms omitted in eq. (20) are either ultra-local or vanishing in the classical limit. This

of course agrees with the leading-order potential of ref. [8] while not very easily derived in

more traditional approaches.
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B. The post-Minkowskian potential to second order

In order to consider a post-Minkowksian potential at second order in G2
N , we will need to

consider a contribution coming from the iterated tree-level amplitude, as dictated by (14)

V2PM(p, q) =M1−loop(p, p′) +MIterated(p, p′), (22)

MIterated(p, p′) ≡ −
∫

ddk

(2π)d
Mtree(p, k)Mtree(k, p′)

Ep − Ek + iε
. (23)

Infrared divergences are regularized by temporarily switching to d+1 space-time dimensions.

The classical terms of the one-loop amplitude have been given elsewhere [6–8, 25–28]. They

can be decomposed in terms of scalar integrals with coefficients that are independent of the

exchanged three-momentum ~q,

M1−loop =
i16π2G2

N

EaEb

(
c�I� + c./I./ + c.I. + c/I/ + · · ·

)
(24)

where the symbol of each coefficient refers to the topology of the contributions involved

while the ellipses denote quantum mechanical contributions that we neglect.

In detail, the scalar box and crossed-box integrals are given by

I� =

∫
dd+1`

(2π)d+1

1

((`+ p1)2 −m2
a + iε)((`− p3)2 −m2

b + iε)(`2 + iε)((`+ q)2 + iε)
, (25)

I./ =

∫
dd+1`

(2π)d+1

1

((`+ p1)2 −m2
a + iε)((`+ p4)2 −m2

b + iε)(`2 + iε)((`+ q)2 + iε)
, (26)

At leading order in the momentum transfer ~q the coefficients of these integrals are finite at

d = 3 and given by [3, 22]

c� = c./ = 4
(
m2
am

2
b − 2(p1 · p3)2

)2
. (27)
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The scalar triangle integrals are given by

I. =

∫
dd+1`

(2π)d+1

1

((`+ q)2 + iε)(`2 + iε)((`+ p1)2 −m2
a + iε)

(28)

I/ =

∫
dd+1`

(2π)d+1

1

((`− q)2 + iε)(`2 + iε)((`− p3)2 −m2
b + iε)

(29)

with coefficients, at the leading order in |~q| and around d = 3, given by

c. = 3m2
a

(
m2
am

2
b − 5(p1 · p3)2

)
, c/ = 3m2

b

(
m2
am

2
b − 5(p1 · p3)2

)
(30)

These scalar integrals are conveniently evaluated by performing proper contour integrals in

`0 as explained in [7]. Doing so, we see that the box, crossed-box, and triangle contributions

are given by [22, 29]

I� = − i

16π2|~q |2

(
− 1

mamb

+
ma(ma −mb)

3m2
am

2
b

+
iπ

|p|Ep

) (
2

3− d
− log |~q |2

)
+ · · · , (31)

I./ = − i

16π2|~q |2

(
1

mamb

− ma(ma −mb)

3m2
am

2
b

)(
2

3− d
− log |~q |2

)
+ · · · , (32)

I. = − i

32ma

1

|~q |
+ · · · , (33)

I/ = − i

32mb

1

|~q |
+ · · · , (34)

at leading order in the |~q |2 expansion and around d = 3. We thus arrive at the one-loop

amplitude to leading order in |~q |2,

M1−loop =
π2G2

N

E2
pξ

[
1

2|~q |

(
c.
ma

+
c/
mb

)
+

i

Ep

c�
|~p |

( 2
3−d − log |~q |2)

π|~q |2

]
(35)

The imaginary part of this which arises from the box and crossed-box integrals is the infrared

divergent Weinberg phase [30]. By restoring the ~-counting, one sees that it scales as ~−1, a

behavior dubbed super-classical in [24]. We will show below that it cancels in the properly

defined potential, a fact already noted in the post-Newtonian expansion [25].

9



We next evaluate the iterated tree-level contribution given by

MIterated = − 16π2G2
N

Ea(p2)Eb(p2)

∫
ddk

(2π)d
A(~p,~k)

|~p− ~k|2
A(~k, ~p ′)

|~p′ − ~k|2
G(p2, k2)

Ea(k2)Eb(k2)
(36)

where we have introduced the Green function

G(p2, k2) =
1

Ep − Ek + iε
(37)

The function A is the numerator of the tree-level amplitude (18) with the k-legs satisfying

3-momentum (but not energy) conservation. We notice that A(~p,~k ) and A(~k, ~p ′) can be

written as

A(~p,~k ) = Ã(p2, k2) +B(~p,~k), (38)

A(~k, ~p ′) = Ã(p2, k2) +B(~p ′, ~k) (39)

where Ã is ~q -independent and function of |~p| = p and |~k| = k. The classical contribution

from the iterated Born amplitude is hence

MIterated = − 16π2G2
N

Ea(p2)Eb(p2)

∫
ddk

(2π)d
G(p2, k2)Q(p2, k2)

|~p− ~k |2|~p ′ − ~k |2
(40)

where

Q(p2, k2) =
Ã2(p2, k2)

Ea(k2)Eb(k2)
(41)

We now expand Q around p2,

Q(p2, k2) = Qk=p + (k2 − p2)∂k2Qk2=p2 + · · · , (42)

Qk2=p2 =
Ã2
k2=p2

Ea(p2)Eb(p2)
=

c21
E2
pξ
, (43)

∂k2Qk2=p2 = − 1

E2
pξ

2

(
2c1p1 · p3 +

c21
2E2

pξ
(1− 2ξ)

)
(44)

The Green function G likewise admits a Laurent expansion in k2

G(p2, k2) =
2Epξ

p 2 − k2
+

3ξ − 1

2Epξ
+ · · · (45)
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Combining terms, the Born subtraction can hence be expressed as

MIterated =
32π2G2

N

E3
pξ

c21

∫
ddk

(2π)d
1

|~p− ~k|2|~p′ − ~k|2(k2 − p2)

− 16π2G2
N

E3
pξ

2

(
c21(1− ξ)

2E2
pξ

+ 4c1p1 · p3
)∫

ddk

(2π)d
1

|~p− ~k|2|~p ′ − ~k|2
+ · · · (46)

Evaluating the remaining three-dimensional integrals, we find

MIterated =
iπG2

N

E3
pξ

4c21
|~p|

(log |~q|2 − 2
3−d)

|~q|2
+

2π2G2
N

E3
pξ

2|~q|

(
c21(ξ − 1)

2E2
pξ

− 4c1p1 · p3
)

(47)

The second-order post-Minkowskian potential in momentum space is thus given by

V2PM(p, q) =M1−loop +MIterated (48)

leading to

V2PM(p, q ) =
π2G2

N

E2
pξ|~q |

[
1

2

(
c.
ma

+
c/
mb

)
+

2

Epξ

(
c21(ξ − 1)

2E2
pξ

− 4c1p1 · p3
)]

(49)

or, in coordinate space,

V2PM(p, r) =
G2
N

r2
1

E2
pξ

[
1

4

(
c.
ma

+
c/
mb

)
+

(
c21(ξ − 1)

2E3
pξ

2
− 4c1p1 · p3

Epξ

)]
. (50)

This agrees with what has been previously obtained in ref. [8] (taking into account that c1

here is E2ξ times c1 in [8]). As expected on physical grounds, the imaginary part which is

composed of super-classical and infrared divergent pieces has cancelled, leaving a finite and

well-defined post-Minkowskian potential at d = 3. That such cancellation had to occur was

expected on physical ground, since the imaginary part clearly cannot affect classical motion.

Interestingly, the evaluation of the same potential in N = 8 supergravity has shown no

contributions coming from triangle topologies [31].
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C. The post-Minkowskian scattering angle

In [7] a one-loop formula for the gravitational eikonal limit [32, 33] generalized to the

scattering of two objects of different masses ma and mb was used to deduce the classical

scattering angle to second post-Minkowskian order directly from the scattering amplitude.

An alternative method based on the Hamiltonian [34] has recently been revived in connection

with the third post-Minkowskian scattering amplitude calculation [9, 10] and we here briefly

summarize the method at second order in GN . Since the motion lies on a plane, we can

introduce the following coordinates on the phase space (r, φ, pr, pφ) so as to express the

momentum in the center of mass frame as

p 2 = p2r +
L2

r2
(51)

being L the conserved angular momentum of our binary system, with constant energy E

√
p2 +m2

a +
√
p2 +m2

b + V1PM(p, r) + V2PM(p, r) = E (52)

This equation can be solved perturbatively in GN for p 2 = p 2(E,L, r)

p 2 = p 2
0 +

GNf1
r

+
G2
Nf2
r2

+ · · · (53)

Using s = (p1 + p3)
2

p20 =
(p1 · p3)2 −m2

1m
2
2

s
, f1 = −2c1√

s
, f2 = − 1

2
√
s

(
c.
ma

+
c/
mb

)
(54)

It is straightforward to derive the following expression for the change in the angular variable

φ during scattering (see for instance [16, 34])

∆φ = π + χ(E,L), (55)

where the scattering angle is given by

χ(E,L) = −2

∫ +∞

rmin

dr
∂pr
∂L
− π (56)
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Here rmin is the positive root for the condition of turning point at pr = 0 with

pr =

√
p20 −

L2

r2
+
GNf1
r

+
G2
Nf2
r2

(57)

Introducing r0 ≡ L/p0 we note that pr can be rewritten as

pr =
p0
r

√
r2 + r

GNf1
p20

+
G2
Nf2
p20
− r20 =

p0
r

√
r − r+

√
r − r− , (58)

r± = −GNf1
2p20

±

√
G2
Nf

2
1

4p40
− G2

Nf2
p20

+ r20 (59)

Since rmin = r+, the scattering angle becomes

χ(E,L) = 2

∫ +∞

r+

dr

r

r0√
(r − r+)(r − r−)

− π (60)

The integral so expressed can be performed analytically without the need of regularization.

We get

χ(E,L) =
4r0√
−r+r−

arccos

√
r+

r+ − r−
− π (61)

Taylor-expanding the scattering angle to second post-Minkowskian order we arrive at the

final result

χ(E,L) =
GNf1
p0L

+
G2
Nf2π

2L2
+ · · · (62)

In terms of M̂2 ≡ s−m2
a −m2

b and the impact parameter b, where L = pb, we have

χ(E, b) =
4GNs

b

[
M̂4 − 2m2

am
2
b

M̂4 − 4m2
am

2
b

+
3π

16

GN(ma +mb)

b

5M̂4 − 4m2
am

2
b

M̂4 − 4m2
am

2
b

]
(63)

which agrees with the result of [14] at second post-Minkowskian order. In particular, since

f1 and f2 do not depend on box topologies (54), also the scattering angle (62) receives

no contributions from these, a known fact from the eikonal approach in four dimensions.

The details of the calculation based on the Hamiltonian is, on the surface, quite different

from the eikonal approach. It would be interesting to establish the precise link between the

two, first identifying the precise exponentiation formula for the eikonal limit beyond second

13



post-Minkowskian order.

V. CONCLUSION

Using the conventional approach to determining the interaction potential in perturbative

gravity we have demonstrated that it can be extended to the relativistic setting by means of

a one-particle Hamiltonian and associated Salpeter equation. We have used the Lippmann-

Schwinger equation to derive straightforwardly the needed Born subtractions at arbitrary

loop order. The resulting Fourier-transformed post-Minkowskian Hamiltonian

H2PM(p, r) =
√
p2 +m2

a +
√
p2 +m2

b + V1PM(p, r) + V2PM(p, r) , (64)

agrees with the one derived in ref. [8] based on an effective field theory expansion in operators

that can contribute to the given order, supplemented with the matching condition that the

scattering amplitude as computed in the effective theory agrees with the one computed from

the full one-loop expression of the Einstein-Hilbert action (plus scalars).

The resulting post-Minkowskian Salpeter equation is not an effective low-energy theory

(momentum is not limited), but rather a small |~q |/m approximation where small momentum

is exchanged and only particle states are summed over. It is encouraging that preliminary

results indicate that the corresponding two-loop Hamiltonian [9] may improve the computa-

tion of two-body dynamics as compared to the conventional post-Newtonian expansion for

bound states [10]. The post-Minkowskian Hamiltonian also appears to provide a short-cut

towards computing the scattering angle without first demonstrating exponentiation (and po-

tential correction terms) as in the eikonal approach. It would be interesting to demonstrate

the equivalence between those two scattering angle computations in all generality.
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