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Abstract9

To facilitate programming, most multi-core processors feature automated mechanisms maintaining10

coherence between each core’s cache. These mechanisms introduce interference, that is, delays caused11

by concurrent access to a shared resource. This type of interference is hard to predict, leading to12

the mechanisms being shunned by real-time system designers, at the cost of potential benefits in13

both running time and system complexity.14

We believe that formal methods can provide the means to ensure that the effects of this15

interference are properly exposed and mitigated. Consequently, this paper proposes a nascent16

framework relying on timed automata to model and analyze the interference caused by cache17

coherence.18
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1 Introduction26

The next generation of aircrafts will embed multi-core processors. Indeed, it will be more and27

more difficult to find mono-core processors on the market and, when correctly programmed,28

multi-core processors offer huge opportunities to reduce the amount of equipment required29

to host multiple applications compared to federated or single-core IMA (Integrated Modular30

Avionics) architectures. However, multi-core processors come with several drawbacks, among31

which is the lack of predictability [26, 27], one of the key elements of certification expectations.32

This lack of predictability is caused by interference, a delay inherent to the concurrent access33

to a shared resource.34

Cache Coherence In most multi-core processors, each core has its own cache memory, of35

which it is virtually the sole accessor. A cache coherence protocol ensures that:36

At any given time, a memory location can either be accessed by a single cache controller,37

in which case both writing and reading are allowed, or by any number of cache controllers,38

in which case only reading is allowed.39

Any copy of a memory location held in a cache has the most up-to-date value.40

Maintaining this cache coherence requires exchanges of information between cache memo-41

ries. These exchanges can be the source of a large amount of additional traffic, a potential42
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26:2 Modeling Cache Coherence to Expose Interference

hindrance that we qualify of implicit interference, because of how difficult to predict they43

are. Additionally, it can result in the removal of elements from the cache, which may lead to44

time consuming communications with the system’s memory (cache misses).45

While multi-core processors feature hardware to efficiently and automatically handle46

cache coherence, the black-box nature of commercial processors leads to a lack of control,47

visibility, and predictability of the cache coherence protocol and, by extension, of the delays48

it may create.49

Current Research Practices Several approaches have been developed in the literature to50

deal with the interference found in multi-core processors. The main solutions to ensure51

predictability are 1) preventing any kind of uncontrolled interference (e.g. run-time services52

[15, 28]); 2) enforcing a unique access to any shared resource at any time, so as to be equivalent53

to a single core situation (e.g. execution models [18, 5, 12]). Because its interference is difficult54

to predict, most of the considered hardware do not have or use automatic cache coherency.55

Instead, the burden of cache management is placed on the developers, forcing an application-56

specific solution (e.g. scratchpad memory [25, 22]). Such solutions prevent the gains in57

performance that would otherwise be provided by automatic hardware cache management58

mechanisms.59

Contributions We believe that the implicit interference generated by the cache coherence60

can be exposed and taken into account to achieve predictable programming of a multi-core61

processor. In this work, we focus on exposing these unexpected delays, the analysis of a62

formal model of the processor.63

We start this paper by going into more details on how cache coherence can be achieved64

(Section 2), the type of system we are interested in (Section 3), and the categories of65

interference it can host (Section 4). We then present the tools that we use to model and66

analyze it (Section 5). Afterwards, we explain our choices in how we modeled the cache67

coherence in a multi-core processor (Section 6). Finally, we showcase some of the results that68

can be extracted from our model (Section 7), before listing some related works (Section 8)69

and concluding (Section 9).70

2 Cache Coherence Protocols71

We start by introducing archetypal systems on which coherence protocols run. We then72

present how those protocols behave.73

A number of components (see Figure 1) are involved in the coherence.74

Interconnect

Coherency
Manager

Memory
Controller

Cache
Controller

. . . Cache
Controller

Core Core

Figure 1 Components involved in cache coherence
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Memory Element The main memory is composed of chunks (or memory elements) which75

have a fixed size and contain multiple addressable elements. Reading/writing from/to an76

address in the main memory actually corresponds to reading or writing a whole memory77

element. The distinction between an addressable space and a memory element is not78

relevant to cache coherence, and thus, for simplification purposes, this paper considers79

that each memory element has a single address.80

Core The component actually using and modifying memory element values. Instead of81

accessing the original memory elements through the interconnect, each core is linked to its82

own private cache. The content of this cache is managed by an associated cache controller.83

The core can ask its cache controller for the value held by the memory element at a84

given address through a load request. It can also send a store request to modify this85

value. Additionally, the core can issue an evict request, which tells its cache controller86

to invalidate a memory element copy. While it is rare for cores to be the initiators of87

evict requests, it remains a possibility (e.g. for micro-optimization). Cores can be made88

to stall by their cache controller, delaying the emission of a request until the cache89

controller is ready to accept it.90

Cache Controller Component that handles requests from its core, potentially initiating a91

transaction by making a query on the interconnect. Such queries take the form of a GetS92

when asking for a read-only copy of a memory element and that of a GetM when asking93

for a read-and-write copy. Queries that indicate a new value for the memory element are94

done through PutM messages. Depending on the protocol, variants of these messages may95

be used. Cache controllers are also able to reply to the query of another cache controller96

with a data reply (data). Additionally, cache controllers may initiate evict requests97

on themselves to make space for new memory element copies. These self-requests are98

controlled by a cache replacement policy, which is most commonly a speed-over-accuracy99

variation on the Least Recently Used policy.100

Coherency Manager Component that stores information on the state of the cache controllers,101

to help maintain the cache coherence. Using this stored information, it can tell if a query102

should be answered by the memory controller or not. This component is very much103

dependent on which protocol is being implemented, and can range from being a simple104

link between the cache controllers to actually being multiple separate components (e.g.105

all directory nodes of a directory-based cache coherence protocol). It is usually found106

inside the interconnect.107

Memory Controller Component that handles the modification or copy of the original memory108

elements.109

Interconnect Component that regulates and handles the propagation of messages between110

cache controllers, memory controllers, and the coherency manager.111

I Definition 1 (Request, Message, Query, and Data Reply). To keep things separate, we use112

the term request when talking about communications between a core and its cache controller,113

and the term message when talking about communications that use the interconnect. As such,114

queries (e.g. GetM, GetS, PutM) are messages, and so are data replies (e.g. data). Thus,115

messages = queries ∪ data replies.116

I Definition 2 (Transaction). A transaction is composed of a query and of all the data117

messages the completion of that query requires.118

Each message transiting through the interconnect, and each cache controller query, is119

about a specific memory element. Upon receiving either one of those, cache controllers look120

ECRTS 2019



26:4 Modeling Cache Coherence to Expose Interference

up the state they associate with their copy of the memory element for this address, and act121

according to the cache coherence protocol.122

2.1 Protocols123

Most cache coherence protocols are based on the MSI protocol, named after the states given124

to copies of the memory elements by the cache controllers. M stands for Modified, the125

state a cache controller gives its copy of the memory element to indicate that it has both126

read-and-write access to the original. S stands for Shared, and is the equivalent for read-only127

access. I stands for Invalid, when a cache controller does not currently have a copy.128

MSI-based protocols are all categorized as Write-Back, because caches may contain a129

more up-to-date value of the memory element than the RAM.130

The aforementioned protocols are referred to according to their states and general idea,131

however, the definition of their behavior depends on the system they are implemented on.132

There are two main families of cache coherence implementation: snooping-based and133

directory-based. When using a snooping-based protocol, cache controller queries are broad-134

casted to all cache controllers and to the coherency manager. The protocol also ensures135

that only one of the components answers the query. This answer is not broadcasted, but is136

instead only meant for the query’s originator. For such protocols to properly function, all137

the components have to receive the queries in the same order. In the sequel, we only take138

into consideration snooping-based protocols.139
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Automata describing a generic snooping-based MSI protocol can be seen in Figure 2 and140

Figure 3. Figure 2 shows how the state given to a memory element’s copy evolves when141

receiving a request (store?, load?, or evict?), or a query (GetM? or GetS?). Data exchanges142

between cache controllers are also represented (data! and data?). Cache controllers do not143

differentiate between data sent from another cache controller and data sent from the memory144

controller (both use data?). Sending data to the memory controller, however, is marked as145

mem_data!. Figure 3 represents the coherency manager, which keeps track of whether the146

memory has the most up-to-date value for a memory element (state U) or not (state M).147

This particular protocol considers that cache controllers delay incoming requests until148

they are able to use the interconnect, and that transactions cannot take place simultaneously.149
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These automata actually describe a generic snooping-based MSI protocol. They feature150

macro-transitions (a succession of atomic transitions). The next section presents a more151

detailed protocol.152

3 MSI Snooping-Based Protocol153

3.1 A Few Caveats154

These are the hypotheses made on the targeted hardware. Placing such hypotheses (or lack155

thereof) is necessary to properly define the targeted cache coherence protocol.156

B Hypothesis 1 (Non-Atomic Requests). Cores are able to issue load, store, and evict157

requests to their cache controller regardless of whether the cache controller is currently able to158

initiate a transaction on the interconnect. In this paper, we consider that this is implemented159

through the use of a FIFO queue between each cache controller and the interconnect.160

B Hypothesis 2 (Unique Interconnect). The interconnect is unique. As a result, all cache161

controllers are able to see all transactions, and those transactions are all seen in the same162

order. Examples of excluded hardware include many-core processors, which feature a163

Network-On-Chip.164

B Hypothesis 3 (Split-Transaction Interconnect). The interconnect supports simultaneous165

transfer of data and queries and allows multiple transactions to take place simultaneously.166

3.2 From Abstract to Concrete Behaviour167

In Subsection 2.1, we have seen automata using macro-transitions to describe a generic168

snooping-based MSI protocol. Let us now look in details at what is composing the transition169

from I to S with the load?GetS!data? label. Let us consider two cache controllers, CC0 and170

CC1, each of which is driven by its own core (CU0 and CU1, respectively) and a memory171

element. Let us assume that, while CC1 already has read-only access to that memory element,172

CC0 does not, and that core CU0 issues a load request to acquire it.173

In the sequence diagram of Figure 4, we see the behavior of all components involved.174

Once the core issues the load request, the cache controller generates a GetS query to the175

interconnect. The latter broadcasts the GetS to all cache controllers, including the query’s176

originator, and the coherency manager. As the owner of the data is the memory, the coherency177

manager transmits that query to the memory controller, which, in turn, sends the data to178

the core CU0.179

In order to expose the interference, we need to model the atomic transitions and interme-180

diate states, such as the ones shown in the figure.181

3.3 Detailed Snooping-Based MSI Protocol182

Instead of representing the full automaton as a graph, we use a matrix representation (see183

Figure 6). The first column details every possible states. As in [20], the naming of each184

state is determined by the following reasoning: Invalid (I), Shared (S), and Modified (M) are185

the three stable states of the MSI protocol. The other states are transient. Reception of a186

request that requires use of the interconnect will usually lead to a XYBD transient state, which187

means that the cache controller is handling a transition between the stable states X and Y,188

with (B) indicating that this transition requires the acquisition of the interconnect and (D)189

the reception of a related data reply (whether it comes from an other cache controller or190

ECRTS 2019
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the memory). This can be followed by XYD if the cache controller sees its own query before191

receiving a reply, or XYB if a reply is received before the query is processed. This happens192

when, despite processing all queries in the same order, not all cache controllers take the same193

time to do so. Another possibility is for an external query to be received when in the XYD
194

state. Indeed, at that point, the system pretty much considers that the cache controller is in195

the Y state and thus has the responsibilities that the Y would require. This makes it possible196

for a cache controller to see a query it needs to act upon before being actually ready to do so197

(e.g. observing a GetM query while waiting for data). These states have a XYDA form (which198

means that when all is handled, the cache controller ends up in the A state), or XYDAB (which199

ends up leading to the B state). As it may be that the required action is to reply to said200

query, it is sometimes necessary to remember the originator of the query. This is marked as201

r←s.202

When the core makes a request (load, store or evict), the second macro-column203

indicates how the cache controller behaves. The a/b notation denotes the emission of an a204

message on the interconnect, followed by a transition of the memory element copy’s state to205

b. If you look at the load from the I state, the cell indicates that the GetS request will be206

generated and the reached state is ISBD. We recognize the beginning of the sequence diagram207

described in Figure 4. Grayed out cells indicate situations that cannot occur in the protocol,208

due to our hypotheses.209

The third macro-column (named Interconnect access) indicates what happens when the210

previously queued query is broadcasted on the interconnect. When in the ISBD state, we211

know that, at some point, our previously queued GetS query is going to be broadcasted on212

the interconnect. This will result in reaching the ISD state. As a side note, if the core makes213

a second load request on the same memory element while the copy is ISBD, that new request214
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State Core Request Interconnect
Access

Data
Reply Received Queries

load store evict GetS GetM PutM
I GetS/ISBD GetM/IMBD - - -
ISBD stall stall stall -/ISD -/ISB - - -
ISB stall stall stall -/S - -
ISD stall stall stall -/S - -/ISDI
ISDI stall stall stall -/I - -
IMBD stall stall stall -/IMD -/IMB - - -
IMB stall stall stall -/M - - -

IMD stall stall stall -/M
r←s
-/IMDS

r←s
-/IMDI

IMDI stall stall stall
r!data
-/I

- -

IMDS stall stall stall
r!data
m!data
-/I

- -/IMDSI

IMDSI stall stall stall
r!data
m!data
-/I

- -

S hit GetM/SMBD -/I - -/I
SMBD hit stall stall -/SMD -/SMB - -/IMBD

SMB hit stall stall -/M - -/IMB

SMD hit stall stall -/M
r←s
-/SMDS

r←s
-/SMDI

SMDI hit stall stall
r!data
-/I

- -

SMDS hit stall stall
r!data
m!data
-/S

- -/SMDSI

SMDSI hit stall stall
r!data
m!data
-/I

- -

M hit hit PutM/MIB
m!data
s!data
-/S

s!data
-/I

MIB hit hit stall
m!data
-/I

m!data
s!data
-/IIB

s!data
-/IIB

IIB stall stall stall -/I - - -
Handling Requests Handling Queries

Figure 6 Cache Controller Memory Element State Changes (adapted from [20])

is stalled.215

The fourth macro-column describes the behavior upon reception of a data reply.216

The fifth macro-column (named Received Queries) defines the behavior of the cache217

controller when snooping a transiting query that is not its own (which would otherwise218

pertain to the third macro-column). For instance, from state S, when snooping a GetS, the219

cache controller does not do anything, as can be seen with core CU1 in the sequence diagram220

of Figure 4.221

Replying with a message d, meant for t (t = m when sending to the memory controller222

and the coherency manager, t = s when sending to the cache controller that initiated the223

transaction, and t = r when sending to the initiator of an earlier query) is written as t!d.224

225

I Example 3. Let us have a look at a more complex behavior: when 2 cores attempt226

modification of the same memory element. This is illustrated in the sequence diagram of227

Figure 5. CC0 starts with read-and-write access to the memory element (its copy being in228

the M state), neither CC1 nor CC2 have a copy (state I), and the coherency manager knows229
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26:8 Modeling Cache Coherence to Expose Interference

that its value is out of date (state M).230

The sequence starts when CU0 issues an evict request and both CU1 and CU2 issue231

a store request. CC0 receives the evict request, queues a PutM query and now considers232

the memory element to be MIB (that is, “was Modified, will be Invalid once access to the233

interconnect is granted”). On the other hand, the other two caches receive their store234

requests, queue a GetM query, and now consider the memory element to be IMBD (“was Invalid,235

will be Modified after access to the interconnect and reception of a data reply”).236

All the cache controllers want to access the interconnect. The internal behavior of the237

interconnect will drive this choice. Most of the time, the interconnect is based on Fair-RR238

(Round Robin) [11]. In this scenario, the interconnect first broadcasts the GetM query from239

CC1’s queue, which is now empty.240

CC1, seeing its own query, confirms that it has accessed the interconnect, and switches241

to the IMD state to await a data reply. The coherency manager ignores the query. Seeing242

CC1’s GetM query passing through the interconnect, CC0 has to reply with a data message243

(this corresponds to s!data in the protocol definition), containing its value for the memory244

element, and to transition to the IIB state.245

CC2’s GetM query is broadcasted. As it is about to receive the data with read-and-write246

access, CC1 is the component that should reply to CC2’s query. Not having the data yet,247

CC1 is currently unable to do so. Instead, it transitions to the IMDI, remembering that it248

should send the data to CC2 as soon as possible.249

Finally receiving the data, CC1 applies completes CU1’s request, sends the updated data250

to CC2 and transitions to the I state (as CC2 wants read-and-write access).251

CC2 receives the data and completes CU2’s request.252

CC0’s PutM is broadcasted, but has been superseded by a previous GetM and thus causes253

no reaction in the other cache controllers or the coherency manager. CC0 transitions to I,254

completing its core’s request.255

3.4 Coherency Manager256

State Received Queries Data Reply
GetS GetM PutM (Owner) PutM (Other) data

U s!data
s!data
o←s
-/M

-

UD stall stall stall - -/U

UB o← ∅
-/U

- o← ∅
-/U

-

M
o← ∅
-/UD o←s

o← ∅
-/UD - -/UB

Figure 7 Coherency Manager Memory Element State Changes (adapted from [20])

Figure 7 shows how the coherency manager keeps track of whether the RAM has the257

most up-to-date value for a memory element (state U) or if a cache controller does (state M).258

This is used to determine if the RAM should be the one to reply when either a GetS or a259

GetM query passes through the interconnect. The U state indicates that the RAM currently260

has the most up-to-date value. The UD state indicates that the RAM should be the one to261

respond to queries, but it still hasn’t received the latest value. Unlike the cache controller, it262

will not switch to a dedicated state but instead force queries from the interconnect to stall263
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until the problematic query can be fulfilled. UB indicates that the RAM has received the264

latest value, but has not yet seen the query that led this data to be sent.265

The exact cache controller currently in charge of the memory element is kept track of.266

Change of ownership are marked as o←s (the query originator becomes the new owner) and267

o← ∅ (there is no longer an owner, meaning that the RAM is currently responsible for it).268

I Example 4. Back to the sequence diagram of Figure 5 and to Example 3, let us observe269

the behavior of the coherency manager. The coherency manager reacts to each GetM query,270

updating its internal state to reflect the change of ownership. Thus, the coherency manager271

starts by considering that CC0 is the only one to have a valid (i.e. up-to-date) value of the272

memory element, then, upon seeing the first GetM, considers CC1 to be responsible for it273

(o←s in the table). As a result, at the end of the execution, the coherency manager knows274

that the PutM query is originating from a cache controller that is not currently responsible275

for that memory element and can thus safely ignore it.276

4 Interference277
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Figure 8 Occurrences of Interference

Let us now categorize how a cache controller may be negatively affected by the actions of278

another. Figure 8 summarizes the occurrences of each interference category. In the Figures 9,279

11, and 10, the dark gray area indicates when the cache controller is unavailable due to280

having to handle the incoming query (deciding how to act and, potentially, updating its281

internal state), and the light gray area shows when its core’s next request for that memory282

element may be negatively impacted by the change of state.283

I Definition 5 (Minor Interference). Cache controllers have actions to perform upon receiving284

any type of request. Because of this, every time a cache controller has to deal with an incoming285

query, there is a very small amount of time during which it cannot be used by its core. We call286

this unavailability period minor interference. And, while the effect of each minor interference287

is so small as to be considered negligible, their accumulation most definitely is not. Indeed,288

minor interferences are one of the main motivations behind the use of a directory-based289

coherency protocol (in which minor interferences are only experienced by cache controllers290

likely to have a use for that query) over a snooping-based one (in which all cache controllers291

are affected by every query).292

Figure 9 shows an example of minor interference: the CC1 cache controller has to process293

the GetS broadcast, despite that message not requiring any reply or internal state update from294

CC1.295
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Figure 9 Minor Figure 10 Expelling Figure 11 Demoting

I Definition 6 (Expelling Interference). To maintain the principles of cache coherency, it may296

be required for a cache controller to dispense of its copy of a memory element, relinquishing297

its access rights. This is caused by another cache controller demanding read-and-write access298

to that memory element (a GetM query). We have, however, marked the reception of a GetS299

query for an element in the MIB as being an expelling interference in Figure 8. It could be300

argued that reaching the MIB indicates that the cache controller is already in the process of301

evicting its copy of the memory element. But, as the MIB state allows immediate (i.e. hit)302

access for both writing and reading that memory element, we still consider this event to have303

a negative impact.304

Figure 10 shows an example of expelling interference: the CC1 cache controller, receiving305

a demand for read-and-write access, is forced to relinquish its read-only copy.306

I Definition 7 (Demoting Interference). Another type of interference is the demoting inter-307

ference, in which a cache controller has to abandon its writing access rights to a memory308

element, while retaining its reading access.309

Figure 11 shows an example of demoting interference: the CC1 cache controller, receiving310

a demand for read access on that memory element, has to update the value from the main311

memory and go from read-and-write access to read-only access.312

5 Formal Modeling of Real-Time Systems with Timed Automata313

To expose the interference presented in the previous section, we chose to use formal methods.314

More precisely, we are relying on timed automata [1] to model and analyze our system.315

A timed automaton is an extended automaton with variables and clocks. During the316

system’s execution, the state of timed automaton is defined as a location, the value of its317

integer variables and of its clocks. The evolution of these integer variables is controlled318

by the automaton’s transitions, whereas all of the system’s clocks progress at the same319

rate, following the passing of time. To indicate that a location should be left immediately,320

UPPAAL [4] offers the following location modifiers:321

Urgent: The location must be left before any time passes.322

Committed: The location must be left before any time passes, and the next transition must323

originate from a committed location.324
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Invariant φ: The location is defined only if a linear constraint φ holds true. φ may reason325

over the automaton’s integer variables, clocks, or both.326

The automata transitions are composed of the following:327

Guard: Prerequisite (linear constraint) for this transition to be able to fire. The condition328

uses the automaton’s integer variables, clocks, or both.329

Synchronization: Allows to have more than one automaton transitioning during a step, by330

synchronizing multiple transitions over a channel. The channel can be used in either331

receiver (with a ? suffix) or sender (with a ! suffix) mode. On a channel that was332

declared without modifier, the transition requires exactly two automata to synchronize333

during this step: the sender, and the receiver. It is also possible for a channel to have334

been declared as a broadcast channel, in which case the sender synchronizes with all335

available receivers. Furthermore, the channel may have been declared as urgent, which336

prevents waiting in a location if the synchronization can occur. Finally, priorities between337

channels may be put in place.338

Update: Sequence of instructions to alter the automaton’s integer variables, or reset its339

clocks.340

Select: The transition selects the given integer variables’ next value from a specified range.341

Example This subsection presents an example of UPPAAL model: a processor attempts342

to read a variable, which may be either in RAM or in its cache. The automaton in Figure 12343

corresponds to the core, the one in Figure 13 to the RAM controller, and the remaining344

one (Figure 14) is used to mark a transition as urgent by having an automaton always345

ready to synchronize on a dedicated urgent channel (FORCE_URGENT). In this model, the346

FORCE_URGENT and READ_LINE channels are both declared as urgent.347

Figure 12 Core and cache

Figure 13 RAM Figure 14 Ur-
gence

The Core Automaton (Figure 12) Its initial location is marked as committed, meaning348

that it is left immediately. The exiting transition sets the x clock to 0, and the var_is_cached349

variable to a value in the [0, 1] range. The x clock will be used to know how long it took for350

the processor to get its variable. Two transitions are fireable from the S1 location, depending351

on whether the targeted variable is cached or not. If it is indeed cached, the transition352

labeled FORCE_URGENT is the only one fireable and it synchronizes with the automaton of353

Figure 14, forcing it to be taken as soon as possible. Additionally, the transition increases an354

integer variable that counts the number of times a variable was found in the cache. Taking355

said transition leads to a location in which the only exiting transition requires the x clock to356

equal 1 unit of time before arriving in the Done location.357

If the variable was not in the cache, the other transition from S1 is active and leads358

to a synchronization on the READ_LINE which is also to be taken as soon as possible. This359

time, however, it is possible for that synchronization to not be immediately available, as360

the RAM controller automaton may be handling another query and thus not be ready to361
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synchronize as it would not be in its initial location. This also justifies not marking the362

location as urgent or committed: the automaton may have to wait an unknown amount of363

time. Once the synchronization does happen, an integer variable counting the number of364

times the variable was not found in the cache is incremented, then the automaton waits for365

the RAM automaton to synchronize on the REPLY channel before considering it has acquired366

the variable.367

The RAM Controller Automaton (Figure 13) Its initial location awaits synchronization368

on the READ_LINE channel. Since READ_LINE is urgent, the transition happens as soon as369

possible. It resets the automaton’s time clock back to 0. The synchronization leads to a370

location which has to be left strictly before more than 2 units of time pass, as defined by371

the invariant. To ensure that the automaton stays in this location for exactly 2 units of372

time, the only exiting transition has a guard stating just that. This transition also requires a373

synchronization on the REPLY channel before allowing a return to the automaton’s initial374

location.375

6 Model of the Cache Coherence376

This sections describes the general ideas behind how we modeled the cache coherence in377

UPPAAL. We have released the model under an LGPL v3 license at https://www.onera.378

fr/sites/default/files/598/ecrts19.zip.379

6.1 Modeling Strategy380

The model contains one automaton per component present in Figure 1, an automaton in381

charge of synchronizing on the FORCE_URGENT channel (in an identical manner to the one in382

Figure 14), as well as message queues for both queries and data (Sub-section 6.6). Each core383

runs exactly one program. To change the number of cores, one simply has to add or remove384

cores (and associated cache controllers) and to change the value of a dedicated system-wide385

constant. Moreover, each component has a unique identifier, which is used both to target386

a specific automaton on some synchronization, and to indicate the emitter of requests and387

queries.388

The states and transitions seen on the automata do not visibly reflect any program389

or protocol. This means that the stable states (M, S, I) and the transient states (ISBD,390

ISD, . . . ) will not appear explicitly. Instead, the automata’s designs are focused on their391

synchronizations, with the logic (and state) of the protocols being held in their variables392

instead. As such, the same automaton can easily be used for any program or protocol393

(provided the hypotheses from Sub-Section 3.1 remain), only requiring small changes in the394

definition of the functions found in its transitions.395

Priorities on synchronizations are used to reduce the number of redundant system states.396

For example, any transition that exits a waiting location (i.e. location in which nothing397

happens until a clock has reached a certain count) has a higher priority than any other type398

of transition.399

6.2 Core400

Programs are modeled using arrays of address-targeting instructions, not so dissimilar401

to their binary executable. These arrays only contain instructions related to memory402

accesses (INSTR_LOAD, INSTR_STORE, INSTR_EVICT), and one (INSTR_END) to indicate that403

the execution of the program is completed. An example can be seen in Figure 16.404

https://www.onera.fr/sites/default/files/598/ecrts19.zip
https://www.onera.fr/sites/default/files/598/ecrts19.zip
https://www.onera.fr/sites/default/files/598/ecrts19.zip
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Figure 15 Model of the Core

program_line_t program_0 [7] =
{

{ INSTR_LOAD , 1},
{ INSTR_LOAD , 2},
{ INSTR_STORE , 3},
{ INSTR_LOAD , 3},
{ INSTR_STORE , 1},
{ INSTR_EVICT , 1},
{INSTR_END , 0}

};

Figure 16 Model of a Program

The automaton corresponding to the core is shown in Figure 15. Progress of the program’s405

execution is tracked by the program_counter, which is incremented each time an instruction406

has been started. Another integer variable, received_acks, counts how many times the cache407

controller has confirmed that a request has been fulfilled. The sending of each instruction to408

the cache controller is separated by at least the time of a clock cycle.409

To ensure that synchronization occurs with the right automaton, the request uses the410

cache controller’s identifier to select a sub-channel of CPU_REQ. Conversely, acknowledgments411

are received on the sub-channel of CPU_ACK corresponding to the core’s identifier. Upon412

reaching the INSTR_END instruction, the automaton has to wait until all of its outstanding413

requests have been fulfilled before being able to reach the TERMINATED state.414

6.3 Coherency Manager and Memory Controller415

Figure 17 Model of the Coherency Manager

Figure 18 Model of the Memory Con-
troller

The timed automaton modeling the coherency manager can be seen on Figure 17. The416

coherency manager has to know for which memory elements the RAM copy is to be considered417

as superseded by a cache controller. For this purpose, it maintains an array associating a418

state to each memory element address. The size of this array must be able to accommodate419

all cache controllers having their caches full of superseding copies of memory elements. In420

effect, |mem_array| = |cache_array| × |caches|.421

After initializing its array with default values, the timed automaton waits for either a422

cache controller query or a data message.Receiving any of these leads to an update of the423

internal state associated with the related memory element, as described by the array in424

Figure 7.425
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Upon receiving a cache controller query, the update to the internal state may indicate426

the need to provide data from the RAM, leading the automaton to synchronize with the427

memory controller to wait for RAM_READ_TIME units of time before providing a reply to the428

query’s originator. Alternatively, when receiving data, the automaton synchronizes with429

the memory controller to wait for RAM_WRITE_TIME units of time. The memory controller’s430

automaton is shown in Figure 18. It has a local clock, clk, which is used to wait either431

RAM_WRITE_TIME or RAM_READ_TIME, depending on what the coherency manager demands.432

6.4 Interconnect433

Figure 19 Model of the Interconnect

Figure 19 shows the timed automaton for the interconnect. It starts (S1) by waiting for434

cache controllers to synchronize through the ADD_BUS_MASTER so that they can be added to435

the bus policy. The order in which the cache controllers make that synchronization is not436

deterministic. This results in all possible orders being explored when analyzing the system.437

Once all cache controllers have been added, the automaton proceeds and synchronizes with438

all the other components by broadcasting on the SYS_INIT channel.439

Using a component identifier to select the appropriate sub-channel, the interconnect440

awaits either an incoming cache controller query, or a notice that the cache controller does441

not have any to send (Ready). If the latter happens, the access policy is followed to determine442

which cache controller should be made able to send its query (e.g. with a Fair-Round-Robin443

the next cache controller is chosen). With the former, the query is first received by the444

interconnect (Ready→S2), then, in a second transition (S2→Ready), it is broadcasted to all445

components that listen for cache controller queries. This broadcast is stalled if any of the446

components that need to receive it indicate that they are not ready to do so (e.g. because447

their incoming query queue is full).448

6.5 Cache Controller449

The automaton used to model a cache controller is rather complex. As previously stated,450

it does not feature any of the states found in the protocol description (e.g. the ones of the451

matrix in Figure 6). Instead, this automaton keeps an array that indicates the protocol state452

associated with a given memory element. The automaton starts by synchronizing with the453

interconnect so that it is taken into account by the interconnect’s access policy (S0→S1). It454

then waits for the broadcast on the SYS_INIT channel (S1→Ready).455

CPU Communications Each cache controller has a queue of outstanding requests from its456

core, as well as a queue of completed requests to inform the core of. Both queues are first in,457



N. Sensfelder and J. Brunel and C. Pagetti 26:15

Figure 20 Model of the Cache Controller

first out. Upon receiving a request from its core (middle Ready→S5 transition), the cache458

controller attempts to find a line in its array either corresponding to the associated address,459

or, if none exists, one that is not currently used (Invalid). If no such line is found, the460

request is stalled, meaning that it is simply put in the outstanding requests queue for later.461

Otherwise, the behavior of the cache controller depends on the cache coherence protocol and462

the state held by the line, such as indicated in Figure 6. If the eviction policy is applicable463

and no line can currently accommodate the request, an automated eviction occurs. The464

cache controller is re-evaluated once the eviction has been completed (leftmost Ready→S5465

transition). In our model, we use an accurate LRU eviction policy, meaning that the cache466

controller keeps track of the order in which its cache lines have been used and will allow an467

automated eviction to occur if the least recently used line points to a state for which the468

protocol does not indicate stall in case of evict request.469

There are two possible reasons for a request to be acted upon: it is an incoming request470

from a core, or it is a previously stalled request on a memory element which just changed471

state.472

hit: the request is moved to the completed requests queue. The handling of stalled requests473

continues. This also counts as a use of the line according to the eviction policy, if the474

request is not an evict.475

stall: the request is put in the outstanding requests queue, if it is not already there. The476

handling of stalled requests is stopped.477

msg/state: the state of the line is set to state, the request is put in the outstanding requests478

queue, if it is not already there. If this is encountered during the un-stalling of requests,479

the request is re-evaluated. In the latter case, this counts as a use of the line according480

to the eviction policy, if the request is not an evict.481
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Interconnect Communications Handling of pending incoming queries is done through the482

Ready→S2→S3 transitions. This updates the internal state of the cache following what483

was indicated by Figure 6 and has a waiting period that accounts for the simulated query484

handling time period. Handling of pending incoming data is similar (Ready→S3). The S3485

location is where data emission is handled. Data can be sent to either memory or another486

cache controller (the latter introducing yet another delay). This data is actually sent to487

a FIFO queue and not to the other components directly. When there is no data to send,488

the S3→S5 transition evaluates the impact the changes had on the currently stalled core489

requests.490

6.6 Message Queues491

Figure 21 Model of the Data FIFOs Figure 22 Model of the Query FIFOs

Access to the bus is done through message queues. We use separate automata for data and492

query queues to avoid over-encumbering the automata that use them (we would otherwise493

need to add their transitions to nearly all the locations of the cache controller automaton).494

These automata actually handle both an incoming and outgoing queue. Each cache controller495

has a dedicated instance of both automata. The memory controller has an instance of the496

data queues automaton.497

The data and query queues automata are fairly straightforward, having one transition to498

take and one transition to push items in either direction. However, the actual condition for499

incoming queries to be allowed in is hidden behind a shared variable. Indeed, the queries500

come from broadcasts made by the bus and UPPAAL does not allow conditions on transitions501

receiving from a broadcast channel. Thus, the condition of having all query message queues502

ready to receive is actually handled on the side of the interconnect.503

7 Checking Properties504

UPPAAL lets users check if their model verify properties. These properties can be505

used to know if at least one (E) or all (A) execution paths always (�) or at least once (♦)506

verify a given formula over the automata’s clocks, integer variables, or location. In addition,507

UPPAAL has an operator that looks for the highest value reachable by an automaton’s508

clock or integer variable.509

For example, taking the system from Section 5, with two CPUs (C0 and C1), we can510

know if both processors always end up getting their variable (all paths lead to both automata511

reaching the Done location, A♦(C0.Done && C1.Done)), or the longest time it would take for512

one of them to do so (what is the maximum value the clock can reach before the automaton513

reaches its Done location, sup{not C0.Done}: C0.x).514
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program_line_t program_200 [11] =
{

{ INSTR_STORE , 1},
{ INSTR_STORE , 2},
{ INSTR_LOAD , 1},
{ INSTR_STORE , 1},

{ INSTR_LOAD , 2},
{ INSTR_STORE , 2},
{ INSTR_LOAD , 1},
{ INSTR_STORE , 1},

{ INSTR_LOAD , 2},
{ INSTR_STORE , 2},
{INSTR_END , 0}

};

Figure 23 Program Model 200

program_line_t program_201 [11] =
{

{ INSTR_STORE , 3},
{ INSTR_STORE , 4},
{ INSTR_LOAD , 3},
{ INSTR_STORE , 3},

{ INSTR_LOAD , 4},
{ INSTR_STORE , 4},
{ INSTR_LOAD , 3},
{ INSTR_STORE , 3},

{ INSTR_LOAD , 4},
{ INSTR_STORE , 4},
{INSTR_END , 0}

};

Figure 24 Program Model 201

7.1 Exposing Interference515

Using such properties, we are able to expose the interference in a number of fashions. The516

example we will take for showcasing them is that of a dual core on which two instances of517

the program modeled by Figure 23 are running.518

Counting Hits & Misses: An easy metric to measure is the number of cache hits519

and misses for each address. This can be achieved by simply looking at the state of520

the memory element upon reception of a core’s request, and increasing the right integer521

variable accordingly (much like in Section 5).522

In the dual core example, this shows that each core has 2 cache hits and 3 cache misses523

for the first address; one core has 2 cache hits and 3 cache misses for the second address,524

whereas whereas the other has 1 cache hit and 4 cache misses.525

Counting All Occurrences: We can expose interference by counting all of its occur-526

rences, without regards for whether it had an impact on the system’s execution or not.527

In effect, this equates to having one integer variable per address and type of interference,528

and increasing the right one according to what is described in Figure 8.529

When applied to the dual core example, we can see that for the second address, both530

caches have 4 occurrences of minor interference, 1 occurrence of demoting interference,531

and 2 occurrences of expelling ones. For the first address, one cache has 4 minors, 1532

demoting, and 1 expelling, whereas the other has 3 minors, no demoting, and 3 expelling.533

Counting Meaningful Occurrences: Another pertinent information is an account of534

the interference that actually has an impact on the system. Since we are already able to535

detect any occurrence of the interference, we simply have to isolate the occurrences which536

impacted the cache’s completion of core’s requests. To do so, each cache keeps track, for537

each address, of whether an interference occurred since that address was last involved in538

a core request. Thus, if the CPU requests a read on an address for which the expelling539

flag is active, we consider that a meaningful expelling interference occurred.540

Using this with the dual core example, we can see that, for the second address, both541

caches are affected by the effects of 1 demoting and 1 expelling interference. For the542

first address, one cache has the same and the other experiences the effects of 2 expelling543

interferences.544

Execution Time Analysis: A more general metric is the execution time. Indeed, we545

can measure the impact that cache coherence has on an application’s execution time. This546

can be achieved by simply replacing all accesses to shared variables made by the target547
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application with accesses to new variables, setting the time impact of minor interferences548

to nil, and having the framework compute the new maximum execution time so that it549

can be compared to the one with shared variables left intact.550

On the dual core example, we first measure the execution time with the system as is,551

then replace the program running on one of the two cores by Figure 24 and set the cost552

of minor interferences to zero. Our first analysis indicates a maximum execution time553

of 1602 time units, the second one indicates 1050 time units. This implies that cache554

coherence causes a 16 percent increase in execution time.555

Alternatively, by keeping the time impact of minor interferences to its default value,556

a WCET of these two programs lets us deduce how much time is lost due to minor557

interferences. In the dual core example, the result is still 1050 time units, showing a lack558

of negative effects from minor interference.559

7.2 Model Validation560

In addition, we can assert that the behavior of our model does indeed correspond to what561

we expect. The successful verification of all these properties gives us a reasonable confidence562

in the validity of the protocol used in our model. The validation of the chosen timing563

parameters, however, would still require a few judicious benchmarks.564

Programs Always Terminate: By checking that all possible execution paths lead all565

cores to the Terminated location, we ensured that there are no deadlocks in our model.566

No Incompatible States: As stated in Section 1, there should never be two cache567

controllers simultaneously having writing access to the same memory element. Thus, we568

checked that if a cache controller is in a state where it may write to a memory element,569

then the others are not in a state where they may read that memory element.570

Values Are Always Up-To-Date: Another point stated in Section 1 is that the values571

in cache should be up-to-date. We verified that it is the case in our model by creating a572

version in which the exact value of each memory element is taken into account. Using a573

shared variable to keep track of the expected system-wide value, we tested that every574

time an action (either read or write) was taken on a memory element, it the local copy575

of that memory element had a value equal to the system-wide one. This is a standard576

property to validate coherency protocol [10, 19].577

8 Related Works578

WCET Analysis for Single-Core: The authors of [9] introduce METAMOC, a579

UPPAAL-based framework for modular WCET analysis of programs running on single-580

core processors. It transforms program binary executables into timed automata, one for581

each function of the program. These programs are simplified. For example, a conditional582

jump may be removed if it would lead to less instructions being executed. This is justified583

by the assumption that the more instructions there are, the longer the execution time584

is (the reverse of which is called a time anomaly). METAMOC supports instruction585

pipelines, which are modeled using five timed automata (fetch, decode, execute, memory,586

and writeback). These five automata have to be manually made for the targeted archi-587

tecture. Caching is also supported, and requires a similar attention the architecture’s588

specifics. As it is intended for single-core architectures, METAMOC obviously does not589

have any concept of cache coherence. We are, however, taking a very similar approach to590

tackle our problematic.591
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The work in [6] also shares similarities with [9], as UPPAAL is used to estimate WCET for592

programs running on single core processors with pipeline and cache, in what is presented593

as a modular framework. It attempts to improve on the weaknesses of METAMOC by594

replacing the value analysis based control flow graphs with program slicing. In effect,595

statements that do not affect dynamic jump addresses are replaced with nop (i.e. “do596

nothing”) operations. In [7], they address the state explosion issue.597

WCET Analysis for Multi-Core with Private Caches: Readers can refer to [17] for598

an overview of Multi-Core WCET Analysis. [16], proposes a UPPAAL-based framework599

to estimate the WCET of applications running on a multi-core processor. They consider600

the delays caused by contention on the interconnect and a private instruction cache for601

each core (data caches are not considered). They perform analysis on the memory blocks602

pertinent to the instructions of the program. A memory block may contain one or more603

instruction. For each instruction, they are only interested in whether it: is always found604

in the cache; is always found except on the first access; is never found in the cache; is605

undecided. They have defined a timed automaton to model each of these possibilities606

(modeling the need for interconnect access, time to read the memory blocks, and updates607

to the cache). They consider programs as control flow graphs in which each node is a608

memory block. As such, they model each program by a single timed automaton based609

on the control flow graph, but in which each instruction has been replaced by one of610

the aforementioned timed automata corresponding to its impact. Their paper presents611

models for two types of interconnects: TDMA and FCFS, which control the order the612

bus can be accessed by the timed automata modeling the instructions. Cache coherence613

is not addressed.614

WCET Analysis for Multi-Core with Shared Caches: The authors of [8] focus615

on the estimation of WCET on multi-core processors. Their point of interests are the616

delays caused by hierarchical caches, the use of a shared cache, and the interconnect.617

They do not use UPPAAL, but instead model the applications as task-dependency graphs618

and perform computations to estimate the WCET. Their approach starts by analyzing619

how the L1 caches are accessed, to remove elements that are sure to always be present620

from further consideration. The other accesses are dependent on both the content of the621

L2 cache, and access to the bus. The content of the L2 cache depends on which tasks622

are running, which in turns, depends on bus access time access. To resolve the circular623

dependency, they propose an iterative approach: starting by considering the worse case624

scenario in which all tasks interfere, they estimate the running time of the tasks, which625

lets them remove any interference between two tasks whose running time are disjoint,626

and start over until a fix point is reached. Data caches are not taken into account and627

are assumed to have no effect on the calculations. Cache coherence is not addressed.628

The authors of [29] study the impact of a shared cache (including data caches) on execution629

time. To do so, they represent each program as an address flow graph, in which edges630

correspond to instruction, and vertices correspond to the state of the cache and its access631

history. They actually build a combined cache conflict graph, which is pretty much the632

combination of each core’s address flow graph into a single graph. Cache coherence is not633

addressed.634

The work done in [13] has similarities with ours, as it uses UPPAAL to calculate WCET635

of programs running on multi-core processors. Their focus is not on cache coherence, but636

it does feature some, as write requests lead to the invalidation of the memory element in637

the other caches.638

Cache Coherence Protocol Comparison: The authors of [2] compare the efficiency of639
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common snooping-based cache coherence protocols. To do so, they described a multi-core640

processor and the cache coherence protocols in Simula. Much like ours, the programs641

running on this simulation are described as a succession of memory related instructions.642

However, they do not use explicit addresses for these instructions. Instead, they have643

defined system-wide weights to regulate the probability of an instruction to be applied644

on a private memory element (i.e. a memory element the cache is the sole user of) or a645

shared block (i.e. a memory element used by multiple blocks). Thus, cache coherence is646

addressed, but only in a very broad context. Indeed, whereas our work focuses on the647

impact of cache coherence on specific applications on a specific architecture, the cache648

coherence protocol comparison made by the authors of [2] provides a general idea of649

which protocol is more fitted for which type of application.650

Predictable Cache Coherence: An alternative to trying to predict how cache coher-651

ence is going to behave is to use a kind of cache coherence designed to be predictable.652

[24] lists the cache coherence related latencies that need to be known before predictability653

of the protocol can be achieved. Its authors argue that write-through, update-based654

protocols (i.e. writes are propagated to other caches and to the memory) can be made to655

be predictable.656

[14] presents PMSI, a variation on the MSI protocol that uses a TDM bus to achieve657

predictability. Emission of coherence queries and is restricted to a core’s TDM slots.658

As a result, a cache does not suffer from interference during its own TDM slots. [21]659

expands on this by introducing HourGlass, which allows separate handling of critical660

and non-critical cores. HourGlass uses timers to allow cores to hold access to a memory661

element for a predefined time duration. The evaluation of queries that would remove662

an access currently protected a timer are delayed until its time is up. Both PMSI and663

HourGlass require hardware modification, which prevents them from being used in a664

context that relies on COTS.665

9 Conclusion and Future Work666

When using cache coherence, the execution of a program running on a core is affected by667

the execution of the programs running on the other cores. Because of this, analysis of the668

execution time becomes much more difficult. In this paper, we categorized the types of669

interference that cache coherence induces: minor interference, caused by the handling of670

queries irrelevant to the cache controller; demoting interference, when an external event671

forces the loss of writing rights; and expelling interference, when an external event forces672

eviction of a cache line.673

We also presented timed automata as a way to model cache coherence so that this674

interference can be studied and exposed. For this purpose, we also showed and explained our675

current model for the analysis of cache coherence, as well as the hypotheses made for that676

model to be applicable.677

We are also working on a tool to automatically switch which MSI variant (MESI, MOSI,678

MOESI, MESIF) is used by the model. We also intend to add another type of instruction679

to programs soon, adding more non-determinism to the model by having a INSTR_CALC680

instruction that causes the CPU to wait for any amount of time in a given range. Lastly, we681

have planned to perform a benchmark comparison on the Keystone TCI6630K2L [23] from682

Texas Instruments to further validate our approach.683

Our current model was tested with up to 6 cores. We are working on its scalability issues,684

and intend to make use of SAT/SMT [3] to tackle this limitation.685
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