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The impatient collector

Anis Amri ∗ Philippe Chassaing †

June 25, 2019

Abstract

In the coupon collector problem with n items, the collector needs a random
number of tries Tn ' n lnn to complete the collection. Also, after nt tries,
the collector has secured approximately a fraction ζ∞(t) = 1 − e−t of the
complete collection, so we call ζ∞ the (asymptotic) completion curve. In this
paper, for ν > 0, we address the asymptotic shape ζ(ν, .) of the completion
curve under the condition Tn ≤ (1 + ν)n, i.e. assuming that the collection is
completed unlikely fast. As an application to the asymptotic study of complete
accessible automata, we provide a new derivation of a formula due to Koršunov
[Kor78, Kor86].
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1 Introduction

1.1 Main result

This section is intended as a concise introduction to the main results, at the price
of, eventually, lacking details, for instance on the way we round real numbers where
integers are expected. Details and context are given in the next section. In the
standard coupon collector problem with n items, our concern is the completion
curve ζ∞: after nt tries, according to [KSC78, pp. 4-5], the collector has secured
approximately a fraction

ζ∞(t) = 1− e−t

of the complete collection1. Furthermore, the coupon collector needs a random
number of tries Tn to complete the collection, with expectation:

E [Tn] = nHn ∼ n lnn.

In this paper, for any given ν > 0, we address the asymptotic shape ζν of the
completion curve conditioned to the event I(ν, n) :

Tn ≤ (1 + ν)n,

i.e. when the collection is completed much faster than in the classical model, hence
the title. Since (1+ν)n = o (E [Tn]), one expects that the conditioning event I(ν, n)

1In [KSC78, pp. 4-5], the coupons outside the collection are seen as the empty cells in a random
allocation scheme.
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has an exponentially small probability, see Section 5.2. Define ν(N, n) = ν through
the relations:

N = (1 + ν)n, ν =
N − n
n

.

Formal definitions are given in the next section, but let us, for now, define the random
variable ζn(t, ω) as the fraction of the complete collection secured by the collector
after nt tries. Let W0 denote the principal branch of the Lambert W-function (i.e.
the inverse of x 7→ xex), and set:

F (x) = exp
(
−1− x−W0

(
− (1 + x) e−1−x)) .

Let ζ(ν, .) denote the unique solution, on (0, 1 + ν], of the Cauchy problem:

y′ = F
(
x−y
y

)
, y(1 + ν) = 1. (1)

The graph of ζ(ν, .) stays in the set {1+ν ≥ x > y > 0}, and satisfies limt↓0 ζ (u, t) =
0, see Section 5.3.

1

1

1+ν

ζ(ν,t)

Let PN,n denote the conditional probability distribution of the coupon problem,
given that Tn ≤ N . The asymptotic completion curve of the impatient collector is
as follows :

Theorem 1. For any a, ε, ν > 0, when N, n → +∞ with N/n → 1 + ν, i.e. with
lim Λ(N, n) = ν, we have

lim
N,n

PN,n

(
sup

[a,1+ν]

|ζn − ζ(ν, .)| ≥ ε

)
= 0.

Theorem 1 is an extension of Theorem 2 (see next section), to the conditional case:
ζn converges in probability to ζ(ν, .), uniformly in any interval [a, 1 + ν]. Thus
ζ(ν, .) is the ν-analog of ζ∞. In the next section, we give a stronger result, in which
convergence in probability is given with an explicit bound on the error, cf. Theorem
3. In Section 3, we discuss some applications of this result to random finite automata,
including a new (to our knowledge) derivation of a formula by Koršunov [Kor78].
Finally, in Sections 4 and 5 we precise (see Theorem 6) a classic asymptotic formula,
due to Good, for Stirling numbers of the second kind, providing a bound that is key
for our results, but could also be of independent interest.
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1.2 Context: coupon collector problem, Stirling numbers
and random allocation

Let us define more precisely the classical model (resp. the conditioned model), that
we shall call the patient model (resp. the impatient model). In the patient model,
we consider a sequence

ω = (ωk)k≥1

of uniform i.i.d. integers in [[1, n]]. Let Pn denote the corresponding probability
distribution on the set [[1, n]]N of infinite sequences. For ` ≥ 0, let

y` (ω) = # {ωk 1 ≤ k ≤ `} ,

denote the size of the collection after the kth try, or the number of nonempty cells
after the kth allocation, so that Tn can also be defined as follows: for 1 ≤ k ≤ n,

Tk (ω) = inf {` ≥ 1 y` (ω) = k} .

Then, set:
Yn(t, ω) = ybtc (ω) , t ≥ 0,

so that the completion curve is defined as:

ζn(t, ω) = n−1Yn(nt, ω).

One finds easily:

En [ζn(t)] = 1−
(

1− 1

n

)bntc
' ζ∞(t),

but also, more precisely, as a consequence of [KSC78, Ch. 1.1-3],

Theorem 2. In the patient model, in probability, for any t ≥ 0,

lim
n
ζn(t, .) = ζ∞(t).

As opposed to the patient model, in the impatient model, we consider the con-
ditional distribution of ω given that Tn(ω) ≤ N : then only the prefix ω[N ] =
(ω1, ω2, . . . , ωN) of ω matters. In the impatient model, ω[N ] is uniformly distributed

on the n!
{
N
n

}
sequences that are surjections on [[1, n]], a small subset ΩN,n of [[1, n]]N .

Here, as usual,
{
m
`

}
denotes the number of partitions of a set of m elements in `

nonempty subsets, called Stirling number of the second kind. Thus PN,n, the con-
ditional probability distribution of the coupon problem, given that Tn ≤ N , is the
uniform distribution on ΩN,n. A stronger version of Theorem 2 is as follows:

Theorem 3. For any a > 0, and for n0 large enough, there exists C = C(n0, a) > 0
such that, for n ≥ n0,

PN,n

(
sup

[a,1+Λ(N,n)]

|ζn − ζ(Λ(N, n), .)| ≥ Cn−1/3

)
≤ n1/3e− ln2 n/2.
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The expression of C(n0, a) > 0 is given at Section 5.6.6. If we assume that
Λ(N, n) stays away from 0 and +∞, then, according to the asymptotic analysis of
Stirling numbers of the second kind, to be found in [Goo61], the conditioning event
has an exponentially small probability:

Pn (Tn ≤ N) = n!

{
N

n

}
n−N '

√
eΞ−1

eΞ−1−Ξ
e−nJ(Ξ),

in which J is discussed in more detail in Section 5.2. Let us just mention, now, that
Ξ = ξ(Λ) is the unique positive solution of

ξ(Λ) =
(
1− e−ξ(Λ)

)
(1 + Λ) , (2)

that ξ(Λ) = − ln (F ((N − n)/n)), and that J is decreasing and satisfies

lim
+∞

J (Ξ) = 0,

which entails that J is positive. Together with

ρ = e−ξ, (3)

the implicit function ξ is known to play a special rôle in the asymptotic behavior of{
N
n

}
, see Section 4.

1.3 Asymptotics for the Stirling numbers of the second kind

First we need to set some notations. For some integers m ≥ ` ≥ 1, the Stirling
number of the second kind, denoted by

{
m
`

}
, is the number of partitions of a set of

m elements into ` non-empty subsets. By convention
{

0
0

}
= 0, and for m ≥ 1 we

have
{
m
0

}
= 0. Let W0 denote the principal branch of the Lambert W-function (i.e.

the inverse of x 7→ xex), and set:

λ(m, `) = λ =
m− `
`

, (4)

ξ(m, `) = ξ = 1 + λ+W0

(
− (1 + λ) e−1−λ) , (5)

v =
(λ+ 1)(ξ − λ)

2
. (6)

We set:

r (m, `) =

{
m−1
`−1

}{
m
`

} , ρ(λ) = e−ξ.

The Stirling numbers of the second kind satisfy the following recurrence relation

∀m ≥ ` ≥ 0,

{
m

`

}
= `

{
m− 1

`

}
+

{
m− 1

`− 1

}
, (7)

so that
`
{
m−1
`

}{
m
`

} = 1− r (m, `) .

In Section 5.5, we prove that for m, ` large, r (m, `) depends mostly on the ratio
m/`:
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Theorem 4. For any δ ∈ (0, 1), there exist `0, C1 = C1(`0, δ), both positive, such
that, for any ` ≥ `0, λ ∈ (δ, δ−1),

|r (m, `)− ρ(λ)| ≤ C1

`
.

This bound proves to be crucial to our aims, for r (m, `) and 1− r (m, `) can be seen
as transition probabilities for a random walk closely related to the completion curve
ζn, cf. Proposition 1. At Section 5.6.6, we describe C1. To prove Theorem 4, we
need a refinement of the asymptotic study of

{
m
`

}
, originally made in [Goo61]: set

ψ(m, `) =
1

2π

m!

`!

(
eξ − 1

ξ1+λ

)` √
π

v`
.

In Good [Goo61], ψ takes the alternative form

ψ(m, `) =
m!(eξ − 1)`

`!ξm
√

2πm
(

1− m
`
e−ξ
) .

As a first step toward Theorem 4, Good, followed by many others, established
that ψ(m, `) is an estimate of the corresponding Stirling number:

Theorem 5 ([Goo61]). When ` and m both grow towards +∞, with m = Θ(`),{
m

`

}
∼ ψ(m, `).

Though [Goo61, (3)] hints at an asymptotic expansion for the relative error:

χ(m, `) =

{
m
`

}
− ψ(m, `)

ψ(m, `)
,

it does not really provide a bound for χ, while such a bound is needed to prove
Theorem 4. So Sections 4 and 5 are devoted to the proof of the following bound, of
independent interest :

Theorem 6. For any δ ∈ (0, 1), there exist `0, C2 = C2(`0, δ), both positive, such
that for any ` ≥ `0,and for λ(m, `) ∈

(
δ, 1

δ

)
,∣∣∣∣∣

{
m
`

}
− ψ(m, `)

ψ(m, `)

∣∣∣∣∣ ≤ C2

`
.
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2 The asymptotic behavior of the completion curve

2.1 A random walk related to Stirling numbers

In this section, with the help of Theorem 6, we prove Theorem 3, about the asymp-
totic behavior of the completion curve of an impatient coupon collector. For a
suitable elementary (small) step h̃, to be defined later in the section, we shall prove
that

ζn

(
(`+ 1)h̃

)
− ζn(`h̃) = h̃F (`h̃, ζn(`h̃)) + σ`, (8)

in which σ` = o
(
h̃
)

, while, by definition,

ζ
(

(`+ 1)h̃
)
− ζ

(
`h̃
)

=
∫ (`+1)h̃

`h̃
F (u, ζ(u))du

= h̃F (`h̃, ζ(`h̃)) + o
(
h̃
)
.

Then ζn is the result of an Euler scheme with rounding errors σ`. As such, ζn
provides a stochastic approximation for ζ, in the spirit of [Ben99, Duf97].

Actually, time-reversed versions of ζ and ζn, that start at time 1 + Λ and end at
time 0, are more convenient, for the approximations of Stirling numbers that we use
are much worse for small arguments, making the convergence trickier when (t, ζ(t))
and (t, ζn(t)) are close to (0, 0). The bound on σ` is obtained through probabilistic
and combinatorial tools applied to the discrete version of ζn, before it is rescaled:
for any surjection ω, consider a time-reversed version Z(n) of the completion curve
Yn of ω, defined, for t ∈ [0, N ], by

Z
(n)
t (ω) = Yn(N − t, ω).

Actually the corresponding point of the curve has coordinatesWt = (N−t, Z(n)
t ), and

under PN,n, the probability distribution of W = (Wk)k∈[[0,N ]] has a slick description
in terms of Stirling numbers of the second kind.

10 15 20 25 3050
0 

2 

4 

6 

8 

10 

12 

14 

10 15 20 25 3050
0 

2 

4 

6 

8 

10 

12 

14 

r(m,ℓ)

1-r(.,.)

m

ℓ

Proposition 1. W is a Markov chain starting at (N, n), with transition probabilities
described, for 0 ≤ ` ≤ m, by :

p(m,`),(m−1,`−1) = 1− p(m,`),(m−1,`) =

{
m−1
`−1

}{
m
`

} = r (m, `) .
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In other words, Z(n) is an inhomogeneous Markov chain, with increments ∆k+1 =

Z
(n)
k+1 − Z

(n)
k satisfying

E
[
∆k+1 Z

(n)
k

]
= −r (Wk) ' −ρ

(
N − k − Z(n)

k

Z
(n)
k

)
. (9)

Proof. Let us compute the probability pz of a sample path

z = (z0, z1, . . . , zN−m)

for Z, in which z0 = n and zN−m = `: the restriction to [[1,m]] of any surjection
ω resulting in z has ` elements in its image, leading to

{
m
`

}
n↓` choices for this

restriction, then at each step zk → zk−1 we have either zk choices for ω(k − 1) if
yk = zk − zk−1 = 0, or n − zk choices for ω(k − 1) if yk = −1. The second case
happens n− ` times exactly, and produces a factor n− `!. Thus

pz =

{
m

`

}
n↓`

(
1∏

k=N−m

(zk1lyk=0 + 1lyk 6=0)

)
(n− ` !)

({
N

n

}
n!

)−1

=

{
m

`

}( 1∏
k=N−m

(zk1lyk=0 + 1lyk 6=0)

){
N

n

}−1

,

while, if z.` − 1 denotes the path (z0, z1, . . . , zN−m, `− 1)—seen as a word—, we
have, by the same formula, since yN−m+1 = −1 :

pz.`−1 =

{
m− 1

`− 1

}( 1∏
k=N−m

((−1 + zk)1lyk=0 + 1)

){
N

n

}−1

.

Thus the expression

P
(
Z

(n)
N−m+1 = `− 1

(
Z

(n)
0 , Z

(n)
1 , . . . , Z

(n)
N−m

)
= z
)

=
pz.`−1

pz
=

{
m−1
`−1

}{
m
`

} = r(m, `)

depends only on the final part of the sample path, on the couple
(
Z

(n)
N−m, Z

(n)
N−m+1

)
=

(`, ` − 1). As a consequence, W satisfies the Markov property, and r(m, `) is its
transition probability, as expected.

2.2 Azuma inequality

Theorem 3 is a consequence of the following chain of approximations:

dYk = −dZ(n)
N−k = −∆N−k ' −E (∆N−k)

= r(k, Yk)

' ρ

(
k

Yk
− 1

)
= F (k, Yk) ,
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and its proof results from bounds for the errors in this chain of approximation, as
explained before. The first error is bounded with the help of the Azuma-Hoeffding
inequality, as usual when the approximation stems from the law of large numbers,
while the bound for the second error, given by Theorem 4, follows from the saddle-
point method, as explained in Section 4. In order to use an Euler scheme, let us now
divide the path into a sequence of, approximately, (1 + Λ)×nβ infinitesimal intervals,
each of these intervals being a sequence of h = bnαc steps, α + β = 1, α, β > 0.
Consider then an integer t of the form jh, j ∈ N, so that t is the beginning of some
interval, and t+ h is the end of the same interval. Then

Z
(n)
t+h − Z

(n)
t = A(j, h) +B(j, h)− hF (Wt) ,

in which:

εk = ∆k+1 − E
[
∆k+1 | Z(n)

k

]
,

A(j, h) =
h−1∑
s=0

εt+s,

B(j, h) =
h−1∑
s=0

(
E
[
∆t+s+1 | Z(n)

t+s

]
+ F (Wt)

)
=

h−1∑
s=0

(F (Wt)− r (Wt+s)) ,

the last equality due to (9). Rescaling time and space by a factor 1/n, we set h̃ = h/n
and

σj = n−1 (A(j, h) +B(j, h)) .

Finally, for η, δ ∈ (0, 1), we set

Wη,δ =
{

(x, y) , x > η, λ (x, y) ∈
(
δ, δ−1

)}
=
{

(x, y) , x > η, δx
1+δ
≤ y ≤ x

1+δ

}
,

in such a way that, according to Theorem 6, |`χ(m, `)| is uniformly bounded for
(m, `) in nWη,δ, as long as n is large enough, and the same holds true for Theorem
4. Now, for x ∈ [η, 1 + Λ], by geometric considerations,{

(x, y) ∈Wη,2δ and |y − z| ≤ δη

6

}
⇒ {(x, z) ∈Wη,δ} . (10)

Section 1.3 entails that

Lemma 1. For n large enough, and for η, δ ∈ (0, 1), if n−1Wjh ∈ Wη,2δ and N −
(j + 1)h ≥ ηn, we have

n−1B(j, h) ≤ 8

η
n2α−2. (11)

9



Proof. Recall that t = jh. If

nα−1 ≤ ηδ

6
,

then
{n−1Wt ∈Wη,2δ} ⇒ {∀s ∈ [[1, h]], n−1Wt+s ∈Wη,δ},

but, if n−1Wt+s ∈Wη,δ, we obtain, below, that

|r (Wt+s)− F (Wt)| ≤
8

η
nα−1, (12)

entailing (11). Relation (12) follows from the Taylor inequality for ρ, provided that
both n−1Wt and n−1Wt+s belong to Wη,δ:

|r (Wt+s)− F (Wt)| ≤ |r (Wt+s)− F (Wt+s)|+ |F (Wt+s)− F (Wt)|

and, since Wt+s meets the conditions in Theorem 4,

|r (Wt+s)− F (Wt+s)| ≤
C(`0, δ)

N − t− s
≤ C(`0, δ)

ηn

while, according to Section 5.4,

|F (Wt+s)− F (Wt)| =
∣∣∣∣ρ( Z

(n)
t+s

N−t−s − 1

)
− ρ

(
Z

(n)
t

N−t − 1
)∣∣∣∣

≤ 4s

ηn
≤ 4

η
nα−1.

For n large enough,
4

η
nα−1 +

C(`0, δ)

ηn
≤ 8

η
nα−1,

yielding successively (12), then (11).

Also, for t, k ≥ 0, let Fk denote the σ-algebra σ(Z1, Z2, . . . , Zt+k), and

Mk =
k−1∑
s=0

εt+s.

The sequence (Mk) is a martingale with respect to the filtration F and for any k,
|Mk+1 −Mk| ≤ 1, thus Azuma’s inequality gives :

P(|Mh| ≥ u) ≤ e−
u2

2h ,

in which Mh = A(j, h). For u = nα/2 lnn, we obtain:

P
(
n−1A(j, h) ≥ u/n

)
≤ e−

ln2 n
2 .

Set

Hn =
{
ω ∈ Ω,∃j ∈

[
0, (1 + Λ)nβ

]
such that |A (j, h, ω)| ≥ nα/2 lnn

}
.

The previous bounds lead to

Proposition 2. For n large enough, the set Hn satisfies:

P (Hn) ≤ 2 (1 + Λ)nβe− ln2 n/2.

10



2.3 Euler scheme

Thus, for ω /∈ Hn, i.e. but for a probability at most O
(
nβe−

ln2 n
2

)
, (ζn(t))0≤t≤k is

obtained through an Euler scheme with step h̃ = n−1h ' nα−1 and rounding error
σj such that

|σj| = |n−1(A(j) +B(j))|

≤ n−1+α/2 lnn+
8

η
n2α−2.

For the choice α = 2/3, β = 1/3, and for n large enough, depending on the choice
of (`0, η, δ), we obtain that

|σj| ≤ 2n−2/3 lnn.

Then we can see ζ(`h̃), resp. ζn(`h̃), as the solution of the ODE at time `h̃ (resp.
the output of the Euler scheme after ` steps), and set

e` = |ζn(`h̃)− ζ(`h̃)|.

Then, following [Con65] and according to Section 5.4, provided that the points

Mn,` =
(
`h̃, ζn(`h̃)

)
and M` =

(
`h̃, ζ(`h̃)

)
belong to Wη,2δ, and that 1 + Λ − (` +

1)h̃ ≥ η, we can write

e`+1 ≤
∣∣∣ζn ((`+ 1)h̃

)
− ζn(`h̃) + ζ(`h̃)− ζ

(
(`+ 1)h̃

)∣∣∣+ e`

=
∣∣∣σ` + h̃F (`h̃, ζn(`h̃)) + ζ(`h̃)− ζ

(
(`+ 1)h̃

)∣∣∣+ e`

=

∣∣∣∣∣σ` + h̃F (`h̃, ζn(`h̃))− h̃F (`h̃, ζ(`h̃))− h̃2

2
ζ ′′((`+ θ)h̃))

∣∣∣∣∣+ e`

≤ |σ`|+ h̃
∣∣∣F (`h̃, ζn(`h̃))− F (`h̃, ζ(`h̃))

∣∣∣+
h̃2

2

∣∣∣ζ ′′((`+ θ)h̃))
∣∣∣+ e`

≤ |σ`|+ h̃e` sup
u∈[ζn(`h̃),ζ(`h̃)]

∣∣∣F ′y(`h̃, u)
∣∣∣+

h̃2

2
sup

v∈[`h̃,(`+1)h̃)]

|ζ ′′(v)|+ e` (13)

≤ e`

(
1 +

2h̃

η

)
+
h̃2

2η
+ |σ`|,

= e`

(
1 +Kh̃

)
+ u`, (14)

in which
|σ`| ≤ n−2/3 lnn, h̃ ≤ 2n−1/3, u` ≤ n−2/3 (1/η + lnn) ,

and

K =
2

η
.

11



The bounds for the supremums in (13) are obtained in Section 5.5, see Proposition
10. For ` = 0, Mn,0 = M0 = (1 + Λ, 1) ∈ Wa,4δ for δ small enough. Consider the
bound (48) obtained for λ at Section 5.3. It entails that, for x ∈ [a, 1 + Λ],

aΛ

(1 + Λ)2
≤ λ (x, ζ(x)) ≤ Λ, (15)

so that (x, ζ(x)) ∈ Wa,4δ for 4δ ≤ min
(

aΛ
(1+Λ)2 ,Λ

−1
)

. Thus M` ∈ Wa,4δ ⊂ Wa,2δ if

`h̃ ∈ [a, 1 + Λ]. Now, for x ∈ [a, 1 + Λ],{
(x, ζ(x)) ∈Wa,4δ and |ζ(x)− ζn(x)| ≤ aδ

3

}
⇒ {(x, ζn(x)) ∈Wa,2δ} . (16)

Assume that, for k ≤ `, Mn,k−1 ∈Wa,2δ, so that we can write :

ek ≤ ek−1(1 +Kh̃) + (h̃2/2a) + |σk|
= ek−1(1 +Kh̃) + uk

≤ ek−2(1 +Kh̃)2 + uk + (1 +Kh̃)uk−1

≤ ek−3(1 +Kh̃)3 + uk + (1 +Kh̃)uk−1 + (1 +Kh̃)2uk−2

≤ e0(1 +Kh̃)k + uk + (1 +Kh̃)uk−1 + · · ·+ (1 +Kh̃)ku0

= uk + (1 +Kh̃)uk−1 + · · ·+ (1 +Kh̃)ku0.

Then

e` ≤
(1 +Kh̃)`+1 − 1

Kh̃
n−2/3 (1/a+ lnn) ,

≤ 2
2eK(1+Λ) − 1

K
n−1/3 (1/a+ lnn) ,

≤ 8eK(1+Λ)

K
n−1/3 lnn ≤ aδ

3
, (17)

for n large enough, depending on (δ, a), but not on `, since :(
1 +Kh̃

)`
≤ eKh̃` ≤ eK(1+Λ),

for ` ≤ (1 + Λ)nβ ' (1 + Λ)h̃−1. Relations (16) and (17) entail that Mn,` ∈Wa,2δ so
that (14) holds true and, in turn, Mn,`+1 ∈Wa,2δ, if necessary. It follows, recursively,
that, for any ` ≤ (1 + Λ)nβ,

e` ≤ cn−1/3 lnn, c =
8eK(1+Λ)

K
,

that is, at the ends of any infinitesimal interval, the error |ζn − ζ| is bounded ac-
cordingly. Between these ends the error can be larger by at most half the length of
this infinitesimal interval, i.e. by n−1/3/2, since both ζn and ζ are non increasing
with slope smaller than 1. Finally, for n large enough and ω /∈ Hn, i.e. but for a
probability at most O

(
n− lnn/2 +β

)
, on the interval [a, 1 + Λ],

‖ζ(ω)− ζn(ω)‖∞ ≤ (1 + c lnn)n−1/3.

12



3 Coupon and automata

3.1 Koršunov’s formula

In 1978, Koršunov [Kor78, Kor86] proves a formula for the asymptotic enumeration
of accessible complete and deterministic automata (ACDA) with n states over a
k-letters alphabet. Later Nicaud [Nic00] proves that ACDA are in bijection with
a subset Ak,n of Ωkn+1,n, though he uses a different terminology : surjections are
represented by boxed diagrams, and ACDA by Dyck boxed diagram. We recall briefly
the definitions of these combinatorial objects in the next subsection. In this paper
we assume that k ≥ 2 and we set N = kn+1. With these notations, we can rephrase
Koršunov’s result as follows :

Theorem 7. [Kor78, Kor86]

lim
n

PN,n (Ak,n) = 1− kρ(k) > 0.

In the notations of [Leb10], 1−kρ(k) = (1−ρ(k))Ek. In Section 3.2, we describe
Ak,n following the lines of [Nic00], then in Sections 3.3,3.4,3.5 we give a probabilistic
proof of Theorem 7 : with the help of Theorem 3 and of the representation of ACDA,
taken from [Nic00], Theorem 7 reduces to the Pollaczeck-Khinchine formula for a
simple random walk. In Section 3.6 we explain how Theorem 3 extends to ACDA.

3.2 Basics on automata

In this section, we recall briefly some vocabulary on words and automata, taken
from [Lot05, Section 1.3], then we describe the representation of ACDA by boxed
diagrams, following [Nic00]. Let A be a finite totally ordered set, called alphabet.
The elements of A are called letters or also symbols. A finite word w on the alphabet
A is a finite sequence w = w1w2 . . . wn of elements of A. The set of words is
endowed with the operation of concatenation, also called product, in which two
words u = u1u2 . . . up and v = v1v2 . . . vq give the word uv = u1u2 . . . upv1v2 . . . vq.
This operation is associative, and it has a neutral element, the empty word, denoted
by ∅. The length of a word u, denoted |u|, is the number of letters in the word u (so
that |∅| = 0). We denote by A∗ the set of finite words on the alphabet A.

Definition 1. A deterministic and complete automaton A is a quintuplet (A, Q, δ, I, F )
consisting of:

• an alphabet A, such that #A = k,

• a set Q of states, such that #Q = n,

• an initial state q0,

• a transition function, δ, that takes as argument a state and a symbol and
returns a state, δ : Q×A → Q,

• a set of final states F ⊂ Q.

13



The transition function δ has a straightforward extension to Q × A∗, that de-
scribes a path from a state q to another state δ(q, w) through a sequence w of letters
(=edges) in a directed graph related to δ, see the figure below. For instance, for
w = w1w2 ∈ A2,

δ (q, w1w2) = δ (δ (q, w1) , w2) .

Definition 2. A deterministic finite automaton A is accessible when for each state
q of A, there exists a word u ∈ A∗ such that δ(q0, u) = q.

Definition 3. A word u is recognized by an automaton when δ(q0, u) ∈ F . The
language recognized by an automaton is the set of words that it recognizes.

Two representations of an ACDA. Consider the ACDA A = (A, Q, δ, I, F )
given by the alphabet A = {a, b, c}, Q = {q0, q1, q2, q3}, I = q0 and F = {q3}. The
transition table of A is a first representation of δ, for instance :

δ a b c
→ q0 q1 q2 q3

q1 q1 q1 q3

q2 q2 q2 q1

* q3 q3 q3 q3

The symbol → marks the initial state, here it is q0. The symbols ∗ mark the final
state(s) (here there is only one final state, q3).

Another representation is through a directed graph with edges labelled by A and
whose set of vertices is Q : for (a, q, r) ∈ A × Q2 a directed edge (q, r) with label
a is present in the graph of A if and only if δ(q, a) = r. Then each vertex of the
graph has out-degree k, and there is a path from q to r in the graph if and only if
there exists a word u ∈ A∗ such that δ(q, u) = r, hence the term accessible. Only
the initial state has an ingoing edge with no starting point, and the final states have
an outgoing edge with no endpoint.

q0start q1

q2

q3

b

a

c a

b, c

a, b

c

a, b, c
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The accessibility of an automaton A = (A, Q, δ, q0, F ) depends only on its transition
structure D = (A, Q, δ, q0), not on its final states, thus one can discuss the accessi-
bility of a complete deterministic transition structure (CDTS) : (δ, q0) can be seen
as a map δ∗ from the set of edges {→} ∪ (Q×A), including thus Q × A plus the
starting edge →, such that δ∗ (→) = q0 and δ∗|Q×A = δ. The CDTS is accessible
only if its transition function δ∗ is a surjection, that is, δ∗ has to belong to ΩN,n and
this has to be the connection between the impatient collector and ACDA. However,
two problems arise:

• though {→}∪(Q×A) has kn+1 = N elements, a total order would be handy
to identify {→} ∪ (Q×A) with [[1, N ]], and δ∗ with an element of ΩN,n ;

• the surjectivity of δ∗ is not sufficient to insure the connexity of D.

It turns out that the answer to the second point is also an answer to the first
point : as usual for the connexity of graphs, a necessary and sufficient condition of
connexity is a positivity condition for a path related to the breadth-first-search of
the corresponding graph, and this breadth-first search also provides a total order
on Q, which, with the alphabetic order on A, induces a lexicographic order on
{→} ∪ (Q×A), allowing to identify {→} ∪ (Q×A) with [[1, N ]]. The path, then,
is the completion curve for δ∗ once {→} ∪ (Q×A) is identified to [[1, N ]].

More precisely, the search starts from the initial vertex, δ∗(→), of the first di-
rected edge→, end vertex relabelled 1 for it is the first piece in the collection. Then
one explores the edges starting from q0 = 1, in the alphabetic order, from δ(q0, a1)
to δ(q0, an), and when this exploration is over, either there exists no new piece in the
collection, meaning that q0 is a connected component by itself, and meaning that D
is not accessible, or there exists some new piece. Thus the completion curve of an
accessible CDTS must satisfy yk+1 ≥ 2. The yk+1− 1 new vertices, at this stage, are
of the form

δ∗(δ∗(→), a) = δ∗(→ a),

and they are sorted (and explored) according to the alphabetic order for the letters
a ∈ A. They are also relabeled 2, 3, . . . , yk+1. Similarly, after the exploration of
the neighbours of the second piece q1 = 2 of the collection, we need y2k+1 ≥ 3, else
{q0, q1} would be a connected component. In general, the CDTS is accessible if and
only if the completion curve y of δ∗ satisfies

∀` ∈ [[0, n− 1]], y`k+1 ≥ `+ 1. (18)

Now, according to [Nic00], the boxed diagram of D is just the completion curve of δ∗,
decorated with one mark in each column, at height xi ≤ yi, meaning that δ∗(i) = xi.

Example: In Figure 1, we see how the breadth-first search of the graph produces
a labeling of the vertices and edges, which, in turn, dictates the order of the search:
the ends of the edges starting from a given vertex are searched in the alphabetic
order, and the vertices are searched according to their order of apparition during the
breadth-first search, beginning with the starting vertex. The 24 CDTS, obtained by
permutation of the symbols {T,W,S,X} as labels of the vertices of our example on
the left, would produce the same labeling as is pictured on the left. Note that the
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Figure 1: On the left: a CDTS D. On the right: the ordering of vertices and edges
inherited from the breadth-first search.
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×
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×
×
×

×

13121110987654321

Figure 2: The boxed diagram of the CDTS D (in pink, the minimal completion
curve for a 3-Dyck boxed diagram).

correspondance edge-endpoint is a surjection ω̃ from [[1, 13]] to [[1, 4]], with a special
property: the partition PD = (ω̃−1(1), ω̃−1(2), ω̃−1(3), ω̃−1(4)), here e.g.

PD = {{1, 4, 7}, {2, 5, 8, 12}, {3, 9, 11}, {6, 10, 13}},

is necessarily sorted in increasing order of the smallest elements of the parts.
Similarly, a sequence ω ∈ ΩN,n (a surjection) can be matched with a boxed

diagram in SN,n in exactly n! ways, as follows : according to the coupon collec-
tor metaphor, the collection process produces an order among the elements of the
collection:

σω (k) = ωTk(ω),

denotes the kth element of [[1, n]] to enrich the collection ; σω is a random uniform
permutation of [[1, n]]. Setting

ω̃i = σ−1
ω (ωi) , i.e. ω̃ = σ−1

ω ◦ ω,

we obtain that

ω̃Tk = yTk(ω) = k and ω̃i ≤ yi(ω) = max{ω̃j, j ≤ i},∀i.

Thus (yi, ω̃i)1≤i≤N is a boxed diagram associated with the surjection ω, or with any
surjection of the form τ ◦ ω, with τ ∈ Sn. That is, if τ ∈ Sn, τ ◦ ω produces the
same boxed diagram as ω, and there exists exactly n! elements of ΩN,n with the same
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boxed diagram. Finally, a random uniform surjection ω ∈ ΩN,n produces a random
uniform boxed diagram, while a random uniform CDTS produces a random uniform
boxed diagram satisfying additionally the constraint (18) (such a boxed diagram is
also called a k-Dyck boxed diagram). Thus there is a correspondance in which each
boxed diagram is related to n! different surjections of ΩN,n, and a similar (though
different) correspondance in which a k−Dyck boxed diagram is related to n! different
CDTS. Note that, according to (18),

yk(n−1)+1 = · · · = ynk+1 = n, (19)

meaning that ynk+1 does not satisfy inequality (18).

3.3 Reduction to the NorthEast corner

NowAk,n denotes the subset of elements ω ∈ ΩN,n meeting the condition (18). Then
Theorem 7 is equivalent to an assertion on the asymptotic behaviour of the Markov
chain Z(n) studied at Section 2.1 : the probability that the sample path of Z(n)

crosses the line y = x/k outside its endpoints (0, 0) and (kn + 1, n) converges to
kρ(k) ∈ (0, 1).

Figure 3: Forbidden zones.

This probabilistic formulation of Koršunov’s formula hints at the relation with
Theorem 3 : as Figure 3 shows, Theorem 3, with Proposition 9, prevents these
crossings outside the close vicinity of the endpoints, but for a small probability. For
n large enough, a crossing inside the interval I2 = [[an, kn− 2Ck2n1/3]] violates the
convergence to the limit path at the rate given by Theorem 3, thus such crossings
happen with a probability smaller than n1/3e− ln2 n/2. As a consequence, the line of
proof for Theorem 7 goes according to the following steps: set

I1 = [[0, an]], I3 = [[N − 2Ck2n1/3, N ]],

and let the event that a crossing happens inside the interval Ij be denoted Υn,j.
Then

|PN,n
(
Ak,n

)
− PN,n (Υn,3) | ≤ PN,n (Υn,1) + PN,n (Υn,2) ,
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in which, due to Theorem 3,

PN,n (Υn,2) ≤ n1/3e− ln2 n/2. (20)

We also have:

Proposition 3. If a is small enough,

lim
n

PN,n (Υn,1) = 0. (21)

As a consequence, the asymptotic behaviour of the profile in the NorthEast
corner should give simultaneously the limit of PN,n (Υn,3), and Koršunov’s formula.
This is the topic of the next sections.

Proof. An alternative formulation of the condition Υn,1 is as follows: y`k+1 ≥ ` + 1
holds true for 0 ≤ ` ≤ an. The proof of (21) has two steps :

lim
n

Pn
(
Υn,1

)
= 1, (22)

and
PN,n

(
Υn,1

)
≥ Pn

(
Υn,1

)
. (23)

Now:

Pn (Υn,1) ≤
∑

0≤`≤an

Pn (y`k+1 ≤ `)

=
∑

1≤`≤an

(
n

`

)(
`

n

)`k+1

=
∑

1≤`≤an

u`.

But

u`+1

u`
=
n− `
`+ 1

(
`+ 1

`

)`k+1(
`+ 1

n

)k
≤ 2 ek

(
`+ 1

n

)k−1

≤ 2 ek (2a)k−1 ≤ 4a ek ≤ 1

2
,

for a small enough, in which case we have :

Pn (Υn,1) ≤ 2u1 ≤
2

n2
,

as expected.
For (23), note that :

Pn
(
Υn,1

)
= Pn (T`+1 ≤ k`+ 1, 1 + k` ∈ [[0, an]]) .

But, under Pn, (Tk − Tk−1)1≤k≤n is a sequence of independent random variables (with
geometric distributions and respective expectations n/(n+ 1− k)), so, according to
[Rob54]:

Pn
(
T`+1 ≤ k`+ 1, 1 + k` ∈ [[0, an]] and Tn ≤ N

)
≥ Pn (T`+1 ≤ k`+ 1, 1 + k` ∈ [[0, an]]) Pn (Tn ≤ N) ,
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or, equivalently,

Pn
(
T`+1 ≤ k`+ 1, 1 + k` ∈ [[0, an]] | Tn ≤ N

)
≥ Pn (T`+1 ≤ k`+ 1, 1 + k` ∈ [[0, an]]) ,

which is relation (23).

3.4 Random walks and Pollaczek-Khintchine’s formula

In this section, and the next one, we shall prove that

lim
n

PN,n (Υn,3) = kρ(k). (24)

Relation (24) results from the Pollaczek-Khinchine formula, as we shall see now: Υn,3

relates to a crossing of the line y = x/k by Z(n) before time 2Ck2n1/3. But, before
time 2Ck2n1/3, i.e. for (m, `) close to (kn, n), due to Proposition 1 and Theorem
4, the transition probabilities r(m, `) of Z(n) are close to the constant ρ(k), so that
we expect Z(n) to behave, early, like a random walk Z starting at n, with step
distribution

(1− ρ(k))δ0 + ρ(k)δ−1.

Since ρ(k) < 1/k, the trend is that Z does not cross the line, and if it does at all,
the crossing has to take place early, hence we expect the crossing probability of Z
to be the limit of PN,n (Υn,3). In the next section, we shall discuss the convergence
(to Z) of Z(n), and its speed. In this section, we compute the crossing probability
P (Υ) of Z, in which:

Υ =

{
Z0 = n and Z` ≥ n− `− 1

k
for ` ≥ 1

}
.

Proposition 4.
P (Υ) = kρ(k).

Proof. It is convenient to make some time and space changes to represent our cross-
ing probability in more familar terms, i.e. in terms of a new random walk S on the
integers, with negative drift, starting from 0, and such that Υ = {maxSn = 0} holds
true (or such that Υ and Υ̃ = {maxSn = 0} are closely related events, actually). If
we set, for j ≥ −1,

Sj = kn− kZ1+j − j,

then S is a random walk with step distribution

µk = (1− ρ(k))δ−1 + ρ(k)δk−1,

with drift
dk = kρ(k)− 1 < 0,
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starting from 1 at time -1, and:

Υ =

{
S−1 = 1, S0 = 0 and max

n≥0
Sn = 0

}
.

Thus

P
(
Υ
)

= (1− ρ (k))P
(

max
n≥0

(Sn) = 0 |S0 = 0

)
= (1− ρ (k))P

(
Υ̃
)
.

But we know, from the Pollaczek-Khinchine formula (cf. [Asm03, Corollary 6.6])

0 1 2 k − 1 k k + 1ρ(k)

ρ(k) ρ(k) ρ(k)ρ(k)

1− ρ(k) 1− ρ(k) 1− ρ(k)

Figure 4: The graph of the Lindsey process.

that P
(

Υ̃
)

is the stationary distribution π0 at 0 of the Lindsey process with step

µk. For ` ≥ 1, let t` denote the average time needed by the Lindsey process (or,
indifferently, by the random walk S) to hit 0 starting from position `: Wald’s identity
gives that

t` = − `

dk
.

On the other hand, if t0 is the expected time of the first return to 0, starting from
0, then, by the Markov property,(

1

π0

=

)
t0 = (1− ρ(k)) + ρ(k) (1 + tk−1)

= (1− ρ(k)) + ρ(k)

(
1− k − 1

dk

)
= −1− ρ(k)

dk
,

and finally:

P
(

Υ̃
)

= π0 = − dk
1− ρ(k)

= Ek.

Thus, as expected, P
(
Υ
)

= (1− ρ (k))P
(

Υ̃
)

= −dk = 1− kρ(k).

3.5 Tail probabilities and Hoeffding’s inequality

For some process X = (Xi)i≥0, let X[[`,m]] denote the section (Xi)`≤i≤m of the sam-
ple path X. First, let us bound the distance between the random walk Z(n) of
Proposition 1, and Z:
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Proposition 5. Under PN,n, Z(n) converges to Z in distribution. Moreover, for
α ∈ (0, 1), there exists Cα > 0 such that for n large enough :

sup
s≤nα, A∈[[0,n]]s+1

n1−α

s2s

∣∣∣P (Z[[0,s]] ∈ A
)
− PN,n

(
Z

(n)
[[0,s]] ∈ A

)∣∣∣ ≤ Cα.

Proof. We shall use that if

θ ≥ max (max |αi| ,max |βi|) ,

then: ∣∣∣∣∣
m∏
i=1

αi −
m∏
i=1

βi

∣∣∣∣∣ ≤ θm−1

m∑
i=1

|αi − βi| . (25)

Consider a sample path z = (zj)0≤j≤s in which z0 = n. Let ∆j = zj − zj+1 ∈ {0, 1}
denote its jth increment. Under PN,n, as a consequence of Proposition 1, for any
given s,

P
(
Z

(n)
[[0,s]] = z

)
=

s−1∏
j=0

r (N − j, zj)∆j (1− r (N − j, zj))1−∆j ,

while

P
(
Z[[0,s]] = z

)
=
∏s−1

j=0 ρ (k)∆j (1− ρ (k))1−∆j .

For α ∈ (0, 1) and n large enough, and for a suitable choice of η, δ ∈ (0, 1), n−1Wt

belongs to Wη,2δ, so that, according to (12), for t = N − 1 and 0 ≤ ` ≤ m ≤ nα,

|r (N − 1−m,n− `)− ρ (k)| ≤ 8

η
nα−1. (26)

Since the probability of a given sample path of Z, resp. Z(n), is a product of terms
αi or βi of the following form

ρ(k)∆(1− ρ(k))1−∆, resp. r(m, `)∆(1− r(m, `))1−∆,

in which −∆ ∈ {0,−1} is the increment for some step of the random walks of Z,
resp. Z(n), and as a consequence of (26) and (25) (with θ = 1), the probabilities of
these sample paths of length s ≤ nα differ by at most

8

η
snα−1.

That a set A ⊂ [[0, n]]s+1 has at most 2s admissible elements starting at position n

entails that Proposition 5 holds true with the choice Cα =
8

η
.
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Let Z? (resp. Z∞) denote the set of finite (resp. finite or infinite) words on
the alphabet Z, and for a finite word ω = ω0ω1ω2 . . . ωs, set |ω| = s + 1. For
0 ≤ s < t ≤ +∞, let us define the crossing set Υ(s, t) as follows:

Υ(s, t) =

{
ω ∈ Z∞ s.t.|ω| ≥ t+ 1 and ∃` ∈ [[s, t]] s.t. ω` < n− `− 1

k

}
,

so that, for instance,

P (Υn,3) = P
(
Z(n) ∈ Υ(1, 2k2n1/3)

)
.

The next proposition completes the proof of Theorem 7 :

Proposition 6.
lim
n

P (Υn,3) = kρ(k).

Proof. We shall prove successively that:

P (Υ) = lim
n

P (Z ∈ Υ(1, sn)) (27)

= lim
n

P
(
Z(n) ∈ Υ(1, sn)

)
(28)

= lim
n

P (Υn,3) , (29)

for sn = υ lnn, in which υ ln 2 ≤ 1 − α. First, Proposition 5 entails (28) at once.
Relations (27) and (29) both follow from Hoeffding’s inequality. For (27) it is rather
straightforward : if we set β(k) = ρ(k) − 1

k
, relation (44) entails that β(k) < 0, so

that

P
(
Z` − Z0 ≤ −

`

k

)
= P (Z` − Z0 + `ρ(k) ≤ β(k)`) ≤ exp

(
−2β(k)2`

)
. (30)

Thus the probability of a crossing at some point after time sn satisfies

P (Υ)− P (Z ∈ Υ(1, sn)) ≤ P (Z ∈ Υ(sn,+∞))

≤
∑
`≥sn

P
(
Z` − Z0 ≤ −

`

k

)

≤
∑
`≥sn

exp
(
−2β(k)2`

)
=

n−2υβ(k)2

1− e−2β(k)2 .

Similarly

P
(
Z(n) ∈ Υ(1, sn)

)
− P (Υn,3) ≤

∑
sn≤`≤2k2n1/3

P
(
Z

(n)
` − Z

(n)
0 ≤ − `

k

)
, (31)

but here we cannot use Hoeffding’s inequality directly, though Z
(n)
0 − Z(n)

` is a sum
of Bernoulli random variables, for these Bernoulli random variables are not inde-
pendent. However, we can build, on the same probability space, a copy of Z(n) and
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a random walk Ẑ in such a way that, for ` ≤ 2k2n1/3, Z
(n)
m ≤ Ẑm and Ẑ’s drift is

smaller than 1/k, using a sequence U = (Um)m≥1 of independent random variables,

uniform on (0, 1). Set b =
1

k
+
β (k)

2
and

Ẑm − Ẑm+1 = 1Um≤b.

For Ẑ(n) and Z(n) to have the same distribution, due to Proposition 1 , we need to
set Ẑ

(n)
0 = Z

(n)
0 = n and

Ẑ(n)
m − Ẑ

(n)
m+1 = 1

Um≤r
(
N−m,Ẑ(n)

m

).
For 0 ≤ n − Ẑ(n)

m ≤ m ≤ nα, and for α > 1/3, if we choose n large enough, so that
nα > 2k2n1/3, and so that

8

η
nα−1 ≤ −β (k)

2
,

we can use (26) to obtain that

∀m ∈ [[0, 2k2n1/3]], r
(
N −m, Ẑ(n)

m

)
≤ b, and Ẑ(n)

m ≥ Ẑm.

Hence

P
(
Z(n)
m − Z

(n)
0 ≤ −m

k

)
≤ P

(
Ẑm − Ẑ0 ≤ −

m

k

)
≤ exp

(
−β(k)2m/2

)
,

the second inequality due to Hoeffding’s inequality. Relation (29) follows.

3.6 The profile of an accessible automaton

Jointly with Theorem 7, Theorem 3 has a straightforward consequence : the com-
pletion curve of a uniform ADCA has the same limit curve. More precisely, if Qk,n

denotes the uniform distribution on ADCA with n vertices and k letters, or, equiv-
alently Qk,n is the conditional probability given Ak,n:

Qk,n (B) =
PN,n (B ∩ Ak,n)

PN,n (Ak,n)

then

Lemma 2. For a sequence of events (Bn)n≥n0
,

Qk,n (Bn) = O (PN,n (Bn)) .

Thus, Theorem 3 translates to large automata at once, and we obtain

Theorem 8. For any a > 0, there exists C3(n0, ε) > 0 such that, for n ≥ n0,

Qk,n

(
sup
[ε,k]

|ζn − fk−1| ≥ Cn−1/3

)
≤ C4n

1/3e− ln2 n/2.

Recall that fΛ is defined at the end of Section 1.2.

23



4 Saddle-point method and Stirling numbers

This section is devoted to the proof of Theorem 6.

4.1 Generating function and Cauchy formula

Recall the notations:

λ(m, `) = λ =
m− `
`

, ψ(m, `) =
1

2π

m!

`!

(
eξ − 1

ξ1+λ

)` √
π

v`
. (32)

According to [Goo61, (6)] or [FS09, Example III.11, p.179], we have :∑
m≥1

{
m

`

}
zm

m!
= (ez − 1)`

1

`!
,

= z`

`!
B(z)`,

in which

B(z) :=
ez − 1

z
.

By the Cauchy formula,{
m

`

}
= [zm−`]

m!

`!
B(z)` =

1

2iπ

∮
m!

`!
B(z)`

dz

zm−`+1
,

=
1

2iπ

∫ π

−π

m!

`!
B(ξeiθ)`(ξeiθ)−m+`−1ξieiθdθ,

=
1

2π

m!

`!

(
B (ξ)

ξλ

)` ∫ π

−π
g (θ)` dθ

= a`

∫ π

−π
g (θ)` dθ.

in which

B(ξeiθ)e−iλθ = B (ξ) g(θ),

to be compared to the asymptotic equivalent to
{
m
`

}
given by [Goo61, (3)], ψ(m, `),

that satisfies:

ψ(m, `) = a`

√
π

v`
= a`

∫ ∞
−∞

e−`vθ
2

dθ,

We expect that |g(θ)| ≤ 1 for any θ, or |B(ξeiθ)| ≤ B(ξ), since B(ξz), as a power
series in z, has positive coefficients. We also expect that, around 0,

g(θ) '0 1,

24



and more precisely, since ξ is a saddle-point, we expect that

g(θ) = e−vθ
2+O(θ3).

According to (46),

v =
(λ+ 1)(ξ − λ)

2
≥ λ

2
> 0,

which entails that ∫ π

−π
g (θ)` dθ '

∫ +∞

−∞
e−vθ

2`dθ =

√
π

v`
.

Set

K
(0)
` =

∣∣∣∣√ π

v`
−
∫ θ0

−θ0
g (θ)` dθ

∣∣∣∣ , (33)

K
(1)
` = 2

∣∣∣∣∫ π

θ0

g (θ)` dθ

∣∣∣∣ , (34)

in which a suitable choice of θ0 is made later, so that:

ψ(m, `) = a`

√
π

v`
= a`

∫ ∞
−∞

e−`vθ
2

dθ,

|χ(m, `)| =
∣∣ψ(m, `)−

{
m
`

}∣∣
ψ(m, `)

≤
√
v`

π

(
K

(0)
` +K

(1)
`

)
. (35)

In the next sections, in order to prove Theorem 6, we obtain that

K
(0)
` +K

(1)
` = O

(
`−3/2

)
.

4.2 Central term

In this section we obtain a saddlepoint bound for K
(0)
` , following [FS09]. We write

g(θ) = e−i(1+λ)θ eξ(e
iθ−1) − e−ξ

1− e−ξ

= e−i(1+λ)θ Φ(θ)− e−ξ

1− e−ξ
(36)

in which :

Φ(θ) = eξ(e
iθ−1) = 1 + iξθ − ξ2θ2

2
+O

(
θ3
)
,

is the characteristic function of any Poisson random variable Z with expectation ξ.
For our aims, we need a precise estimation of g, obtained through the Taylor-Laplace
inequality, see Section 5.6. There, we prove that, for suitable constants (v, τ, γ),∣∣g (θ)−

(
1− vθ2 + τθ3 + γθ4

)∣∣ ≤ T (λ) θ5, (37)
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in which, according to Section 5.6.2,

T (λ) =
(1 + λ)6

2λ
.

Note that, according to (46),

v =
(λ+ 1)(ξ − λ)

2
≥ λ

2
> 0.

We can write

K
(0)
` ≤

∫ θ0

−θ0

∣∣∣g(θ)` − e−`vθ2
∣∣∣ dθ + 2

∫ ∞
θ0

e−`vθ
2

dθ

= K
(00)
` +K

(01)
` .

Now

K
(01)
` =

2√
v`

∫ ∞
θ0
√
v`

e−x
2

dx

≤ 2√
v`

∫ ∞
θ0
√
v`

2xe−x
2

2θ0

√
v`

dx

=
1

θ0v`
e−θ

2
0v`.

Thus, θ0

√
` has to be large for K

(01)
` to be o

(
`−3/2

)
. On the other hand,

K
(00)
` ≤ K

(000)
` +K

(001)
` +K

(002)
` ,

in which, for γ̃ = γ − v2

2
,

K
(000)
` =

∫ θ0

−θ0

∣∣∣g(θ)` −
(
1− vθ2 + τθ3 + γθ4

)`∣∣∣ dθ,
K

(001)
` =

∫ θ0

−θ0

∣∣∣(1− vθ2 + τθ3 + γθ4
)` − e−`(vθ2−τθ3−γ̃θ4)

∣∣∣ dθ,
K

(002)
` =

∣∣∣∣∫ θ0

−θ0

(
e−`(vθ

2−τθ3−γ̃θ4) − e−`vθ2
)
dθ

∣∣∣∣ .
With the help of (53), since T (λ) is bounded for λ ∈ (δ, δ−1), we obtain that

K
(000)
` ≤ `

∫ θ0

−θ0

∣∣g(θ)−
(
1− vθ2 + τθ3 + γθ4

)∣∣ dθ
≤ C000 ` θ

6
0,

in which C000 is discussed at Section 5.6.2. For K
(000)
` to be small, θ0

√
` cannot be

too large:

θ0 =
ln `√
`
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yields that

K
(000)
` ≤ C000

ln6 `

`2
= o

(
`−3/2

)
,

and that, for λ ∈ (δ, δ−1), and ` ≥ e3/δ,

K
(01)
` ≤ 1

v ln `
`−1/2−v ln `

≤ 2

δ ln `
`−(1+δ ln `)/2 ≤ 1

`2
.

Now

K
(001)
` ≤ `

∫ θ0

−θ0

∣∣∣1− vθ2 + τθ3 + γθ4 − e−vθ2+τθ3+γ̃θ4
∣∣∣ dθ

≤ C001

ln6 `

`2
= o

(
`−3/2

)
,

in which the dependence of (C000, C001, τ, γ, γ̃) on λ is studied at Section 5.6, in order
to complete the proof of Theorem 6. Finally

K
(002)
` ≤ ` e`|γ̃|θ

4
0

∣∣∣∣∫ θ0

−θ0
e−`vθ

2
(
eτθ

3+γ̃θ4 − 1
)
dθ

∣∣∣∣ ,
≤ 2`

∣∣∣∣∫ θ0

−θ0
e−`vθ

2
(
eτθ

3+γ̃θ4 − 1− τθ3 − γ̃θ4
)
dθ

∣∣∣∣ (38)

+ 2`

∣∣∣∣∫ θ0

−θ0
e−`vθ

2 (
τθ3 + γ̃θ4

)
dθ

∣∣∣∣
= K

(0020)
` +K

(0021)
` .

For inequality (38), note that, due to inequalities (54), if λ(m, `) ∈ (δ, 1
δ
), then

`|γ̃|θ4
0 ≤ ln 2 for ` large enough. For the first term, since

|ez − 1− z| ≤ |z|
2

2
sup
u∈[0,1]

|euz| ,

and τ ∈ iR, we have

K
(0020)
` ≤ ` e|γ̃|θ

4
0

∫ θ0

−θ0
e−`vθ

2 (−τ 2θ6 + γ̃2θ8
)
dθ

≤ ` e|γ̃|θ
4
0
(
−τ 2 + γ̃2

) ∫ θ0

−θ0
e−`vθ

2

θ6dθ

= ` (`v)−7/2 e|γ̃|θ
4
0
(
−τ 2 + γ̃2

) ∫ √v ln `

−
√
v ln `

e−x
2

x6dx

≤ `−5/2 v−7/2 e|γ̃|θ
4
0
(
−τ 2 + γ̃2

)
Γ (7/2)

≤ 2
√
π v−7/2

(
−τ 2 + γ̃2

)
`−5/2 (39)

≤ C0020`
−5/2,

27



for ` large enough. Also:

K
(0021)
` = 2`

∣∣∣∣∫ θ0

−θ0
e−`vθ

2

γ̃θ4 dθ

∣∣∣∣ ,
≤ |γ̃|`−3/2v−5/2

∫
R
e−x

2

x4 dx,

≤
√
π|γ̃|v−5/2`−3/2 ≤ C0021`

−3/2.

Thus∣∣∣a`K(0)
` − ψ(m, `))

∣∣∣
ψ(m, `)

≤
(

(C000 + C001)
ln6 `

`2
+ C0020`

−5/2 + C0021`
−3/2 +

1

`2

) √
v`

π

= C0021

√
v
π

1

`
+O

(
ln6 `

`3/2

)
. (40)

4.3 Tail

As for K
(1)
` , relation (34) yields that:∣∣∣K(1)

`

∣∣∣ ≤ 2

∫ π

θ0

|g (θ)|` dθ.

Set:

h (x) =
1

π2

2x2

(2 + x) (ex − 1)
.

Following [MM90, Lemma 1& 2], we prove that

Lemma 3. For θ ∈ [−π, π], ∣∣B (ξeiθ)∣∣ ≤ B (ξ) e−h(ξ)θ2

,

or equivalently
|g (θ)| ≤ e−h(ξ)θ2

.

Proof. For k ≥ 0, set:

bk =
ξk

k + 1!
,

so that:
B
(
ξeiθ
)

=
∑
k≥0

bke
ikθ,

and: ∣∣B (ξeiθ)∣∣ ≤ ∣∣b0 + b1e
iθ
∣∣+
∑
k≥2

bk.
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But ∣∣b0 + b1e
iθ
∣∣2 = (b0 + b1 cos θ)2 + b12 sin2 θ

= (b0 + b1)2 + 2b0b1 (cos θ − 1)

= (b0 + b1)2 − 4b0b1 sin2
(
θ
2

)
≤

(
b0 + b1 −

2b0b1 sin2

(
θ
2

)
b0+b1

)2

.

Thus ∣∣B (ξeiθ)∣∣ ≤∑
k≥0

bk −
2b0b1 sin2

(
θ
2

)
b0+b1

= B (ξ)− 2ξ

2 + ξ
sin2

(
θ

2

)
.

For θ ∈ [−π, π],

sin2

(
θ

2

)
≥ θ2

π2
,

leading to: ∣∣B (ξeiθ)∣∣ ≤ B (ξ)
(
1− h (ξ) θ2

)
≤ B (ξ) e−h(ξ)θ2

.

Thus, according to Section 5.6.5, for ` large enough,∣∣∣K(1)
`

∣∣∣ ≤ 2π`−h(ξ) ln(`) = o
(
`−3/2

)
. (41)

Finally we are ready to prove Theorem 6.

Proof. Inequality (40) holds true for ` large enough, and, on (0,+∞), its coefficients
Ci are positive continuous functions of λ, thus, for λ(m, `) ∈ [δ, 1

δ
], they are bounded.

One can deal similarly with inequality (41) (see Section 5.6.5).
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5 Appendix: Some special functions

5.1 ξ as an implicit function of λ

We have seen that ξ is an essential parameter in the asymptotic behaviour of the
Stirling number {

m

`

}
=

{
(1 + λ) `

`

}
,
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in which λ = λ(m, `) is defined by λ = m−`
`

, and ξ is an implicit function of λ,
defined by

(1 + λ)
(
1− e−ξ

)
= ξ, λ, ξ ≥ 0.

For instance, the completion curve ζΛ of Theorem 3 is defined in terms of Λ = λ(N, n)
and in terms of Ξ = ξ(Λ). Thus we need to list some of the properties of ξ that are
of interest in our proofs, not all of them being straightforward, for instance in order
to prove Theorem 4 in Section 5.5.

Proposition 7. The function ξ is increasing, nonnegative and concave, and λ →
ξ(λ)− λ is increasing, nonnegative and concave as well. Also, we have:

λ ≤ ξ (λ) ≤ min (2λ, 1 + λ) , λ ≥ 0, (42)

ξ(λ) = 1 + λ+O+∞
(
λe−λ

)
, (43)

e−ξ <
1

1 + λ
. (44)

Proof. Proof of (42). Relation (2) entails

ξ ≤ 1 + λ

at once. Since ξ ≥ 0, {
1 + ξ ≥ ξ

1− e−ξ

}
⇔
{
eξ ≥ 1 + ξ

}
,

so, from
ξ

1− e−ξ
= 1 + λ,

we deduce that
ξ ≥ λ.

In order to prove that 2λ ≥ ξ, we need to prove that

1 + λ =
ξ

1− e−ξ
≥ 1 +

ξ

2
,

but the last inequality holds true for any positive number ξ, as a consequence of

e−2x ≥ 1− x
1 + x

, x ≥ 0.

Proof of monotony and concavity of ξ and ξ − λ. Note that

e−ξ(0) = 1− ξ(0)

entails ξ(0) = 0. For ξ′ (0) = 2 we have no additional trouble: when ξ, λ→ 0+,

1 + λ =
ξ

1− e−ξ
= 1 +

ξ

2
+ o

(
ξ2
)
.
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Now, from the implicit function theorem, we obtain:

ξ′ (λ) = − e−ξ − 1

1− (1 + λ) e−ξ

=
ξ

(1 + λ)(ξ − λ)
(45)

= 1 +
λe−ξ

ξ − λ

entailing that ξ, and ξ − λ as well, are increasing. Then

ξ′′ (λ) =
ξ′(1 + λ)(ξ − λ)− ξ(ξ − λ)− ξ(1 + λ)(ξ′ − 1)

(1 + λ)2(ξ − λ)2

=
ξ(1− ξ + λ− (1 + λ)ξ′ + 1 + λ)

(1 + λ)2(ξ − λ)2

=
ξ((2 + 2λ− ξ)(ξ − λ)− ξ)

(1 + λ)2(ξ − λ)3

so that

ξ′′ (λ) =
−ξ(ξ − 2λ)(ξ − λ− 1)

(1 + λ)2(ξ − λ)3
≤ 0.

It follows that ξ and ξ − λ are concave. Finally, (43) is an easy consequence of (2),
and (44) follows from:

e−ξ (1 + λ) = 1 + λ− ξ,

and from (42).

We also need that :

Lemma 4.
2v ≥ λ. (46)

Proof. The relation (46) can be written successively:(
ξ − ξ

1− e−ξ
+ 1

)(
ξ

1− e−ξ

)
≥ ξ

1− e−ξ
− 1,

ξ2e−ξ

(1− e−ξ)2 ≤ 1,

ξ2 ≤ 4 sinh2

(
ξ

2

)
= 2 cosh (ξ)− 2,

1 +
ξ2

2
≤ cosh (ξ) ,

the last one being clearly true.
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5.2 Large deviation for the coupon collector

Since, for λ > 0, we have:

P (Tn (ω) ≤ b(1 + λ)nc) = n!

{
b(1 + λ)nc)

n

}
n−b(1+λ)nc,

Theorem 5 entails that

P (Tn (ω) ≤ b(1 + λ)nc) '
√

eξ−1
eξ−1−ξ e

−nJ(ξ),

in which

J (ξ) =
ξ

1− e−ξ
(
1− ξ + ln

(
eξ − 1

))
− ln

(
eξ − 1

)
.

One can write :

J (ξ) =
(ξ − 1 + e−ξ) ln

(
eξ − 1

)
+ ξ(1− ξ)

1− e−ξ

and finally

J ′ (ξ)
(
eξ − 1

)2
= eξ

(
eξ − 1− ξ

)
ln
(
1− e−ξ

)
< 0.

Also: (
1− e−ξ

)
J (ξ) = (ξ − 1 + e−ξ)

(
ξ + ln

(
1− e−ξ

))
+ ξ − ξ2

= (ξ − 1 + e−ξ) ln
(
1− e−ξ

)
+ ξe−ξ = O+∞

(
ξe−ξ

)
Thus, J is decreasing and

lim
+∞

J (ξ) = 0,

which entails that J is positive.

5.3 Properties of the limit path.

The properties of the sample path ζ = fλ(x0,y0) solution of

y′ = e
−ξ
(
x
y
−1
)
, (x, y) ∈ A = {0 < y < x} , and y(x0) = y0, (47)

between (0, 0) and (x0, y0) matter to our saddle-point estimates for the Stirling
numbers, since these estimates are valid only when the sample path is far away
from ∂A, or, equivalently, when x is large enough and λ is far from {0,+∞}. We
are specially interested by the solution ζΛ obtained on the interval [0, 1 + Λ] when
(x0, y0) = (1+Λ, 1), for it is the asymptotic completion curve mentionned in Theorem
3. In this section, we prove that ζ satisfies

{(x, ζ (x)) | 0 < x ≤ x0, ζ (x0) = y0} ⊂ A = {0 < y < x} ,

and stays away from ∂A, if x is large enough, as shown in Figure 5. This follows
from the variations of λ along the curve y = ζ(x), where we have:

λ(x) =
x

ζ(x)
− 1.
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Figure 5: Locations of the solutions.

Proposition 8. The solution ζ to (47) going through (x0, y0) satisfies, for 0 < x ≤
x0,

−1 +
1

1− xy0

x0

(
1

y0

− 1

x0

) ≤ λ (x) ≤ x

(
1

y0

− 1

x0

)
, (48)

x

1 + x

(
1

y0

− 1

x0

) ≤ ζ(x) ≤ x

(
1− x

x0

(
1− y0

x0

))
. (49)

Proof. From (47), we obtain the differential equation for λ(x) :

ζ(x) =
x

1 + λ(x)
,

∂λ

∂x
=
ζ(x)− xζ ′(x)

ζ(x)2
=

1− (1 + λ(x)) ζ ′(x)

x
(1 + λ)

∂λ

∂x
=

1− (1 + λ) e−ξ

x
(1 + λ)

=
2v(x)

x
. (50)

Lower bounds. Relations (50) and (46) yields that

λ′

λ
≥ 1

x
,
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thus, for 0 < x ≤ x0,

λ (x) ≤ λ (x0)
x

x0

=
x

y0

− x

x0

, (51)

leading to the lower bounds of (49).
Upper bounds. With (42) and (50) together, we obtain:

λ′

λ (1 + λ)
≤ 1

x
,

λ (x0) (1 + λ (x))

(1 + λ (x0))λ (x)
≤ x0

x
,

leading to the upper bounds in Proposition 8.

These estimates are also useful in the proof of Koršunov’s formula, in which we
need that a strip close to the limit path intersects the forbidden zone {y ≤ x/k}
only close to its endpoints (0, 0) and (k, 1). We have :

Proposition 9. For 0 < ε ≤ 1

2(k + 1)
, and 2kε ≤ x ≤ k − 2k2ε,

fk (x)− ε ≥ x

k
.

Proof. Due to (49), we only need to prove that

x

1 + x

(
1− 1

k

) − x

k
≥ ε,

when x is in the interval, and it follows easily from the fact that

(k − 1)x (k − x) ≥ εk (k + x (k − 1))

holds true at the endpoints.

5.4 Small variations of ρ

In this section, we bound the variations of ρ in order to obtain the accuracy of the
Euler scheme used in Theorem 3, cf. (13), and also to obtain the precision of the
approximation of the completion curve by a random walk in the proof of Koršunov’s
formula. Since ρ = e−ξ, according to (45)

∂ρ

∂λ
= − ∂

∂λ

(
1− e−ξ

)
= − ∂

∂λ

(
ξ

1 + λ

)
=
−(1 + λ)ξ′ + ξ

(1 + λ)2

=
ξ(ξ − λ− 1)

(ξ − λ)(1 + λ)2
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Thus, according to (50), a sample path ζ solution of (47) satisfies

0 ≥ ζ ′′ =
∂ρ

∂x
=

ξ(ξ − λ− 1)

(ξ − λ)(1 + λ)2
× (ξ − λ)(1 + λ)

x

=
ξ(ξ − λ− 1)

x(1 + λ)
≥ −1

x
.

Similarly, anywhere in the domain,

|F ′y| =
∣∣∣∣− ξ(ξ − λ− 1)

(ξ − λ)(1 + λ)2
× 1 + λ

y

∣∣∣∣
=
ξ(λ+ 1− ξ)

(ξ − λ)x
≤ 2

x
,

|F ′x| =
∣∣∣∣ ξ(ξ − λ− 1)

(ξ − λ)(1 + λ)2
× 1

y

∣∣∣∣ ≤ 2

x
,

since
ξ(λ+ 1− ξ)

(ξ − λ)
≤ 2 holds true, for it reduces to 2(eξ−1−ξ) ≥ ξ2. Thus we have:

Proposition 10. If {(x, ζ(x)), (x, y)} ⊂Wη,δ,

|ζ ′′(x)| ≤ 1

η
and |F ′y(x, y)| ≤ 2

η
, |F ′x(x, y)| ≤ 2

η
.

5.5 Proof of Theorem 4

5.5.1 Small variations of ξ

For m > ` ≥ 2, λ > 0 and λ̃ = m−1
`−1
− 1 = λ+ λ

`−1
, ξ = ξ (λ), ξ̃ = ξ

(
λ̃
)

, we set, for

any real function f ,

∆(f) = f
(
λ̃
)
− f (λ) .

Then we have:

Proposition 11. For m > ` ≥ 2, λ > 0 , we have∣∣∣∣∆(ξ)− λξ

(1 + λ)(ξ − λ)(`− 1)

∣∣∣∣ ≤ λ2

2 (ξ − λ)3 (`− 1)2 ,∣∣∣∣∆(ln ξ)− λ

(1 + λ)(ξ − λ)(`− 1)

∣∣∣∣ ≤ λ2

8 (ξ − λ)3 (`− 1)2 ,∣∣∣∣∆ (ln (1 + λ))− λ

(1 + λ) (`− 1)

∣∣∣∣ ≤ λ2

2 (1 + λ)2 (`− 1)2 .
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Proof. We need a bound for

|ξ′′ (λ) | = ξ

1 + λ

2λ− ξ
1 + λ

1 + λ− ξ
(ξ − λ)3

≤ 1

(ξ − λ)3 .

Thus, ∣∣∣∣ξ̃ − ξ − λ

`− 1
ξ′ (λ)

∣∣∣∣ ≤ 1

(ξ(λ)− λ)3

λ2

2 (`− 1)2

≤ λ2

2 (ξ − λ)3 (`− 1)2 .

In order to bound
∣∣∣ln ξ̃ − ln ξ

∣∣∣, after some computations starting from:

(ln ξ)′′ =
ξ′′ξ − ξ′2

ξ2
,

we obtain: ∣∣(ln ξ)′′∣∣ =

∣∣∣∣(ξ − 2λ)(ξ − λ) + λ

(1 + λ)2(ξ − λ)3

∣∣∣∣
≤ 1

4(ξ − λ)3
,

since

|(ξ − 2λ)(ξ − λ) + λ| ≤ max ((2λ− ξ)(ξ − λ), λ) ≤ max

(
λ2

4
,
(1 + λ)2

4

)
,

yielding a bound, for the second derivative, that entails the desired result.

5.5.2 Final argument

Now we can use Theorem 6 to bound the error $ in the approximation of the
transition probability r (m, `) by ρ (λ) = e−ξ:

|r (m, `)− ρ (λ)| = $ (m, `) .

Set :

r̃ (m, `) =
ψ (m− 1, `− 1)

ψ (m, `)
,

so that :

$ (m, `) ≤ |r (m, `)− r̃ (m, `)|+
∣∣∣∣r̃ (m, `)− ρ

(
m− `
`

)∣∣∣∣
= $1 (m, `) +$2 (m, `) .
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First :

$1 (m, `) ≤ ψ (m− 1, `− 1){
m
`

} |χ (m, `)− χ (m− 1, `− 1)| .

Since

0 ≤
{
m−1
`−1

}{
m
`

} ≤ 1,

we have

ψ (m− 1, `− 1){
m
`

} ≤ ψ (m− 1, `− 1){
m−1
`−1

}
=

1

1 + χ (m− 1, `− 1)
.

According to Theorem 6,

χ (m− 1, `− 1) = O
(

1

`

)
,

thus, for ` large enough, χ (m− 1, `− 1) ≥ −1
2

and

$1 (m, `) ≤ 2|χ (m, `) |+ 2|χ (m− 1, `− 1) | = O
(

1

`

)
,

Now, for some u ∈ [0, 1],

$2 (m, `) = e−ξ
(
eθ(m,`) − 1

)
= e−ξ+uθ(m,`)θ (m, `)

in which θ (m, `), that turns out to be O
(

1
`

)
, is defined as follows :

θ (m, `) = ξ + lnψ (m− 1, `− 1)− lnψ (m, `) .

We write

θ (m, `) = A+B,

with

A = ln

(
eξ̃ − 1

eξ − 1

)`(
ξ

ξ̃

)m
= `

(
ln

(
eξ̃ − 1

eξ − 1

)(
ξ

ξ̃

)1+λ
)

− = `

(
ln

(
eξ̃(1 + λ)

eξ(1 + λ̃)

)(
ξ

ξ̃

)λ)
,

A

`
= ∆ (ξ)− λ∆ (ln ξ)−∆ (ln(1 + λ)) ,

2B = −∆ (2ξ + ln(ξ − λ)) + ∆ (ln(1 + λ))− ln

(
1− 1

`

)
.
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The factor ` in A is the reason why we need the second order approximations of
Section 5.5.1. Now we see, from Proposition 11, that :

lim
`
B = lim

`
A = 0,

so that
lim
`
r (m, `)− ρ

(
m−`
`

)
= 0.

But, more precisely, Proposition 11 entails:∣∣∣∣A`
∣∣∣∣ ≤ λ2

2 (1 + λ)2 (`− 1)2

(
1 +

(
1 + λ

ξ − λ

)3
)
,

that is, A = O
(

1
`

)
. Now, for B, since λ → ξ (λ), λ → ξ (λ) − λ, λ → ln (1 + λ),

are increasing and concave, then λ → ln (ξ (λ)− λ) is increasing and concave too,
being composed with an increasing and concave function, so, due to Taylor-Lagrange
formula, all these functions satisfy:

|∆f | ≤ λf ′ (λ)

`− 1
,

and that yields:

|∆ξ| ≤ ξλ

(1 + λ) (ξ − λ) (`− 1)
,

|∆ ln (1 + λ)| ≤ λ

(1 + λ) (`− 1)
,

|∆ ln (ξ − λ)| ≤ λ2e−ξ

(ξ − λ)2 (`− 1)
.

Also, for ` ≥ 1
2
, ∣∣∣∣ln(1− 1

`

)∣∣∣∣ ≤ 2 ln 2

`
,

so that, using (46),

|B| ≤ max
( ξλ

(1 + λ) (ξ − λ) (`− 1)

+
λ2e−ξ

2 (ξ − λ)2 (`− 1)
,

λ

2 (1 + λ) (`− 1)
+

ln 2

`

)
≤ max

(
ξ

`− 1
+

(1 + λ)2 e−ξ

2 (`− 1)
,
1 + 2 ln 2

2 (`− 1)

)
,

≤ max

(
ξ

`− 1
+

1 + λ

2 (`− 1)
,

3

2 (`− 1)

)
≤ 3 (1 + λ)

2 (`− 1)
,
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and, using (46) again, for (m, `) ∈W3,δ,

|θ (m, `) | ≤ |A+B| ≤ 3 (1 + λ)

2 (`− 1)
+

λ2`

2 (1 + λ)2 (`− 1)2

(
1 +

(1 + λ)6

λ3

)
≤ 3 (1 + λ)

2 (`− 1)
+

21(1 + λ)4`

40λ (`− 1)2

≤ 3 (1 + λ)

2 (`− 1)
+

63(1 + λ)4

80λ (`− 1)

≤ 6 (1 + λ)4

5λ (`− 1)
≤ 6 (1 + δ)4

5δ3 (`− 1)
≤ 20

δ3`
,

so that, for δ ≤ λ ≤ δ−1 and ` ≥ 20δ−3, we have |θ| ≤ 1 and

|$2 (m, `) | = e−ξ+uθ(m,`)|θ (m, `) |
≤ e|θ(m,`)||θ (m, `) |

≤ 20e

δ3`
.

For instance, this holds true for (m, `) ∈W40δ−4,δ.

5.6 Explicit bounds for the second order asymptotics of
{
m
`

}
In this section, we provide detailed computations in order to bound |χ(m, `)|, thus
completing the proof of Theorem 6.

5.6.1 Taylor coefficients

As usual, the derivatives of a characteristic function such as Φ are bounded as
follows: ∣∣Φ(k) (θ)

∣∣ =
∣∣∣E [(iZ)k eiθZ

]∣∣∣ ≤ E
[
Zk
]
,

thus, due to (36), we need the first moments of the Poisson distribution, given by
the Touchard polynomials:(

E
[
Zk
])

1≤k≤5
=
(
ξ, ξ2 + ξ, ξ3 + 3ξ2 + ξ, ξ4 + 6ξ3 + 7ξ2 + ξ,

ξ5 + 10ξ4 + 25ξ3 + 15ξ2 + ξ
)
, (52)
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in order to compute the coefficients in the Taylor-Laplace formula for g, for the
derivatives of g are obtained through the Leibniz rule, as follows:

g(θ) =
e−i(1+λ)θ

1− e−ξ
(
Φ(θ)− e−ξ

)
,

g′(θ) =
e−i(1+λ)θ

1− e−ξ
(
−i (1 + λ)

(
Φ(θ)− e−ξ

)
+ Φ′(θ)

)
,

g′′(θ) =
e−i(1+λ)θ

1− e−ξ
(
− (1 + λ)2 (Φ(θ)− e−ξ

)
− 2i (1 + λ) Φ′(θ) + Φ′′(θ)

)
,

g(3)(θ) = . . .

g(4)(θ) = . . .

g(5)(θ) =
e−i(1+λ)θ

1− e−ξ
(
− i (1 + λ)5 (Φ(θ)− e−ξ

)
+ 5 (1 + λ)4 Φ′(θ) + 10i (1 + λ)3 Φ′′(θ)

− 10 (1 + λ)2 Φ(3)(θ)− 5i (1 + λ) Φ(4)(θ) + Φ(5)(θ)
)
.

This gives the coefficients in the Taylor-Laplace inequality:∣∣∣∣g (θ)− g (0)− g′ (0) θ − g′′ (0)
θ2

2
− g(3) (0)

θ3

6
− g(4) (0)

θ4

24

∣∣∣∣
=

∣∣∣∣∫ θ

0

g(5) (u)

5!
(θ − u)5 du

∣∣∣∣ ≤ θ5

120
sup
[0,θ]

∣∣g(5) (u)
∣∣ ,

that is:

g(0) = 1,

g′(0) =
1

1− e−ξ
(
−i (1 + λ)

(
1− e−ξ

)
+ iξ

)
,

=
1

1− e−ξ
(−iξ + iξ) = 0,

g′′(0) =
1 + λ

ξ

(
− (1 + λ)2 (1− e−ξ)+ 2 (1 + λ) ξ − ξ − ξ2

)
= −2v,

= (1 + λ) (λ− ξ) ,
g(3)(0) = 6τ = i (1 + λ)

(
ξ2 + 3ξλ+ λ (1 + 2λ)

)
,

g(4)(0) = 24γ = (1 + λ)
(
ξ3 + ξ2 (3− 4λ) + 6λ2ξ − λ

(
3λ2 + 3λ+ 1

))
,

computations needed in order to bound the coefficients in (40).
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5.6.2 Upper bound for C000

Finally, for θ ∈ R, the fifth derivative is bounded as follows:∣∣g(5)(θ)
∣∣ ≤ 1 + λ

ξ

(
(1 + λ)5

∣∣Φ(θ)− e−ξ
∣∣+ 5 (1 + λ)4 ξ + 10 (1 + λ)3 ξ (ξ + 1)

+ 10 (1 + λ)2 ξ
(
ξ2 + 3ξ + 1

)
+ 5 (1 + λ) ξ

(
ξ3 + 6ξ2 + 7ξ + 1

)
+ ξ

(
ξ4 + 10ξ3 + 25ξ2 + 15ξ + 1

) )
≤ 2 (1 + λ)6

λ
+ (1 + λ)

(
5 (1 + λ)4 + 10 (1 + λ)3 (λ+ 2)

+ 10 (1 + λ)2 (ξ2 + 3ξ + 1
)

+ 5 (1 + λ)
(
ξ3 + 6ξ2 + 7ξ + 1

)
+
(
ξ4 + 10ξ3 + 25ξ2 + 15ξ + 1

) )
≤ 12 (1 + λ)6

λ
+ (1 + λ)

(
5 (1 + λ)4 + 10 (1 + λ)2 (ξ2 + 3ξ + 1

)
+ 5 (1 + λ)

(
ξ3 + 6ξ2 + 7ξ + 1

)
+
(
ξ4 + 10ξ3 + 25ξ2 + 15ξ + 1

) )
≤ 46 (1 + λ)6

λ
= C4 (λ) ,

in which we use again and again λ ≤ ξ ≤ 1 + λ and λ (2 + λ) ≤ (1 + λ)2, cf. Figure
6.

Figure 6: Computations: 46 ≥ 45.4.

Thus we just proved that:∣∣g (θ)−
(
1− vθ2 + τθ3 + γθ4

)∣∣ ≤ T (λ) |θ|5, (53)

in which T (λ) = C4 (λ) /120. This leads to C000 ≤ T (λ) /3, contributing to the
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bound for |χ(m, `)| through√
v`

π
K

(000)
` ≤

√
v`

π
C000 ` θ

6
0 ≤

(1 + λ)7

10λ
ln(`)6 `−3/2,

so that λ ∈ (δ, δ−1) entails√
v`

π
K

(000)
` ≤ 7 δ−8 ln(`)6 `−3/2.

In the next sections, we shall also use the following inequalities:

|γ̃| ≤ 13

24
(1 + λ)4 , |γ| ≤ 7

24
(1 + λ)4 , |τ | ≤ (1 + λ)3 , λ ≤ 2v ≤ 1 + λ. (54)

5.6.3 Upper bound for C001

The choice γ̃ = γ − v2

2
insures that

κ7(θ) = 1− vθ2 + τθ3 + γθ4 − e−vθ2+τθ3+γ̃θ4

= O
(
θ5
)
,

so that

sup
{
|κ7(θ)||θ|−5, |θ| ≤ θ0

}
= C5 < +∞.

Then C001 = C5/3, and, as a function of λ, C001 is bounded for λ ∈ [δ, δ−1], for any
choice of δ ∈ (0, 1), just like T (λ), C000, and the other coefficients in relation (40).
More precisely, for C5, for instance, we have∣∣∣τ

v

∣∣∣ ≤ (1 + λ)3

2λ
,

∣∣∣∣ γ̃v
∣∣∣∣ ≤ 13 (1 + λ)4

12λ
.

For δ ≤ λ ≤ δ−1, and ` large enough, we have θ0 =
ln `√
`
≤ δ3

2 (1 + δ)4 , thus |θ| ≤ θ0

entails that

<(u) = <
(
−vθ2 + τθ3 + γθ4

)
= −vθ2 <

(
1− τ

v
θ − γ̃

v
θ2
)
≤ 0,

and , as a consequence, ∣∣∣∣e−u − 1 + u− u2

2

∣∣∣∣ ≤ |u|36
.

Then

|κ7(θ)| ≤ |u|
3

6
+

1

2

∣∣u2 − v2θ4
∣∣ ,

but, since θ0 ≤ 1,

|u|3 ≤ (v + |τ |+ |γ|)3 θ6 ≤ 3 (1 + λ)12 θ6,
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and ∣∣u2 − v2θ4
∣∣ ≤ 3 (1 + λ)8 θ5.

Finally
|κ7(θ)| ≤ 2 (1 + λ)12 θ5,

and C001 = (1 + λ)12 does the trick. Finally, λ ∈ (δ, δ−1) entails that the corre-
sponding contribution to |χ(m, `)| is bounded as follows :√

v`

π
K

(001)
` ≤

√
v`

π
C001

ln6 `

`2
≤ 212 δ−13 ln(`)6 `−3/2.

5.6.4 Upper bound for C0020 and for C0021

First, inequality (39) holds true, for instance, when

` ln−2 ` ≥ 16 δ−2,

while inequality (38) holds true if `|γ̃|θ4
0 ≤ ln 2, for instance if

` ln−4 ` ≥ 16 δ−4/ ln 2.

Then
2
√
π v−7/2

(
−τ 2 + γ̃2

)
`−5/2 ≤ C0020`

−5/2

holds true if one chooses:

C0020

√
π/v = 24 (1 + λ)8 λ−3.

Finally, λ ∈ (δ, δ−1) entails that the corresponding contribution to |χ(m, `)| is
bounded as follows : √

v`

π
K

(0020)
` ≤ 3× 211 δ−11 `−2.

Similarly √
v`

π
K

(0021)
` ≤ |γ̃|v−2`−1 ≤ 50 δ−6 1

`
.

5.6.5 Upper bound for K
(1)
`

According to (41), ∣∣∣K(1)
`

∣∣∣ ≤ 2π`−h(ξ) ln(`) = o
(
`−3/2

)
,

we have ∣∣∣K(1)
`

∣∣∣ ≤ 2π`−2 = o
(
`−3/2

)
,

as desired, provided that:

` ≥ exp

(
2

h (ξ (λ))

)
, ∀λ ∈

(
δ, δ−1

)
.

Due to the variations of h, ξ, this amounts to:

` ≥ max

(
exp

(
2

h (ξ (δ))

)
, exp

(
2

h (ξ (δ−1))

))
.
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5.6.6 Conclusion

Finally, for λ ∈ (δ, δ−1) and ` large enough (be more precise),

|χ(m, `)| ≤ 50 δ−6 1

`
+ o(`−1),

more precisely,

|χ(m, `)| ≤ 50 δ−6 1

`
+ 3× 211 δ−11 `−2 + 5 000 δ−13 ln(`)6 `−3/2.
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