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Abstract 23 

 24 

The increasing international interest in contemporary architecture has drawn attention 25 

to the numerous listed buildings made of reinforced concrete in Europe, and 26 

especially in France. The main source of deterioration of this cultural heritage is the 27 

corrosion of rebars through carbonation or chloride contamination, but also often by a 28 

combination of both. The present study explored this combined corrosion mechanism 29 

in reinforced concretes, and investigated Electrochemical Chloride Extraction (ECE) 30 

as a technique to stop or decrease corrosion. The analytical approach was based on 31 

physico-chemistry, electrochemical measurements, Raman spectroscopy and SEM 32 

examinations. The results evidenced the aggressiveness of the combined 33 

carbonation and chloride-induced corrosion, and demonstrated the efficiency of the 34 

ECE treatment in terms of chloride extraction and reduction of corrosion rate. It 35 

appears that ECE treatment only reduces corrosion activity by increasing pH to a 36 

value of 10. Nevertheless, the long term durability of the treatment is questionable as 37 

the return to a sound concrete passivity is not obtained.  38 

 39 
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1 Introduction 44 

Concrete is now part of the world cultural heritage landscape, as evidenced by the 45 

recent Unesco listing of the famous German Bauhaus architecture, the Polish 46 

Centennial Hall in Warsaw and the center of the French city Le Havre (rebuilt by 47 

Auguste Perret) for their outstanding universal value [1].  48 

The Redmonest European Project revealed that at least 1500 buildings made of 49 

concrete are now registered in Belgium, France, and Spain. The survey performed 50 

within the project shows that the protection of this contemporary heritage is 51 

exponential in France, where the number of listed concrete monuments increased 52 

from 200 in the 1990's to more than 800 in the 2010's [2, 3]. 53 

This architectural heritage is unfortunately affected by several types of deterioration, 54 

the most deleterious of which is certainly rebars corrosion. Several phenomena are 55 

involved in this process. The oldest of these historic concretes were cast at a time 56 

when mix design or casting were still a new and developing technology, meaning that 57 

poor initial concrete quality or insufficient concrete covers can sometimes be 58 

encountered. It is usual to measure carbonation depth of several centimeters in 59 

concrete made in the 1920s or 1940s, with open porosity of up to 20% [4, 5]. When 60 

those carbonated concretes are subjected to marine chlorides or to de-icing salts, the 61 

double contamination can contribute to severe corrosion. In historic concrete, this 62 

leads to a massive and unacceptable loss of original materials.  63 

The standard technique to cure this deterioration is patch repair. However, the 2007 64 

CONREPNET European project showed that patches for repairing reinforced 65 

concrete corrosion were not efficient over time [6]. Among the reasons for this lack of 66 

durability, the compatibility of the patch materials with the parent historic concrete 67 
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was the main reason for early failure (within 2 years). The authors suggest that 68 

longer term failure could be attributed to the location of the repair patch, which only 69 

concerns the spall area and not the surrounding concrete, which is still carbonated or 70 

chloride polluted. There was therefore a need for additional treatments to address 71 

degradations induced by corrosion. Electrochemical realkalization and chloride 72 

extraction were studied for this purpose [7-11].  73 

Corrosion has been extensively studied in chloride-polluted concrete [12-22] or in 74 

carbonated reinforced concrete [23, 24], but the combined effect of the two 75 

contaminants has rarely been investigated.  76 

The primary aim of the present study was to investigate the corrosion mechanism 77 

resulting from combined carbonation and chloride contaminations. This issue was 78 

explored using artificially carbonated concrete with either endogenous (chloride 79 

added to the mix) or exogenous (wet and dry cycles) chlorides.  80 

In a second step, an electrochemical chloride extraction was studied. Chloride 81 

content, pH evolution, and corrosion rates were characterized. Special attention was 82 

paid to the evolution of corrosion products during treatment using an analytical 83 

approach that combined Raman micro-spectroscopy and SEM observations. 84 

2 Materials and methods 85 

2.1 Samples and ageing procedures 86 

The reinforced micro-concrete samples were cylinders (10 cm high and 4 cm 87 

diameter) with a central rebar. Two cements were studied, namely an ordinary 88 

Portland cement (CEM I) and a blast furnace slag cement (CEM III/A). These two 89 

cements are of interest: the former was widely used for many years, and the latter 90 

was extensively used between the two world wars and its use is currently increasing. 91 
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Rebar was composed of smooth carbon steel with a diameter of 5 mm and an active 92 

surface of 10cm² delimited with cataphoretic paint (Fig. SI1-1). A rather high 93 

water/cement ratio (0.65) was used for concrete formulation to obtain high porosity 94 

and thus accelerate the ingress of contaminants (carbonation and chloride ions). This 95 

high water/cement ratio is representative of the ratio used in historic concretes.  96 

Four sample series were prepared based on two criteria, namely: 97 

- Contamination content, i.e. either chlorides added to the mix and followed by 98 

carbonation (referenced G), or carbonation followed by wetting/drying cycles in 99 

a salted solution (referenced I), and 100 

- Cement type (CEM I or CEM III/A, respectively referenced 1 and 3).  101 

Therefore, four series named G1, G3, I1, and I3 were studied  102 

A precise description of the sample production and contamination can be found in 103 

Supplementary Information 1.  104 

2.2 Electrochemical chloride extraction 105 

The electrochemical chloride extraction (ECE) treatment is illustrated in Figure 1. 106 

ECE was conducted on 37 specimens of each sample series. A cathodic current 107 

density of -100 µA/cm² of steel was applied with a power supply between the rebar 108 

and a titanium/platinum grid (counter-electrode) for 8 weeks, corresponding to a total 109 

charge of 1344 A.h/m². These current density and duration conditions are in 110 

accordance with those reported in the technical specification or standards for chloride 111 

extraction [25] and realkalization [26]. A disodium tetraborate solution (25g/L of 112 

Na2B4O7 10H2O) electrolyte was used as a 9 pH buffer corresponding to a 113 

carbonated concrete. Moreover, some samples were immersed in the electrolyte then 114 
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studied to evaluate the lixiviation of chloride ions without current (no polarization). 115 

Three samples from each series were analyzed after 3, 7, 14, 28, and 56 days of 116 

treatment: two were dedicated to destructive analysis and the third was used for non-117 

destructive electrochemical characterizations.  118 

2.3 Analytical techniques 119 

2.3.1 Phenolphthalein test 120 

Phenolphthalein (0.5 % in ethanol) was used to determine realkalization progress 121 

during the treatment. A pink color is obtained for a pH of 9 or more, whereas the 122 

concrete remains colorless for lower pH values. 123 

2.3.2 Chloride titration 124 

Regarding the chloride extraction evolution, the free and total chloride contents of 125 

concrete were measured by AgNO3 potentiometric titration [27-28] on the first 126 

centimeter around the rebar on two of the three samples. The free and total chloride 127 

contents of concrete were simultaneously determined on the non-polarized samples 128 

after 14, 28 and 56 days.  129 

2.3.3 Electrochemical characterizations 130 

Electrochemical characterizations were conducted at each step of the set-up: after 131 

curing, after ageing (chloride or carbonation or reverse) and during ECE treatment 132 

(depending on the treatment duration). Linear polarization resistance (LPR) and 133 

electrical concrete resistance Re were measured using a 5-channel Bio-Logic 134 

VMP2Z potentiostat (details in SI2). Corrosion rate icorr (µA/cm² of steel) was 135 

calculated according to the Stern-Geary equation (Eq.1) 136 

icorr = B/(Rp.S)     (Eq. 1) 137 
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Where [29]: B = 26 mV, Rp (ohm) is obtained from the linear polarization resistance 138 

and the electrical concrete resistance (Re), and S is the active steel surface (10 cm² 139 

in this study).  140 

2.3.4 Raman micro-spectroscopy  141 

The Raman spectrometer equipment was a HORIBA Jobin Yvon LABRAM consisting 142 

of an Olympus BX40 microscope confocally coupled to a 300 mm focal length 143 

spectrograph. The latter was equipped with a holographic grating (1800 grooves/mm) 144 

and a Peltier-cooled CCD detector (1024 × 256 pixels). The spectra were obtained 145 

with 632.817nm radiation from an internal 10mW HeNe laser with neutral density 146 

filters and 0.7mW attaining the surface of the sample to avoid any thermal effect. For 147 

in situ studies, a 50× ULWD (Ultra-Long Working Distance) allows the recording of 148 

Raman spectra with a working distance of 8 mm. 149 

Electrodes for in situ Raman spectroscopy were specially designed for this study. As 150 

shown in Figures SI1-2, Raman spectroscopy samples were cut from double- 151 

contaminated concrete samples. A glass window was glued on top of the freshly 152 

polished sample shortly before the experiment, as represented in Figure 2. The 153 

electrode was immersed window-up in disodium tetraborate solution with 5mm left 154 

outside the electrolyte to ensure that the steel was polarized in a pore solution that 155 

had to cross 17.5 mm of concrete and had no direct contact with the atmosphere. 156 

Spectra were recorded solely at the rebar concrete interface. Spectra during 157 

corrosion initiation were obtained at open circuit potential. Treatment was then 158 

applied with an Autolab galvanostat using the same current density (-100 µA/cm2) as 159 

previously described. Spectra were then recorded for each sample subjected to 160 

cathodic polarization.  161 
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3 Results and discussion 162 

3.1 Initial characterizations  163 

Table 1 shows the characterizations of chloride content, pH, and corrosion rate 164 

before treatment.  165 

Levels of chloride content in the samples were sufficiently high compared to critical 166 

content to induce corrosion [30] and was found to be within the range of chloride 167 

threshold provided in states of the art [12, 13].  168 

The pH value of the 17.5 mm concrete cover was close to 9 (phenolphthalein was 169 

colorless) demonstrating the complete carbonation of the concrete samples [31-33].  170 

Corrosion rates indicated a passive state for sound concrete. However, corrosion 171 

current in the carbonated and chloride-contaminated samples was close to 10 172 

µA/cm² for all four series, and corresponded to a high level of corrosion in reinforced 173 

concrete [29]. This value was higher than those observed in samples with a single 174 

contaminant, and highlighted the aggressiveness of the combined contamination 175 

(Table 1).  176 

3.2 Chloride extraction 177 

During the ECE treatment, the negatively charged chloride ions migrated from the 178 

rebar to the electrolyte. The efficiency of the electrochemical chloride extraction 179 

treatment was considered to be the ratio of the initial chloride content minus the 180 

remaining chloride content (after each duration time) divided by the initial chloride 181 

content. Figure 3 presents the results of the chloride extraction efficiency versus 182 

treatment duration for the I1 series and for the corresponding non-polarized samples. 183 

Chloride ions were in a free form because carbonation induced a release of bonded 184 

chlorides (as evidenced by the free and total chlorides content values, which are 185 
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similar in Figure 3). As the four series all showed the same behavior, the results of 186 

the three other series can be found in Figure SI3. 187 

For the treated samples, an increase of extracted chloride content with increased 188 

treatment duration was observed for the four series. Moreover, the extraction was 189 

found to be more efficient during the initial stage of the treatment, as previously 190 

described by different authors [34-36]. After 28 days, the efficiency of the extraction 191 

was close to 90% for G1, G3 and I1 and was close to 75% for I3 samples (Figure 3 192 

and Figure SI3-1). These high extraction efficiencies can be explained by a porous 193 

and thin concrete cover, and by chloride ions that are likely in the free form. The 194 

extraction of chloride ions was also observed for the non-polarized samples, but was 195 

attributed to a lixiviation phenomenon.  196 

Chloride extraction resulting from the electrochemical treatment was faster than the 197 

lixiviation phenomenon (similar values were obtained only after 56 days).  198 

In an in situ situation involving better quality concrete with better quality (thicker 199 

and/or less porous), ECE treatment would require a longer duration. In this case, the 200 

end of the treatment correspond to the attaining of a chloride content target, for 201 

example.  202 

3.3 pH evolution  203 

During treatment, water hydrolysis leads to hydroxyl ion formation. An increase of 204 

concrete pH around the rebar is therefore expected. Figure 4a presents the results of 205 

the pH evolution (pink ring thickness) versus treatment duration for the four series. 206 

Figures 4b and 4c show pictures of the phenolphthalein color after 28 and 56 days for 207 

I1 series. The thickness of the realkalized concrete around the rebar increased with 208 

time. According to [26], the treatment is efficient if the realkalized concrete around the 209 
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rebar is equal to the diameter of the rebar if the latter measures less than one 210 

centimeter in diameter, or 1 cm for larger rebar diameters. The results shown in 211 

Figure 4a demonstrate that the realkalization was efficient after 14 days for all four 212 

series: the ring thickness was larger than the 5 mm rebar diameter. After 56 days of 213 

treatment, it was equal to 9, 10, 12 and 14 mm respectively for G3, G1, I1, and I3 214 

series., As expected, no realkalized ring was observed for the non-polarized 215 

samples. 216 

3.4 In situ Raman micro spectroscopy  217 

Before treatment, an induction time of 12 hours to 5 days was compulsory to obtain 218 

active corrosion around the rebar after immersion in tetraborate solution. Control of 219 

the corrosion current gave the same order of magnitude (10 to 50 µA/cm2) as those 220 

observed in previously described samples. The higher values were attributed to the 221 

rebar cross section that was also exposed to the pore solution.  222 

Raman spectra obtained at this stage are reported on Figure 5a and 5c with 223 

reference Raman spectra of Green Rust (GR) grown respectively in chloride (Figure 224 

5b) or carbonate (Figure 5d) solution according to the protocols described in SI1-2. 225 

The four series tested mainly showed spectrum 5a, while some spots on G1 samples 226 

indicated spectrum 5c.  227 

The main differences between the two types of Green Rust spectra are the gap and 228 

the position between the two main bands, which are respectively 70 cm-1 [500-430] 229 

for GR(Cl-) and 75 cm-1 [510-435] for GR(HCO3
-), and the presence of two smaller 230 

bands at 320 and 360 cm-1 for GR(Cl-). Clearly spectrum a) is linked to GR(Cl- ) ; 231 

while spectrum 5c is attributed to GR(CO3
2-).  232 
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The presence of these compounds attests a fast corrosion process in which chloride 233 

is incorporated within corrosion products as the anions in Green Rust structure to 234 

counterbalance the presence of iron III. GR(Cl-) are known to be thermodynamically 235 

unfavored compared to carbonate (or sulphate)-based GRs [37]. The localized 236 

observation of GR(CO3
2-) on G samples shows inhomogeneous distribution of 237 

chloride ion concentration in pore solution. 238 

The stability of GR spectra over several days also shows that our setup efficiently 239 

protects the concrete rebar interface from atmospheric oxidation. This reflects the 240 

situation in real concrete, where oxygen penetration is a slow process [38].  241 

During treatment, once corrosion was proved to occur by the formation of spots of 242 

Green Rust, a cathodic current of -100 µA/cm2 was added to the system. Raman 243 

spectra were periodically recorded during this treatment. The spectra observed 244 

during the reduction process are depicted in Figure 6 for I1 sample.  245 

After polarization is turned on, the characteristic band of magnetite Fe3O4 appears at 246 

670 cm-1. With time, a progressive increase is observed in magnetite bands, causing 247 

a decrease in Green Rust bands until they almost completely disappear. All the 248 

studied series behaved in the same manner, the only differences being the induction 249 

time and the growing rate of magnetite, which both varied from one sample to the 250 

other (SI 4). However, magnetite was the predominant band for all samples after 24 251 

hours of polarization.  252 

After longer polarization time (more than one day), new Raman spectra were 253 

recorded for a few spots around the rebar. They are depicted in Figure 7a for I1 254 

sample and in Figure 7b for G3 sample. Similar behavior was also recorded for I3 255 

sample (not shown). No information was obtained for G1 sample after 24 hours due 256 
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to a high interface fluorescence. Figure 7a presents the evolution of the Green Rust 257 

bands, with a rapid decrease in the intensity of the 500 cm-1 band compared that of 258 

the 430 cm-1 band. A shift of the 430 cm-1 band towards a lower wavenumber (410 259 

cm-1) is also observed. Moreover, after 2 days a new band appears in the 3600 cm-1 260 

range (see insert in Figure 7a) corresponding to O-H stretching vibration at 3575 261 

cm-1. These values were in accordance with reference [39] and indicated the 262 

formation of Fe(OH)2 in I1 series. In Figure 7b, after 3 days of treatment, two new 263 

bands appeared in the Raman spectrum: 205 cm-1 and 280 cm-1. They correspond to 264 

mackinawite Fe1-xS [40] in G3 series (also observed for I3 series, not shown). The 265 

presence of sulfide is due to the blast furnace material contained in cement 3 (CEM 266 

III/A) [22].  267 

 268 

In situ Raman spectroscopy analysis of the chloride extraction treatment made it 269 

possible to collect information on corrosion mechanisms. First, as expected in a 270 

medium pH range containing anions such as chloride, carbonate, or sulfate, rebar 271 

corrosion takes place through the formation of Green Rust [41]. This iron II 272 

hydroxide-based compound contains some iron III ions, and the balanced charge is 273 

compensated with anions originating from the solution, mainly chlorides in this case. 274 

A progressive transformation of Green Rust into magnetite was evidenced during 275 

cathodic polarization, as pH in the pore solution near the rebar increases due to the 276 

reduction process. The literature indicates that a pH of around 10-11 is necessary for 277 

this transformation to take place [42]. Raman spectroscopy showed this process to 278 

be relatively fast compared to the treatment duration, and also evidenced the rapid 279 

release of chloride anions inserted in corrosion products. 280 
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However, the local formation of iron II compounds that can be easily oxidized [39-40, 281 

43], (hydroxide in CEM I and sulfide in CEM III/A) during long polarization durations, 282 

while GR and magnetite are hardly visible in the Raman spectra, is a clear indication 283 

of corrosion that is still active in some spots around the rebar. 284 

3.5 Corrosion rate 285 

ECE treatment aims to decrease or even stop reinforcement corrosion. Figure 8 286 

presents the results of corrosion rates versus treatment duration. These 287 

measurements were performed 3 months after the end of the treatment period in 288 

order to allow the system to recover a stable state (with the exception of time 0). For 289 

the four series, the ECE treatment leads to a decrease of the corrosion rates over 290 

time, with two or three orders of magnitude (log scale). From days 14 to 56 of 291 

treatment (corresponding to durations after which free chloride content was below 292 

0.4%), corrosion rates decreased to values below 0.1 µA/cm².  293 

Corrosion rates remained in the range 1 to 10 µA/cm² in the non-polarized samples, 294 

where chloride ions had been removed by lixiviation but were still carbonated.  295 

These results show that chloride extraction and pH increase are both needed to slow 296 

down the corrosion of the reinforcement and that realkalization is mandatory.  297 

Raman spectroscopy shows that the chloride ions that are bonded to the corrosion 298 

products were released at the beginning of the cathodic treatment and were therefore 299 

completely extracted. On the lixiviated samples, the chlorides that were bonded to 300 

the corrosion products remained at the rebar/concrete interface. They can be 301 

released by the oxidation of GR into iron III oxyhydroxides, and can thus cause 302 

further corrosion.  303 
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Nevertheless, corrosion rates for after treatment remained one order of magnitude 304 

higher than for the sound concrete for all contaminated samples. The passive state of 305 

the rebar in the sound concrete was not therefore recovered in the samples. This was 306 

confirmed by the presence of iron II revealed by Raman spectroscopy, indicating that 307 

corrosion was still active on some spots.  308 

3.6 Durability 309 

In a previous study dealing with an impressed current realkalization treatment applied 310 

to carbonated reinforced concrete, the pH increased from 9 to 10-11 after treatment 311 

(quantitative pH determination from powders in solution), inducing a decrease in the 312 

corrosion rates [44, 45]. Although the pH remained constant with time, corrosion 313 

rates gradually increased again, and finally reached the corrosion rate values 314 

observed for untreated carbonated reinforced concrete 30 months after the end of 315 

treatment. This behavior was explained by the fact that the increase in pH was not 316 

sufficient, as the sound pH concrete value of 13 was not recovered [45]. Identical 317 

cement (CEM I) and mortar composition and similar experimental conditions were 318 

used in this previous study and in the present study. Based on this, the hypothesis of 319 

similar behavior can be assumed. Moreover, Tlili et al. [46] observed a limit for the pH 320 

increase in carbonated solution due to a buffer effect. Figure 9 presents SEM 321 

observations of realkalized samples thirty months and five years after treatment. 322 

They exhibit a doubling of the corrosion layer thickness (15 to 30 µm) over time (30 323 

to 60 months), evidencing a reactivation of corrosion.  324 

Therefore, although the electrochemical treatment applied to reinforced concrete with 325 

a double contamination seems to be efficient in extracting chlorides and reducing 326 

reinforcement corrosion, the long-term efficiency with regard to pH evolution needs to 327 

be examined in greater detail.  328 
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4 Conclusions  329 

This study considers rebar corrosion in combined carbonated and chloride 330 

contaminated concrete. The aggressiveness of the combined contaminants 331 

compared to that of a single one (carbonation or chloride ions) was highlighted by 332 

corrosion rate results and the detection of chlorides in Green Rust by in situ Raman 333 

spectroscopy.  334 

Whatever the cement type and the contamination mode, the efficiency of 335 

electrochemical chloride extraction treatment was demonstrated by 90% chloride 336 

extraction and a decrease of the corrosion rate by three orders of magnitude. An 337 

increase of pH up to a value of 10 was also observed. The same amount of chlorides 338 

was extracted in ECE-treated samples and non-polarized lixiviated samples, but the 339 

corrosion rate retained its initial value in the latter. This shows that a pH increase is 340 

mandatory to reduce corrosion. At a microscale, this can be related to the 341 

transformation of Green Rust into magnetite, as observed by Raman spectroscopy 342 

during the treatment. This pH-driven modification released chloride anions that were 343 

bonded to the corrosion products.  344 

However, the long-term durability of the treatment is uncertain. Corrosion rate 345 

decrease and pH increase did not reach the respective sound concrete values. The 346 

presence of iron II compounds casts doubt on the passivity of the rebar.  347 

This primary aim of this study was to find a restoration solution for historic concretes 348 

affected by both carbonation and chloride contamination than can also be used for 349 

civil engineering structures. In the latter case, permanent Impressed Current 350 

Cathodic Protection (ICCP) can be easily implemented to stabilize the corrosion 351 
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decrease. The invasiveness and the irreversibility of the ICCP treatment are a 352 

challenge in the preservation of historic concretes. 353 
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Figure captions 

 

Figure 1: Electrochemical chloride extraction set-up.  

Figure 2: Top view of the electrode with glass used for in situ Raman spectroscopy.  

Figure 3: Free � and total � fraction of extracted chlorides for the internal part 

during treatment and free � and total � fraction of extracted chlorides for the internal 

part of the non-polarized samples versus treatment duration for I1 series.  

Figure 4: Diameter of realkalized concrete around the rebar versus treatment 

duration for � G1, � I1, � G3,  I3 series (a) and examples of phenolphtalein test 

for I1 samples ((b) 28 and (c) 56 days).  

Figure 5: a), c) In situ Raman spectra of the metal concrete interface after immersion 

in tetraborate solution; b) reference Raman spectrum of GR(Cl-) and d) reference 

Raman spectrum of GR(CO3
2-) 

Figure 6: In situ Raman spectra evolution with polarization time , 600s exposure time, 

a spectrum every 13 minutes, spectra have been offset for sake of clarity. I1 series, 

tetraborate solution, cathodic current I=-100µA/cm2 

Figure 7: In situ Raman spectra evolution with long polarization time; spectra have 

been offset for sake of clarity, tetraborate solution, cathodic current I=-100µA/cm2, a) 

I1 series inset: O-H stretching range and b) G3 series 

Figure 8: Corrosion current for �G1, �G3, � I1� I3 series polarized in tetraborate 

solution and G1, �G3, �I1 �I3 non polarized sample versus treatment duration. 

Figure 9: Corrosion products layers after the realkalization treatment a) 30 months 

after (thickness = 15µm) and b) 60 months after (thickness = 30µm). R: rebar, C: 

concrete 
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Table 1: Characterizations before treatment: corrosion rate (µA/cm²), pH value and 

chloride content (% weight of cement) for the four series.  

 

series 

sound 
concrete  

Cl- 
contaminated 

CO2 

contaminated 
Cl- +CO2                               

contaminated 

Icorr/ µA.cm-²  (standard deviation) pH 

Free 
chloride 
content      

(% 
weight of 
cement) 

G1 0.00 0.02  
10.99 

(1.82) 
9 1.4 

I1 0.00  2.72 
9.34 

(3.27) 
9 0.9 

G3 0.01 0.06  
7.82 

(1.07) 
9 2.1 

I3 0.01  8.80 
9.39 

(4.87) 
9 1.1 
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Highlights 

• High corrosion rate show the aggressiveness of combined contamination (Cl-, 

CO2).  

• Electrochemical chloride treatment is provisionally efficient.  

• Long term durability of ECE is questionable (pH increase is insufficient).  

 

 


