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Abstract  

Dynorphin is a neuropeptide involved in pain, addiction and mood regulation. It exerts its activity 

by binding to the kappa opioid receptor (KOP) which belongs to the large family of G-protein 

coupled receptors. The dynorphin peptide was discovered in 1975, while its receptor was cloned 

in 1993. This review will describe: a) the activities and physiological functions of dynorphin and 

its receptor, b) early structure-activity relationship studies performed before cloning of the 

receptor (mostly pharmacological and biophysical studies of peptide analogues), c) structure-

activity relationship studies performed after cloning of the receptor via receptor mutagenesis and 

the development of recombinant receptor expression systems, d) structural biology of the opiate 

receptors culminating in X-ray structures of the four opioid receptors in their inactive state and 

structures of MOP and KOP receptors in their active state. X-ray and EM structures are combined 

with NMR data, which gives complementary insight into receptor and peptide dynamics. 

Molecular modelling greatly benefited from the availability of atomic resolution 3D structures of 

receptor-ligand complexes and an example of the strategy used to model a dynorphin-KOP 

receptor complex using NMR data will be described. These achievements have led to a better 

understanding of the complex dynamics of KOP receptor activation and to the development of 

new ligands and drugs. 

Keywords: membrane protein, GPCR, site-directed mutagenesis, heterologous expression 

systems, NMR, X-ray crystallography, electron microscopy, molecular dynamics, docking, drug 

design. 
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I.  Dynorphin: a neuropeptide involved in pain, addiction and mood regulation 

Dynorphin is an endogenous neuropeptide first isolated from porcine pituitary (Cox, Opheim, 

Teachemacher, & Goldstein, 1975) with a particularly potent opioid activity (Goldstein, 

Tachibana, Lowney, Hunkapiller, & Hood, 1979). The dynorphin A 1-17 isoform was the first to 

be fully sequenced (Goldstein, Fischli, Lowney, Hunkapiller, & Hood, 1981) and revealed an 

amino-terminal sequence identical to leu-enkephalin opioid peptide (YGGFL) with a basic 

carboxy-terminal extension. Several dynorphin isoforms were further identified: dynorphin A 1-8, 

dynorphin B 1-13, big dynorphin and leumorphin (Charles Chavkin, 2013) (Fig. 1). All 

dynorphin isoforms and α-     β-neo-endorphin, which are also leu-enkephalin-based opioid 

peptides, derive from a common precursor named prodynorphin (C. Chavkin, Bakhit, Weber, & 

Bloom, 1983; Kakidani et al., 1982; Weber, Evans, & Barchas, 1982; Zamir, Palkovits, Weber, 

MEzey, & Brownstein, 1984) while other opioids are derived from the precursors proenkephalin 

and proopiomelanocortin (Charles Chavkin, 2013). Prodynorphin and its processing enzyme, 

prohormone convertase 2 (PC2), are largely expressed in the central nervous system (Berman et 

al., 2000; Civelli, Douglass, Goldstein, & Herbert, 1985) and dynorphin peptides are present in 

presynaptic neurosecretory vesicles (Molineaux & Cox, 1982; Pickel, Chan, & Sesack, 1993; 

Pickel, Chan, Veznedaroglu, & Milner, 1995; Whitnall, Gainer, Cox, & Molineaux, 1983). They 

can be released by membrane depolarization (C. Chavkin, et al., 1983) and subsequently activate 

the kappa opioid receptor (KOP) (Wagner, Evans, & Chavkin, 1991) which modulates 

neurotransmitter release and postsynaptic neural activity (Wagner, Terman, & Chavkin, 1993). 

KOP belongs to the opioid receptor family which is composed of several subtypes, originally 

defined by the pharmacological profiles of the first receptors to be characterized (Dhawan et al., 

1996):     µ     δ  p         p      MOP and DOP). KOP was initially named from 

ketocyclazocine opioid activity (Martin, Eades, Thompson, Huppler, & Gilbert, 1976) and highly 

KOP-specific agonists were synthesized (Dhawan, et al., 1996) such as U50488 (Lahti, 

VonVoigtlander, & Barsuhn, 1982) or U69593 (Lahti, Mickelson, McCall, & Von Voigtlander, 

1985). Opioid receptor cloning led to the identification of a fourth member of the family, the 

nociceptin opioid receptor (NOP), and of its endogenous ligand, nociceptin (J-C. Meunier et al., 
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1995; Mollereau et al., 1994). Several studies reported the cloning of KOP from rodents (Li et al., 

1993; Meng et al., 1993; Yasuda et al., 1993) and then from human  

Figure 1: Dynorphin-related opioid peptides. Met-enkephalin, leu-enkephalin, dynorphin A 1-13 and 

prodynorphin-derived peptides amino acid sequence and affinity for opioid receptors. The common N-

terminal leu-enkephalin "message" sequence is colored in green and C-terminal "address" residues 

conserved with dynorphin A 1-17 in blue. In order to compare affinities in homogenous systems, pKi 

values from (Mansour, Hoversten, Taylor, Watson, & Akil, 1995) are reported where competition binding 

experiments were conducted against rat opioid receptors transiently expressed in COS-1 cells. Binding 

properties have been additionally reviewed from the indicated references from IUPHAR/BPS guide to 

pharmacology (Alexander et al., 2017): 1 (Meng, et al., 1993), 2 (Raynor et al., 1994), 3 (Yasuda, et al., 

1993), 4 (Toll et al., 1998), 5 (Simonin, et al., 1995), 6 (Merg et al., 2006), 7 (J.  Zhu, et al., 1995), 8 (J. 

Zhu, Luo, Li, Chen, & Liu-Chen, 1997). Similar trends are observed despite discrepancies arising from 

differences in experimental models and conditions. 

 

(Simonin et al., 1995; J.  Zhu et al., 1995), showing that it, together with the other opioid 

receptors, belongs to the G-protein-coupled receptors (GPCR) superfamily. Opioid receptors are 

mainly Gi/Go-coupled (Al-Hasani & Bruchas, 2011; Prather et al., 1995). They display a small 

basal intracellular signaling activity, at about 10% of the maximal response for KOP, in the 

absence of any ligand, and this is modulated by extracellular ligand binding (D. Wang, Sun, & 

Sadee, 2007).  

Opioid receptor signaling controls a multitude of intracellular effectors by both G-protein-

dependent and G-protein-independent pathways (Al-Hasani & Bruchas, 2011; Bruchas & 
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Chavkin, 2010; Law, Wong, & Loh, 2000). G-protein-dependent opioid receptor signaling 

predominantly results in neuronal excitability and synaptic transmission inhibition. Gi/Go-protein 

activation promotes G-protein-coupled inwardly rectifying potassium channel (GIRK) activity 

(Barchfeld & Medzihradsky, 1984; Childers & Snyder, 1978; Minneman & Iversen, 1976). It 

causes neuronal membrane hyperpolarization and thus attenuates the neuron’  ability to generate 

and propagate action potentials (Henry, Grandy, Lester, Davidson, & Chavkin, 1995; Sadja, 

Alagem, & Reuveny, 2003; Schneider, Eckert, & Light, 1998). Activation of Gi/Go-proteins also 

inhibits voltage-dependent calcium channels, diminishing calcium influx in response to action 

potentials, and thus prevents neurotransmitter synaptic release (Bourinet, Soong, Stea, & Snutch, 

1996; Rhim & Miller, 1994; Rusin, Giovannucci, Stuenkel, & Moises, 1997; Zamponi & Snutch, 

1998). Activated Gi/Go-proteins also inhibit adenylate cyclase thus decreasing intracellular cyclic 

adenosine monophosphate (cAMP) concentration (Taussig, Iniguez-Lluhi, & Gilman, 1993), 

which in turn regulates numerous targets. Opioid receptors also signal through G-protein-

independent pathways. Following agonist stimulation, they can be intracellularly phosphorylated 

by G protein-coupled receptor kinases (GRKs) leading to receptor             w    β-arrestins 

(Al-Hasani & Bruchas, 2011; Law, et al., 2000). This interaction is involved in receptor 

internalization, one of the consequences of which is to prevent exposition to extracellular ligands. 

It is also responsible for intracellular signaling per se, notably through mitogen activated kinase 

(MAPK) pathways that regulate predominant cellular processes such as gene transcription, 

proliferation and differentiation (Bruchas & Chavkin, 2010; Raman, Chen, & Cobb, 2007). 

Because of their involvement in cellular communication, opioid peptides and their receptors 

participate in numerous physiological processes (Y. Feng et al., 2012). First, opioid receptor 

activation results in spinal and supra-spinal pain modulation (Ahlbeck, 2011; Waldhoer, Bartlett, 

& Whistler, 2004). The afferent nociceptive influx from peripheral tissues is regulated by 

descending neurons and opioid receptors participate in this system at multiple levels (Vanderah, 

2010). As an example, KOP has been found to be present in spinal cord dorsal root ganglia 

(Attali & Vogel, 1989; Corder, Castro, Bruchas, & Scherrer, 2018; Ji et al., 1995) where it 

inhibits synaptic transmission between primary and secondary afferent neurons (Vanderah, 2010) 

in response to agonists released by descending neurons. Opioid peptides and their receptors also 

regulate monoaminergic systems and notably mesolimbic dopaminergic functions (Lutz & 

Kieffer, 2013). KOP agonists inhibit dopamine neuron release activity by their receptor-specific 
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action both in the nucleus accumbens and the ventral tegmental area (Lutz & Kieffer, 2013; 

Margolis, Hjelmstad, Bonci, & Fields, 2003; R. Spanagel, A. Herz, & Shippenberg, 1992), 

resulting in an aversive effect (R. Bals-Kubik, A. Ableitner, A. Herz, & Shippenberg, 1993). In 

contrast, MOP agonists cause a rewarding effect (R. Bals-Kubik, et al., 1993) because they 

indirectly stimulate dopamine release by diminishing inhibitory gamma-aminobutyric acid 

(GABA) neuron activity in the ventral tegmental area (Lutz & Kieffer, 2013; R. Spanagel, et al., 

1992). Opioid receptors thus mediate abusive opioid seeking behavior but are also more generally 

involved in modulating drug addictions with pronounced subtype discrepancies (Kreek et al., 

2012). In addition, the mesolimbic dopamine reward system is linked to mood disorders (Nestler 

& Carlezon, 2006) and opioid receptors further regulate serotonin and noradrenaline neurons 

(Lutz & Kieffer, 2013), thought to participate in depression (Krishnan & Nestler, 2010). 

Consistent with this, opioid receptors and their ligands are involved in depression-like behaviours 

and KOP antagonists such as JDTic induce antidepressant-like effects (Lutz & Kieffer, 2013). 

Furthermore, opioid peptides and their receptors, especially dynorphin and KOP,  control the 

hypothalamic–pituitary–adrenal axis (HPA) and are thus involved in stress-related phenomenon 

with implications in addiction, depression and anxiety disorders (Bruchas, Land, & Chavkin, 

2010; Knoll & Carlezon, 2010; Kreek, et al., 2012; Ribeiro, Kennedy, Smith, Stohler, & Zubieta, 

2005). Beside their predominant role in pain, addiction and mood control, opioid receptors have 

been linked to a multitude of functions such as immunity, neuroprotection, cell proliferation, 

neural differentiation, cardiovascular system regulation and feeding (Y. Feng, et al., 2012). Of 

particular importance, opioid receptors signaling stimulation can influence the respiratory system 

function (Pattinson, 2008) with strong respiratory depression observed upon activation of MOP 

(but not KOP). Together with its impact on breathing, MOP agonism induces an important 

inhibition of gastrointestinal transit (A. Tavani, P. Petrillo, A. La Regina, & Sbacchi, 1990), 

which represents a significant limitation of opioid use in the clinic. 

The biological functions of opioid peptides and their receptors renders them key targets to 

interfere in pain, addiction and mood disorders. There is considerable interest in discovering new 

opioids with reduced side effects and compounds that target the dynorphin / KOP system are 

being developed in order to produce analgesic, antidepressant, anxiolytic or anti-addiction drugs 

(Dogra & Yadav, 2015; Zheng et al., 2017). Because of the biological significance of this system, 

extensive research is under way to decipher the molecular mechanisms underlying the dynorphin 



 6 

/ KOP interaction and the resulting modulation of receptor signaling activity. These studies, 

which form the subject of this review, could also help in the design of novel KOP ligands with 

pharmacologically relevant properties such as biased agonism or allosteric modulation. 

 

II. The molecular mechanism of action of dynorphin: research and hypotheses prior 

to KOP cloning 

The ability to produce dynorphin and analogues by solid-phase peptide synthesis (Goldstein, et 

al., 1979) opened the way to a wide range of structure-activity relationship studies on various 

peptide structures. These have been reviewed thoroughly elsewhere (Aldrich & McLaughlin, 

2009; Lapalu et al., 1997; Naqvi, Haq, & Mathur, 1998; Ramos-Colon et al., 2016). In brief, the 

17 amino-acid long dynorphin 1-17 may be shortened at its C-terminus to dynorphin 1-13 

without affecting its activity (activation of KOP is typically assessed on the guinea pig ileum 

electrical contraction assay), and further to dynorphin 1-8 with a 50-fold reduction in activity and 

no loss in affinity (Fig. 1 and (Mansour, et al., 1995)). Further shortening is deleterious for both 

affinity and activity. Substitution of Gly2 by L-amino-acids resulted in a reduction in activity 

while substitution by D-amino-acids resulted in reduced selectivity for KOP versus MOP, since 

D amino-acids tend to increase activity on MOP and to decrease it on KOP. Substitution of Pro10 

by a D-proline led to a marked increase in selectivity for KOP over the other opiate receptors. 

The further alkylation of the amino group of Tyr1 gave rise to highly KOP-selective peptide 

ligands such as N–Benzyl[D–Pro10]–Dyn A(1–11) (Choi, Murray, DeLander, Caldwell, & 

Aldrich, 1992).  

Peptide synthesis also enabled biophysical studies of dynorphin conformation and dynamics in 

solution and in membrane biomimetic media (Lancaster et al., 1991; Lind, Graslund, & Maler, 

2006; Naito & Nishimura, 2004; Spadaccini, Crescenzi, Picone, Tancredi, & Temussi, 1999). 

These included circular dichroism, Raman, FT-IR and NMR spectroscopies. In aqueous solution, 

dynorphin is largely disordered. It may adopt secondary structures in specific environments, such 

      yp    β-turn involving the first five residues in DMSO (Renugopalakrishnan, Rapaka, Huang, 

Moore, & Hutson, 1988) or a -helical conformation from residue Gly3 to Arg9 when bound to 

dodecylphosphocholine detergent micelles (Kallick, 1993). Limiting the conformational space 



 7 

available to constrained peptide analogues increases receptor binding affinity and specificity 

(Naqvi, et al., 1998). However, without knowing the structure adopted by dynorphin upon KOP 

binding, it was difficult to derive a clear understanding of the binding mechanism from these 

results. 

A detailed study of dynorphin and dynorphin analogues bound to lipid bilayers was performed in 

the early eighties. Using a combination of infrared attenuated total reflection spectroscopy and 

capacitance minimization, dynorphin was found to b        O     p   b   y    by f          α-

helix from Tyr1 to Pro10, which inserts into the bilayer perpendicular to the bilayer plane (Erne, 

Sargent, & Schwyzer, 1985). In the same study, the affinity for a neutral bilayer was determined 

to have a Kd of 11 µM. In a subsequent theoretical estimation of the preferred orientation and 

binding energy of a series of dynorphin analogues of various lengths (from 1-13 to 1-5), a good 

correlation between the peptide amphiphilic moment, the affinity for lipid bilayers and the KOP 

receptor subtype specificity was found. Loss of the C-terminal positively-charged residues 

converts a KOP-selective peptide dynorphin, into a MOP/DOP-selective peptide Leu-enkephalin 

(Fig. 1). This, and similar observations on other neuropeptide families, gave rise to two major 

hypotheses: a) the message-address concept, first introduced in 1977 (Schwyzer, 1977)), in 

which the N-terminal 5 residues (message) are responsible for specific binding and receptor 

activation, while the positively charged C-terminus (address) is responsible for KOP receptor 

selectivity by concentrating the peptide in the vicinity of the receptor; b) the membrane 

compartment concept, in which the lipid bilayer plays an active role in catalyzing the peptide-

receptor interaction  (Auge, Bersch, Tropis, & Milon, 2000; Axelrod & Wang, 1994; Bersch, 

Koehl, Nakatani, Ourisson, & Milon, 1993; Czaplicki & Milon, 1998, 2005; Milon, Miyazawa, & 

Higashijima, 1990; Sargent & Schwyzer, 1986). One reason for the correlation between KOP 

receptor subtype specificity and the positively charged C-terminus (besides the potential role of 

the bilayer itself) became clear when the opiate receptors were cloned in 1992-1994 (Chen, 

Mestek, Liu, Hurley, & Yu, 1993; Evans, Keith, Morrison, Magendzo, & Edwards, 1992; Kieffer, 

Befort, Gaveriaux-Ruff, & Hirth, 1992; Mollereau, et al., 1994; Yasuda, et al., 1993). Indeed, it 

appeared that a specific feature of KOP and NOP receptors as compared to MOP and DOP 

receptors is the high negative potential surrounding the extracellular loops 2 (Fig. 2), which is 

expected to increase the local concentration of highly positively-charged neuropeptides (such as 

dynorphin and nociceptin for KOP and NOP, respectively). Dynorphin affinity for the 
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extracellular loop 2 was further confirmed experimentally (Bjorneras et al., 2014). The sole effect 

of an attractive electrostatic potential may account for increased on-rate binding kinetics and 

receptor binding affinity by at least two orders of magnitude (Fersht, 1999). 

 

Figure 2: Primary sequences of the extracellular loops of the opioid receptor subtypes, KOP, MOP, DOP 

and NOP showing that the extracellular loop 2 (ECL2) is particularly rich in negative charges in KOP and 

NOP, while it is neutral for MOP and DOP. A similar trend is observed for the entire extracellular surface. 

This characteristic contributes to KOP specificity of positively charged dynorphin analogues as shown 

with MOP/KOP chimeric receptors (J. B. Wang, Johnson, Wu, Wang, & Uhl, 1994). 

 

III. KOP cloning, site-directed mutagenesis and heterologous expression systems 

KOP (Li, et al., 1993; Meng, et al., 1993; Simonin, et al., 1995; Yasuda, et al., 1993; J.  Zhu, et 

al., 1995) and the other three opioid receptors DOP, MOP and NOP (Chen, et al., 1993; Evans, et 

al., 1992; Kieffer, et al., 1992; Mollereau, et al., 1994; Yasuda, et al., 1993) were cloned in the 

early nineties. KOP shares 60% sequence similarity with the other receptors. The highest 

sequence diversity is located in the N-terminus, C-terminus and extracellular loops (Waldhoer, et 

al., 2004). Moreover, all four opioid receptors possess a remarkable signature, specific to class A 

GPCRs, which includes a sodium binding pocket (residues numbering corresponds to human 

KOP; superscripts are given according to Ballesteros-Weinstein numbering (Ballesteros & 

Weinstein, 1995)): D105
2.50

, N141
3.35

, S145
3.39 

; a PIF micro-switch P238
5.50

, I146
3.40

, F283
6.44

 ; a 

NPxxY motif N326
7.49

, Y330
7.53 

; a DRY motif D155
3.49

, R156
3.50

, Y157
3.51

 and a cysteine 

disulfide bridge C131
3.25

, C210ECL2 (Fig. 3). Heterologous expression and site-directed 

mutagenesis experiments were then used intensively to better understand the receptor architecture, 
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ligand recognition specificity and activation mechanisms. It was shown that the extracellular 

loops play a major role in receptor subtype specificity (Metzger & Ferguson, 1995; Seki et al., 

1998). Several key transmembrane residues were identified, such as S187
4.54

 (Claude et al., 1996), 

E297
6.58

 (Larson, Jones, Hjorth, Schwartz, & Portoghese, 2000; Sharma, Jones, Metzger, 

Ferguson, & Portoghese, 2001), Y312
7.35  

(Metzger, Paterlini, Ferguson, & Portoghese, 2001) and 

I316
7.39

 (Owens & Akil, 2002). Using KOP/DOP chimeric receptor, Kong et al. obtained indirect 

              “                         b         ff               f            k pp   p     

    p   ” (Kong et al., 1994). However, recent structures of KOP in the presence of antagonist (H. 

Wu et al., 2012) and agonist (Che et al., 2018) do not support this statement, illustrating the 

difficulties of drawing firm conclusions from these approaches in the absence of precise 3D 

structures. Using the 3D structures of KOP, extensive mutagenesis experiments were performed 

to characterize the interaction of KOP with dynorphin, as well as with other non-peptide ligands 

such as salvinorin, which are summarized, together with previous studies, in Figure 3 and Table 1. 

 

KOP 

mutant 

Binding Potency References 

T111
2.56

 ↔ ↓ 3 

Q115
2.60 

↓ ↓ 2 

Y119
2.64 

↓ ↓ 1, 2 

D138
3.32

 ↓ ↓ 2, 3 

Y139
3.33

 ↔ ↓ 1, 2, 3 

M142
3.36

 ↔ ↓ 2 

W287
6.48

 ↔ ↓ 3 

H291
6.52

 ↓ ↓ 2, 3 

I294
6.55

 ↓ ↓ 2 

Y312
7.34

 ↔ ↓ 1, 2, 3 

Y313
7.35

 ↓ ↓ 1, 3 

I316
7.39

 ↓ ↓ 2 

G319
7.42

 ↔ ↓ 3 

Y320
7.43

 ↓ ↓ 1, 2, 3 

Table 1: Main point mutations of KOP and their consequences on dynorphin binding and functional 

activity (cAMP inhibition assay). References: 1 (Yan et al., 2005); 2 (Vardy, et al., 2013); 3 (Che, et al., 

2018). 
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Figure 3: Primary sequence of human KOP highlighting mutations shown to affect KOP-dynorphin 

            .             f           α-helices were defined according to the activated KOP 3D structure 

(Che, et al., 2018). In the three-dimensional structure of inactive KOP (H. Wu, et al., 2012) these limits 

  ff          y f   α-helix 5 (D218
5.30

 to S260
5.72 

instead of W221
5.33

 to S255
5.67

   α-helix 6 (R267
6.28

 to 

L299
6.60 

instead of R263
6.24

 to G300
6.61

      α-helix 7 (L309
7.32

 to L333
7.56 

instead of T306
7.29

 to D334
7.57

). 

Mutations affecting dynorphin binding (more than 10-fold increase in Kd) are colored in blue (Y66
1.39

), 

those affecting signaling (more than 10-fold increase in EC50 in cAMP inhibition assay) are colored in red 

(T111
2.56

, Y139
3.33

, M142
3.36

, S187
4.54

, C210
ECL2

, L212
ECL2

, W287
6.48

, Y312
7.35

, G319
7.43

, S356
Ct

, T357
Ct

, 

T363
Ct

) and those affecting both are colored in magenta (Q115
2.60

, Y119
2.64

, D138
3.32

, H291
6.52

, I294
6.55

, 

I316
7.39

, Y320
7.43

). Other residues generally considered to play a role in opioid receptor activation (Che, et 

al., 2018; Koehl et al., 2018) are colored in yellow (cysteine disulfide bridge C131
3.25

, C210
ECL2

; sodium 

binding pocket: D105
2.50

, N141
3.35

, S145
3.39

; PIF microswitch: P238
5.50

, I146
3.40

, F283
6.44

; NPxxY motif: 

N326
7.49

, Y330
7.53

; DRY motif: D155
3.49

, R156
3.50

, Y157
3.51

). Residues D
3.32

 and Y
7.43

 (conserved in all 

four opioid receptors) were shown to form direct contacts with DAMGO N-terminus in the DAMGO-

MOP-Gi structure (Koehl, et al., 2018) and thus presumably with the N-terminus of dynorphin in the case 

of KOP. Residue H
6.52

 is conserved in MOP, KOP and DOP and forms a water-mediated contact with the 

phenol group of Tyr1 in the same MOP structure. Interestingly, this residue H
6.52

 is mutated to a glutamine 

in NOP, whose ligand nociceptin possesses a phenylalanine at position 1 and is thus devoid of the phenol 

hydroxyl group.  It should be noted that for clarity, this figure presents data obtained with dynorphin 
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(mostly from (Claude, et al., 1996, Che, 2018 #199; Vardy et al., 2013) and not with other non-peptide 

ligands for which other deleterious mutations have been described. Superscripts are given according to 

Ballesteros-Weinstein numbering (Ballesteros & Weinstein, 1995); residues numbering corresponds to 

human KOP. 

 

IV. Structure and dynamics of dynorphin and its receptor based on experimental 3D 

structures 

Three-dimensional structures of GPCRs at atomic resolution began to appear with the structure of 

rhodopsin A (Palczewski et al., 2000). However, rhodopsin was a specific case due to its unusual 

stability and availability from natural sources, and further efforts were necessary to solve the 

three-dimensional structures of recombinant GPCRs. Several international consortia developed 

crucial methodologies in protein expression systems, receptor stabilization by mutagenesis, 

fusion proteins, the selection of stabilizing ligands, binding to antibodies (particularly 

nanobodies), the development of better solubilizing and crystallizing media (Caffrey & Cherezov, 

2009; Cherezov, 2011; Granier & Kobilka, 2012; Kobilka & Schertler, 2008; Rosenbaum, 

Rasmussen, & Kobilka, 2009; Stevens et al., 2013; Tate, 2012).  

Most GPCR structures were obtained from membrane proteins expressed in eukaryotic insect 

cells where the flexible N- and C-termini, as well as the intracellular loops (mostly ICL3), were 

deleted or replaced by exogenous protein domains promoting thermostability and crystallization, 

such as T4 lysozyme or the thermostabilized apocytochrome b562 RIL (BRIL) (Chun et al., 

2012; Lv et al., 2016). Other expression systems have been used such as the methylotrophic yeast 

P. pastoris (Talmont, Sidobre, Demange, Milon, & Emorine, 1996), which allows stable isotope 

labelling, including perdeuteration (Massou et al., 1999), mostly for NMR experiments (Eddy et 

al., 2018). E. coli is also an interesting host for isotope-labelled GPCR biosynthesis which can be 

achieved by receptor expression as inclusion bodies followed by in vitro refolding during the 

protein purification (Baneres et al., 2003; Baneres, Popot, & Mouillac, 2011; Casiraghi et al., 

2016). We have shown this strategy to be efficient for KOP: the dynorphin-KOP interaction was 

measured in our laboratory using KOP expressed in E. coli and refolded (unpublished results), 

and the same results were obtained as with KOP produced and purified from sf9 cell membranes 

(O'Connor et al., 2015). 
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These methodological developments allowed the first three-dimensional structure of a 

rec  b      G         β2-adrenergic receptor, to be solved in 2007 (Rosenbaum et al., 2007). 

This marked the beginning of a new era of GPCR structural biology: according to the database 

GPCRdb, 270 structures of receptor-ligand complexes had been solved by September 2018, 

including 52 unique receptor complexes (http://gpcrdb.org/structure/statistics). In 2011 the first 

           f     β2-adrenergic receptor in its active form (that is in the presence of an agonist and 

a G-protein or a nanobody mimicking the G-protein) was solved, thus revealing for the first time 

the atomic details of an activation mechanism of a GPCR (Rasmussen, Choi, et al., 2011; 

Rasmussen, DeVree, et al., 2011). The field of opioid receptors followed closely this revolution, 

with structures of the four opioid receptors solved in their inactive state in 2012 (Granier et al., 

2012; Manglik et al., 2012; Thompson et al., 2012; H. X. Wu et al., 2012), and later in their 

active states for MOP (Huang et al., 2015; Koehl, et al., 2018) and KOP (Che, et al., 2018). An 

overlay of KOP in its inactive state, in complex with the antagonist JDTic (PDB 4DJH), and in its 

activated state, in complex with the agonist MP1104 and a nanobody mimicking G-protein 

(Nb39) (PDB  6B7S) illustrates the general mechanism of activation (Fig. 4): it is characterized 

by outward movements of transmembrane helix 6 (TM6) (by 10 Å) and ICL2 and inward 

movements of TM5 and TM7, leading to the creation of an intracellular pocket into which G-

proteins can penetrate. These movements are associated with a contraction (10% reduction in 

volume of the ligand binding pocket) of the extracellular portion in the active-state KOP, with 

extracellular loop 2 (ECL2) and TM4 and TM6 moving closer to the receptor core (Che, et al., 

2018). Both ligands, the antagonist JDTic and the agonist MP1104 bind at a similar location, with 

conserved contacts, in particular a salt bridge to D138
3.32 

in TM3 and a water-mediated hydrogen 

bond with the backbone carbonyl oxygen of K227
5.39

. Comparison of the active and inactive 

states of KOP indicates structural changes involving several residues of TM3, which are thus 

believed to be critical for coupling ligand-mediated changes in the orthosteric site and the 

transducer interface. This coupling is in part mediated by changes in a sodium binding pocket 

(formed by residues D105
2.50

, N141
3.35 

and S145
3.39

) which acts as a negative allosteric modulator 

at opioid receptors (Fenalti et al., 2014; V. Katritch et al., 2014; Pasternak, Snowman, & Snyder, 

1975). 

With these data in hand, it may appear that the structural biology of opioid receptors and the 

molecular details of their activation mechanism are now well understood. This is not entirely true 

http://gpcrdb.org/structure/statistics
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for several reasons: firstly, GPCRs in general and opioid receptors in particular must be 

understood in terms of interactions with other intracellular protein partners such as arrestins 

(Kang et al., 2015; Zhou et al., 2017), and with phospholipids and cholesterol within membrane 

domains (Dawaliby et al., 2016; Lagane et al., 2000; Meral et al., 2018; Pucadyil & 

Chattopadhyay, 2006; Xu et al., 2006), where they can form homo- and hetero-oligomers (Ferre 

et al., 2014; Jordan & Devi, 1999). Secondly, another important emerging characteristic of 

GPCRs is their extremely complex  

 

Figure 4: Superposition of the X-ray structures of KOP in its inactive state (in blue, PDB 4DJH) and in its 

active state (in green, PDB 6B7S).  The nanobody present in the active state is shown in grey, penetrating 

a pocket created by the displacement of TM6. The antagonist and agonist in the inactive and active states 

respectively are not displayed. 

 

conformational landscape, within which the X-ray structures determined to date should be viewed 

as specific snapshots (Casiraghi et al., 2016; Deupi & Kobilka, 2010; Hilger, Masureel, & 

Kobilka, 2018). Thirdly, it is extremely difficult to solve three-dimensional structures of 

complexes of a GPCR with its natural peptide agonist. So far, the structure of DOP in complex 

with a non-natural peptide antagonist has been solved (Fenalti et al., 2015), and the structure of 
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MOP in complex with DAMGO, a highly specific synthetic peptide agonist analogue, and Gi 

heterotrimeric protein has been solved at 3.5 Å resolution by cryo-electron microscopy (Koehl, et 

al., 2018).  

NMR has proven highly efficient in demonstrating the conformational heterogeneity of GPCRs 

and their ligands (Bokoch et al., 2010; Casiraghi, et al., 2016; Didenko, Liu, Horst, Stevens, & 

Wuthrich, 2013; Nygaard et al., 2013), including opioid receptors (Sounier et al., 2015). In 

collaboration with R.C. Stevens and K. Wüthrich, we have solved the structure of dynorphin 1-13 

bound to KOP in the absence of G-proteins by NMR, thus in its low affinity state for agonists 

(O'Connor et al., 2015). A well-defined α-helical conformation forms from Leu5 to Arg9 upon 

receptor binding (Fig. 5A). Most interestingly, 
15

N relaxation measurements indicate that the 

peptide remains flexible on a nanosecond time scale in its receptor-bound state (Fig. 5B). This 

was expected for the C-terminus in which non-specific electrostatic interaction contribute to 

receptor binding   . . f       “       ” p     f  y   p    . It was however unexpected for the first 

four amino acids Tyr1-Gly2-Gly3-Phe4 which form the signature of opioid peptides (the 

“       ”  and which cannot be modified without affecting receptor binding and activation 

(Naqvi, et al., 1998). This mobility may be characteristic of an intermediate binding state 

observed for the G-protein uncoupled receptor, and work is in progress to determine whether N-

terminal immobilization occurs in the high-affinity ternary complex of peptide, receptor and G-

protein or the Nb39 nanobody used to stabilize the active conformation (Che, et al., 2018). 

 

 

 

 

 

 

 

 

 

 

A) B) 
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Figure 5: A) receptor-bound conformation of dynorphin 1-13:   α-helical conformation is formed 

between Phe4 and Arg9;  B) Order parameter profile of dynorphin N-H bonds in the receptor-bound state. 

Grey: experimental data; White: calculated S
2
 profiles from molecular dynamics simulations of 

dynorphin-receptor complexes. Note that both the N- and C-termini remain flexible in the receptor-bound 

state. 

 

 

 

V. Building 3D models of dynorphin-KOP complexes 

Modelling structures of complexes formed by KOP and its agonists or antagonists has been 

attempted for more than 20 years (Alonso, Bliznyuk, & Gready, 2006; Bailey & Husbands, 2018; 

Benyhe, Zador, & Otvos, 2015; Bera, Marathe, Payghan, & Ghoshal, 2018; Gentilucci, Tolomelli, 

De Marco, & Artali, 2012; Johnson, 2017; Kane, Svensson, & Ferguson, 2006; Kaserer, Lantero, 

Schmidhammer, Spetea, & Schuster, 2016; Kolinski & Filipek, 2010; Lavecchia, Greco, 

Novellino, Vittorio, & Ronsisvalle, 2000; Martinez-Mayorga et al., 2013; Patra, Kumar, Pasha, & 

Chopra, 2012; Tessmer, Meyer, Hruby, & Kallick, 1997; Wu, Song, Graaf, & Stevens, 2017; 

Yongye & Martínez-Mayorga, 2012). Some of these models specifically focused on dynorphin 

(Bjorneras, et al., 2014; Charles Chavkin, 2013; Iadanza, Höltje, Ronsisvalle, & Höltje, 2002; 

Kang, et al., 2015; O'Connor, et al., 2015; Paterlini, Portoghese, & Ferguson, 1997; 

Sankararamakrishnan & Weinstein, 2000; Smeets et al., 2016; Vardy, et al., 2013). Early studies, 

performed before any experimentally determined receptor structures were available, were based 

entirely on modelling (Iadanza, et al., 2002; Paterlini, et al., 1997; Wan et al., 2000). Dynorphin 

was positioned within the receptor such that it was in agreement with mutagenesis data. 

Specifically, the spatial proximity between the N-terminus of dynorphin and residue D138
3.32 

was 

preserved. Recent progress in obtaining X-ray and electron microscopy structures of the opioid 

receptors has enabled significant advances, due to the wealth of details for both the receptor 

structure and the binding modes of associated ligands. A binding mode was proposed for 

dynorphin 1-8, in which the peptide's N terminal mimics the orientation of the phenol-like ring of 

the JDTic antagonist (Vardy, et al., 2013). The structure of dynorphin 1-13 in the bound state was 

determined using transferred NOE experiments and that of the dynorphin-KOP complex was 
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modelled using restraints from NMR, in particular N-H bond order parameters derived from 
15

N 

R2 relaxation rates, as discussed below (O'Connor, et al., 2015),. 

 

A protocol has been developed for creating three-dimensional structures of dynorphin-KOP 

complexes (O'Connor, et al., 2015). The molecular modelling approach (Fig. 6) starts with the 

separate preparation of the two molecules. Although a KOP structure in complex with an 

antagonist was known from X-ray studies (H. Wu et al., 2012) a MOP structure mutated into 

KOP was used as starting point to avoid possible structural distortions caused by JDTic binding. 

Following the addition of missing residues and the prediction of rotamers of their side-chains 

(Krivov, Shapovalov, & Dunbrack, 2009; Nagata, Randall, & Baldi, 2012), the structure was 

relaxed and equilibrated in a 100 ns molecular dynamics (MD) run (R Salomon-Ferrer, Case, & 

Walker, 2013; Romelia Salomon-Ferrer, Götz, Poole, Le Grand, & Walker, 2013), followed by a 

clustering procedure which allowed major conformers of the receptor to be identified. The use of 

a cluster radius of 2 Å resulted in eight families of structures, whose representative members 

were selected as those being closest to the cluster centroids. Six major KOP structures were 

retained for docking. The modelling of dynorphin involved a typical MD simulation coupled with 

a simulated annealing protocol (Nilges, Clore, & Gronenborn, 1988), run in the presence of NMR 

constraints to preserve the peptide structure previously determined by NMR. The results 

indicated the existence of an α-helical turn involving residues Leu5-Ile8, and a disordered peptide 

elsewhere. In the subsequent docking procedure, the backbone of residues Leu5-Ile8 was 

therefore held fixed, while the rest of the molecule (backbone and side-chains) remained flexible. 

The KOP molecule was mostly held rigid, except for 16 residues whose side-chains were allowed 

to be flexible as they were considered likely to interact with the peptide in the binding pocket. 

Flexible docking was performed with the AutoDock Vina program (Trott & Olson, 2009), by 

launching multiple runs on each of the six retained KOP structures. The results were filtered to 

keep the 10 best poses per each KOP structure. This produced a set of 60 structures of the 

dynorphin-KOP complex, which was reduced to a set of 22 structures after selecting the best 

representatives from each family, characterized by lowest energies. The stability of the 

complexes was verified by running further MD simulations for times ranging from 50 to 100 ns.  

The crucial final step consisted of comparing the values of the order parameters calculated from 

the generated structures with those obtained from NMR experiments. The calculations were 
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based on the hypothesis that the flexible peptide adopts varying conformations and that its order 

parameter should be averaged over different conformers. The exchange is fast on the NMR time 

scale, but beyond the reach of MD simulations (1µs – 1ms). To find the minimum number of 

conformations required to reproduce the experimental order parameters, all combinations of 

modelled structures were taken into account. As a result, five major dynorphin conformations 

were identified, revealing significant structural diversity in both N- and C- termini.  

Analysis of the resulting complexes allowed us to conclude that the position of a phenol-like 

functional group in the orthosteric site was largely conserved, for antagonist-bound structures of 

KOP-JDTic, as well as DOP-DIPP and MOP-funaltrexamine. One of the structural models 

(available in (O'Connor, et al., 2015)) revealed Tyr1 in a position near the phenol-piperidine 

fused-ring system of JDTic, resembling a previously proposed binding mode (Vardy, et al., 2013). 

Another model suggested that the side-chain of Tyr1 is close to the allosteric sodium binding site. 

D138
3.32 

makes polar contacts with Tyr1, Gly2 and Gly3 in both of these models. However, only 

the latter features polar contacts of both Tyr1 and Arg7 with W287
6.48 

and N322
7.45

.  
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Figure 6: Molecular modelling protocol leading to three-dimensional structures of dynorphin-KOP 

complexes. Briefly, plausible KOP structures were obtained from MD simulations using an X-ray 

structure as input, while dynorphin models were obtained from simulations with NMR constraints. 

Subsequent docking, filtering and verification of stability of complex structures thus obtained permitted a 

selection of the optimal result. See the text for a more detailed description of the procedure. 

 

 

 

 

VI. Development of novel KOP ligands based on structural knowledge 

Opioids possess powerful properties and are currently the most effective analgesics available, but 

development is still needed to reduce their undesired side-effects (Dogra & Yadav, 2015). KOP 

agonists produce analgesia but, for most, their use is limited by centrally-mediated adverse 

effects such as dysphoria. Nalfurafine (TRX-820), that does not induce dysphoria, has been 

registered in Japan since 2009 for the treatment of uremic pruritus (Kozono, Yoshitani, & 
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Nakano, 2018). Several peripherally-restricted (to avoid undesired effects) KOP agonists are 

currently in clinical trials: asimadoline (EMD-61753) (Delvaux et al., 2004; Szarka et al., 2007) 

and difelikefalin (CR845) (Hesselink, 2017) for irritable bowel syndrome and chronic or post-

operative pain (https://clinicaltrials.gov/). Another promising strategy is the development of 

KOP-biased ligands: by acting as agonists for the G-protein-dependent signaling and not for G-

protein-independent pathways, they could induce analgesia without dysphoria (Dogra & Yadav, 

2015). In addition, there is a strong potential for KOP antagonists as antidepressant, anxiolytic or 

anti-addiction drugs (Zheng, et al., 2017). The knowledge obtained from the structures of inactive 

KOP (H. X. Wu, et al., 2012), KOP-bound dynorphin (O'Connor, et al., 2015) and G-protein 

bound KOP (Che, et al., 2018) offers new strategies for finding novel KOP ligands (Shang & 

Filizola, 2015). 

Among the various ways of using structural knowledge in drug discovery, structure-based virtual 

screening has proven successful in designing GPCR ligands, such as for D3 dopamine (Carlsson 

et al., 2011; Lane et al., 2013)  β2 adrenergic (Kolb et al., 2009; Weiss et al., 2013) and A2A 

adenosine (Carlsson et al., 2010; Vsevolod Katritch et al., 2010) receptors. It has allowed the 

discovery of a G-protein-biased MOP agonist that produces analgesia with diminished side-

effects (Manglik et al., 2016). Studies using virtual screening from the inactive JDTic-bound 

KOP structure have discovered new KOP agonists (Negri et al., 2013) and new G-protein–biased 

agonists scaffolds (White et al., 2013). More recently, ligand-guided receptor optimization was 

applied to the inactive JDTic-bound KOP structure to generate alternative orthosteric pocket 

models that served to increase the prediction power of the methods (Zheng, et al., 2017). Virtual 

screening on the initial and alternative binding site models, followed by Tanimoto distances-

based selection of novel chemotypes, revealed ligands in the micromolar range with a 32% hit 

rate. An initial optimization round generated eleven compounds with sub-micromolar affinities 

and functional assays defined two potent antagonists and one G-protein-biased agonist. The 

accumulation of precise structural knowledge on the modulation of KOP signaling activity by 

orthosteric ligands and allosteric modulators will certainly play a major role in future drug 

discovery programs. 

 

VII. Conclusions and future perspectives 

https://clinicaltrials.gov/
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Future research into the dynorphin-KOP structure and dynamics must address one major 

question: what defines a ligand as a full, partial, unbiased or biased agonist, an antagonist or an 

inverse agonist (Wacker, Stevens, & Roth, 2017). As GPCR signaling involves multiple receptor 

conformations in dynamic exchange, extensive research aims to characterize their conformational 

landscape and their modulation by ligands and signaling partners (Weis & Kobilka, 2018). 

Crystallography and electron microscopy provide structures of lowest-energy populated states 

(Wacker, et al., 2017). Spectroscopic methods such as NMR allow the characterization of 

dynamic properties (Weis & Kobilka, 2018), such as the weak allosteric coupling between the 

orthosteric site and the signaling interface, as described for MOP (Sounier, et al., 2015). One may 

take advantage of yeast or bacterial expression systems to produce specifically labelled GPCRs 

and perform advanced relaxation-based analyses to assess receptor dynamics, as was done 

recently for BLT2 (Casiraghi, et al., 2016) and A2A adenosine receptors (Clark et al., 2017; Eddy, 

et al., 2018). We are currently applying the methodologies we developed to determine the 

conformation and dynamics of KOP-bound dynorphin (O'Connor, et al., 2015) to the ternary 

dynorphin-KOP-Nb39 complex (where Nb39 is a nanobody which mimics G-proteins and 

confers high affinity binding to agonists). We thus hope to explain the 10-fold gain in dynorphin 

binding affinity in the presence of G-proteins. The conformational dynamics of G proteins and 

arrestins themselves can be modulated by the ligands (Hilger, et al., 2018). The question of 

conformational landscape and allosteric coupling must therefore be extended to entire GPCR 

signaling complexes and posed in the context of real cellular environment where modulation by 

lipids, membrane domains and other receptors do occur. While using information derived from 

structural biology, one should always bear in mind that recombinant G protein-coupled receptors 

in vitro may not recapitulate all the properties of native receptors naturally expressed in tissues as 

was shown for instance in (Broad et al., 2016). 
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