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Ordinal social ranking : simulations for CP-majority rule

We study the problem of how to find a social ranking over individuals given a ranking over coalitions formed by them, or in other words, how to rank individuals based on their ability to influence the strength of a group containing them. We are interested in the use of ceteris paribus majority principle for social ranking and extend the results of two previous articles ([4, 3]). We analyse the behavior of the CP-majority rule with respect to Condorcet cycles and propose a linear programming model for the learning its approximation.

Introduction

In this article, we are interested in ranking individuals using their performances in different groups/coalitions of individuals. Such a problem can be common in some real world situations, for instance, ranking researchers in a scientific department by taking into account their impact across different working groups, finding the most influential political party regarding different coalitions, or finding the ingredient that makes best meals concerning different association of ingredients.

As it is sometimes hard to express preferences using numbers, we consider only ordinal informations : we suppose that we have an order over coalitions in form of a binary relation, that we call a power relation, and we look for a ranking over individuals who form such coalitions, that we call a social ranking.

Example 1. Let's consider four individuals N = {1, 2, 3, 4} . We have the power relation over group's performances : 1234 123 124 134 12 13 234 14 2 3 1 23 24 23 4. 13 234 means that the group composed by 1 and 3 is better than the group formed by 2, 3 and 4. Our aim is to find pairwise comparisons between different individuals in order to answer questions such as who is the most influential individual between 1 and 2? In this article we are specially interested in finding a complete preorder over individuals.

The problem that we address in this paper is recent. Previous works on it are all related to the axiomatic aspects of the social ranking rules: Bernardi and her colleagues ( [START_REF] Bernardi | Ranking objects from a preference relation over their subsets[END_REF]) axiomatically characterized a social ranking solution based on the idea that the most influential individuals are those appearing more frequently in the highest positions in the ranking of coalitions; Moretti and Ozturk ([4]) presented some impossibility results on a set of three axioms inspired from social choice theory and finally Haret and his colleagues ( [START_REF] Haret | Ceteris paribus majority for social ranking[END_REF]) showed an axiomatization of a social ranking rule based on the majority principle and analyzed it within some domain restriction conditions.

In this article we are interested in computational aspects of a particular social ranking rule which is the CP-majority rule. CP-majority social ranking is based on ceteris paribus comparisons between coalitions: looking for a pairwise comparison between i and j, the only information that we use is the comparisons between S ∪ {i} and S ∪ {j} where S is a coalition containing neither i nor j.

In [START_REF] Moretti | Some axiomatic and algorithmic perspectives on the social ranking problem[END_REF] authors showed that when a social ranking uses only ceteris paribus comparisons, three intuitive axioms can not be verified simultaneously (Independence of irrelevant coalitions, dominance and symmetry) if a social ranking is asked to be transitive. A majority rule based on ceteris paribus (CP-majority rule) comparisons verifies these three axioms but does not guarantee the transitivity of the social ranking solution. In [START_REF] Haret | Ceteris paribus majority for social ranking[END_REF] authors characterized CP-majority rule (which may provide social ranking with cycles) using three axioms: equality of coalitions, positive responsiveness and neutrality and they presented a domain restriction which guarantees the transitivity of the social ranking. Briefly, CP-majority rule says that i is better than j because there are more coalitions S (S ∈ 2 N \{i,j} ) such that S ∪ {i} S ∪ {j}. Coalitions S ((S ∈ 2 N \{i,j} )) can be seen as voters for i and j.

This article is based on simulation results on CP-majority rule. After analyzing the probability to have transitive social ranking with CPmajority, we propose an "approximation" of CP-majority rule where a minimum number of coalitions are removed in order to satisfy the transitivity, we call this rule CP-majority with maximum coalitions. The article concludes with a learning approach for this last rule based on a linear programming model.

Ceteris Paribus majority

Notations

We have a finite set of individuals N = {1, 2, ..., n}. We are given a power relation representing a binary relation on the power set 2 N . We suppose transitive and asymmetric (and complete for our simulations). We denote by B(2 N ) the set of all possible power relations. S T means that coalition S is preferred to coalition T .

We are looking for a social ranking, denoted by R, which must be a complete preorder (reflexive, transitive and complete). iRj means that i is at least as good as j, with i and j in N . We denote by T (N ) the set of all total preorders on N .

A social ranking solution is a function R : B(2 N ) -→ T (N ) associating to each power relation ∈ B(2 N ) a total preorder R over the elements of N . By this definition, the notion iR j means that applying the social ranking solution to the power relation gives the result that i is at least as good as j. We denote the asymmetric part of R by P : iP j ⇐⇒ iR j and not jR i (i is preferred to j). I represents the symmetric part of R : iI j ⇐⇒ iR j and jR i (i is indifferent to j).

Basic notions

As we mentioned, we are interested in a solution based on the principle of Ceteris Paribus (CP), which we can translate to "everything else being equal". Formally, given a power relation ∈ B(2 N ) and two elements i, j ∈ N we define : Dij( ) = {S ∈ 2 N \{i,j} : S ∪ {i} S ∪ {j}}. We denote the cardinalities of Dij( ) as d ij .

Then we apply CP-majority rule : if i is preferred to j over more coalitions than j against i, then iP j. If there is no majority, iI j Definition 1 (CP-majority). Let ∈ B(2 N ). The ceteris paribus majority relation (CP-majority) is the binary relation R ⊆ N × N such that for all i, j ∈ N : 2.3 Some remarks 1) CP-majority rule considers all coalitions equally important. For instance, the number of individuals within a coalition has no influence on the importance of the coalition.

iR j ⇔ dij( ) ≥ dji(
2) Consider a set of n individuals, then there are (2 n -1)! possible complete power relations (permutation of all subsets of N except the empty set). If the power relation is a complete order, the number of coalitions being considered for a particular pairwise comparison (between i and j) is 2 (n-2) since all the subsets of N without i and j can vote. This number is equal to the number of ceteris paribus comparisons used for CP-majority. For instance, consider N = {1, 2, 3, 4}, coalitions which can "vote" (playing the role of voter) for the comparison between 1 and 2 are: ∅, 3, 4, 34. The number of coalitions being voter for at least one couple i and j is equal to n-2 i=0 n i . Indeed, all coalitions with a size inferior or equal to n -2 can be a voter for at least one couple. Coalitions of the size n -1 can not vote because they contain i or j. In example 2, the only coalition that can vote are ∅, 1, 2, 3, 4, 12, 13, 14, 23, 24, 34. Table 1 Note that the ceteris paribus principle can be seen as an interpretation of our problem in the context of social choice theory, with groups of individuals (coalitions) playing the role of voters: in Example 3, groups 45, 3 and 4 may be seen as voters for the comparison of candidates 1 and 2. Nevertheless, our framework differs from a classical voting scenario in that candidates can also be voters and voters are not identical for different pairwise comparisons : in the comparison 12 23, the coalition containing only 2 acts as a voter, while in the comparison 245 345, 2 is a candidate. Coalition 45 acts as a voter comparing 2 and 3 but can not be a voter if we want to compare 4 with another individual since it contains 4.

3) CP-majority makes use of limited quantity of information coming from the power relation. For instance, only comparisons over sets having the same size are used.

One of the consequences of such a remark is the fact that different power relations may provide exactly the same information about CP-majority rule if they have exactly the same ceteris paribus comparisons. As a result, they provide the same social ranking solution. For instance, power relation such that 1 2 3 12 13 23 and power relation such that 12 13 23 1 2 3 share the same ceteris paribus comparisons necessary for CP-majority rule. We call such power relations CP-equivalent and say that they share the same CP-information table. The number of different CP-information tables (sets of CPequivalent power relations) is n i=0 n i ! (product of total orders formed by coalitions of the same size). Table 3 shows number of possible CP-information tables. In the rest of our paper, we make use of CP-information tables when we want to simulate different power relations with different social rankings. Table 7 of annexe shows all the possible CP-information tables for n = 3.

4)

The ceteris paribus majority solution is grounded in intuitive and appealing principles. However, it turns out that strict Condorcet-like cycles are possible for more than two candidates, similarly to classical voting theory as it is shown in the following example. Condorcet-like cycles may be a source of difficulty for a choice (how to find the best(s) candidate(s)) or a ranking (how to order candidates) problem. In the following we analyze the probability of having Condorcet-like cycles and propose a modification of the CP-majority rule guaranteeing the transitivity of the social ranking.

3 CP-majority and transitive social ranking

Probability of Condorcet-like cycles

The aim of this section is to analyze the behavior of the CP-majority rule with respect to transitivity of the social ranking solution. Since we provide some statistics on this question, we consider only power relations in form of total preorders.

We want to know the probability to have one or several Condorcet's winners in function of the number of candidates. We call an individual a CP-Condorcet winner if she is at least as good as all the other candidates using the CP-Majorty rule. To find those probabilities we have done simulations for n= 3, 4, 5 and 6. Due to the small amount of possible power relations (or more precisely CP-information tables) for n = 3 and 4, we manage to simulate them all. For n = 5 and 6 we have randomly tested 100 000 different CP-information tables. Our simulations are inspired from a study done in the context of social choice theory where preferences of voters are supposed to be equally chosen (see Impartial cultures, [START_REF] Peter | The probability of the paradox of voting: A computable solution[END_REF]). This hypothesis means that each power relation has the same probability to occur. Note that some domain restriction forbidding some types of power relations may be meaningful in some contexts. For instance, in [START_REF] Haret | Ceteris paribus majority for social ranking[END_REF] authors relaxed the axiom of the universality of the domain and analysed the effect of single-peaked-like domain restriction for social ranking. They showed that their definition of single peakness guarantees the transitivity of the social ranking. In this section we do not suggest any restriction in the domain of power relations (B(2 N )).

Our results are presented in Figure 1 and Table 4.

The number of voters correspond to the number S of coalitions voting for a precise couple. Having 0 Condorcet winner means that the solution found is not transitive and there is a cycle in the social ranking. We can see that the higher the number of individuals, the lower the probability to have a transitive social order. We also observed that the probability to have several Condorcet winners decreases with the number of individuals.

Note that if we are interested in finding the best individual(s), having a transitive social ranking may not be mandatory since cycles may occur in the bottom of the ranking.

As we already mentioned, our framework has some similarities with voting procedures of social choice theory. Nevertheless, as it is underlined in point 2 of Section 2.3, there are some differences because of the fact that in our framework candidates play the role of voters for other candidates and the voting coalitions are different for each pairwise comparison. Condorcet paradox (having no Condorcet winner) is a classical paradox of social choice theory. We Impartial culture means that each voters have a uniformly distributed probability to vote for each candidates. Figure 2 shows the theoretical results of Gerhlein and Fishburn. Note that in our framework, when there are n candidates, there are 2 (n-2) coalitions voting for each pairwise comparison.

It is easy to notice that there is a remarkable difference between our results and those found by Gehrlein and Fishburn. Such a gap is due to the amount of indifferences in our social ranking solution R . Indeed, the number of voters for aR b being equal to 2 N -2 , is even and provides indifferences. In fact, the probability to have indifferences in a social ranking is high as shown in the Figure3. The probabilities of this table are found thanks to a simulation : we have simulated 100 000 power relations (more precisely CP-information tables) for each n = 4, n = 5 and n = 6 and calculated the number of indifferences (binary relations in form iI j). The maximal number of strict preferences or indifferences is respectively 6, 10, and 15 (if there are n candidates, there are n(n-1) 2 possible comparisons). We can see that the numbers of strict preferences follow the same distribution law and leave place to many indifferences. Gehrlein and Fishburn avoided this problem by considering only odd number of voters.

To prevent indifferences, we have decided to do the same simulations than above but without taking into account coalition formed by 5.

Having an odd number of coalitions voting for each comparison, we obtain very similar probabilities to those of Gehrlein and Fishburn. Even if there are similarities between our framework and social choice the correspondence is not immediate because of the second point of Section 2.3. 3.2 Removing some coalitions for a transitive social ranking using CP-majority

Simulations of the previous section show that the social ranking solution derived from CP-majority may not be transitive. Nevertheless, when one desires to use ceteris paribus comparisons, CP-majority appears as a very intuitive and natural rule. Moreover, as it is shown in [START_REF] Haret | Ceteris paribus majority for social ranking[END_REF], CP-majority is the only social ranking rule which satisfies the neutrality, the equality of coalitions and the positive responsiveness. Hence, we thought that it may be interesting to keep the basic principles of CP-majority and to propose an approximation of this rule which guarantees the transitivity. Our idea is the following: we relax the equality of coalition axiom (all coalitions have the same importance, including ∅) and try to find the minimum number of coalitions to remove in order to guarantee the transitivity of the social ranking solution by CP-majority rule. We call this new rule CP-majority with maximum coalitions. In order to resolve our new problem we make use of linear programming where the objective function maximizes the number of coalitions playing the role of voters and the linear constraints guarantee the transitivity of the social ranking.

The linear programming :

M ax s Ss s.t. s PSij × Ss ≥ -M (1 -Rij) ∀i, j Ra 1 a 2 + Ra 2 a 3 + .... + Ra n-1 an -Ra k a k-1 < n -1
* For all a1, a2, ..., an forming a cycle, for all k ∈ {a1, a2, ..., an} and for all n.

with: (i.) Power relation :

PSij = 1 if S ∪ {i} S ∪ {j} -1 if S ∪ {j} S ∪ {i} (ii.) Social ranking : Rij = 1 if iP j 0 otherwise (iii.
) Decision variables for coalition :

Ss = 1 if the coalition Ss is kept 0 otherwise
M is a constant large enough so that the first constraint is satisfied when Rij = 0.

Remark that there may be more than one solution satisfying our constraints (for instance the minimum number of coalitions to remove may be 1 with many possibilities, removing coalition {1} or coalition {23}, etc.). Our LP chooses just one solution.

We use our LP in order to do some simulations to have probabilities on the number of coalitions to remove. We have randomly simulated 10 000 power relations for n = 4 and n = 5 with or without empty set and found the minimum number of coalitions to remove. Results are shown in the following Figure 4 and Table 6. Table 6. Probability for a coalition to be removed (in %), for N = 4 (10 000 simulations)

As we can see, most of our solutions can be transitive by removing up to 2 coalitions for n = 4 and 4 for n = 5. We can also observe that removing the empty S = ∅ more than double the probability of being a transitive social ranking for n = 4 and nearly triple it for n = 5. Table 6 shows that we remove more frequently the coalitions that vote for the highest number of couples.

Learning a CP-majority with maximum coalitions

In this section we make the assumption that power relations and their social rankings are given. Our goal is to find a common sub-rule (which coalition(s) to keep or to remove) based on the CP-majority rule.

Our aim is to see to what extend our LP model is able to find a common CP-majority sub-rule : the same set of coalitions playing the role of voters for power relation+social ranking couples.

We realized three different tests:

• 

Data sharing the same rule

Firstly, we have generated random power relations and applied a unique random sub-rule (CP-majority using a subset of coalitions) to obtain associated social ranking2 . The unique rule is generated through a function; every coalition has probability p to stay in the rule. If p = 0.5 every coalition has 50% of chance to stay in the rule. Then our goal is to find which coalitions have been eliminated, as shown in Figure 5. M ax s Ss s.t.

S P Sijk × Ss ≥ -M (1 -R ijk ) ∀i, j, k S P Sijk × Ss ≤ -1 + M R ijk ∀i, j, k
With:

i) Power relation : iii) Decision Variables (common to all power relations!) :

P Sijk = 1 if S ∪ {i} S ∪
Ss = 1 if Ss is kept 0 otherwise
M is a constant large enough so that the first (resp. second) constraint is verified when R ijk = 0 (resp. R ijk = 1).

We made our simulations on different sizes of training data k. We have made 500 tests for each different number of power relation k used to learn and different p, for n = 4. When there is at least one different coalition between the real sub-rule and what we find, we consider it as a defeat. Figure 6 illustrates our results and Figure 7 shows learning time for one rule. When our data is very well structured, we can see that our model is more efficient with extreme values for p. It doesn't need a large number of power relations k to have satisfying results; for k greater than 8, it has more than 99% of chance to find the correct sub-rule. The time of processing seems to increase linearly.

Data sharing the same subset of coalitions

Now, we are interested in introducing noise in our data. The goal is to find a common subset of coalitions that is used by different subrules even if there may be other additional coalitions in the sub-rules applied to some of the power relations.

Firstly, we have randomly generated a subset of coalitions that we call common CP-subset. Then we have randomly generated power relations, and we applied the CP-majority rule using common CP-subset plus a random coalition to obtain associated social ranking. The random coalition that we add represents "the noise". Our goal is to learn a sub-rule that minimizes the distance between social rankings of the input data and the ones generated by the learned sub-rule. We expect to find a common sub-rule that contains all the elements of the common CP-subset.

Example 5. Let us give a small illustration for 4 individuals : We randomly generate a common CP-subset of the size 4, for instance, 1, 3, 12, 34. Then we generate 3 random power relations. To create our social rankings (one for each power relation), we use three different sub-rules containing the common CP-subset plus one different coalition. The choice of the additional coalitions is random. For instance, we may have at the end three different sub-rules : the first sub-rule with coalitions 1, 2, 3, 12, 34, the second with 1, 3, 12, 23, 34 and the third with ∅, 1, 3, 12, 34. We expect to learn a sub-rule using at least 1, 3, 12, 34 and minimizing the distance of generated social rankings to initial ones.

To do so, we have used the distance to the Kemeny consensus [START_REF] Conitzer | Improved bounds for computing kemeny rankings[END_REF], between the social ranking generated from the rule we want to find (learned sub-rule) and those in the input data. The Kemeny distance is a way to calculate the distance between two rankings. We take all binary relations iR expected j from our expected social rankings and compare them with the learned social rankings iR learned j. If iR expected j = iR learned j then we increase the distance by one. Example 6. Let's have the social ranking (1) : 0P 1 1P 1 2P 1 3. The distance with (2) : 1P 2 0P 2 2P 2 3 is 1 because 0P 1 1 and 1P 2 0. The distance with (3) : 2P 3 1P 3 0P 3 3 is 3 because 0P 1 1 and 1P 3 0, 0P 2 2 and 2P 3 0 and 1P 1 2 and 2P 3 1.

Our goal is to minimize the general Kemeny distance between given social rankings and those we generated with our learned sub-rule. We have used the following ILP .

M in ijk V ijk s.t. 

               s P Sijk × Ss ≥ -M (1 -R ijk ) ∀ijk S P Sijk × Ss ≤ -1 + M R ijk ∀ijk R ijk + R jik = 1 ∀ijk O ijk -R ijk -V ijk ≤ 0 ∀ijk O ijk -R ijk + V ijk ≥ 0 ∀ijk
V ijk = 1 if R ijk = O ijk 0 otherwise
M is a sufficiently large constant. We made our simulations on different sizes of training data. We have done 1000 tests for n = 4, for different sizes of common CPsubset. If the sub-rule obtained contains all the elements of the common CP-subset we consider it as a success. Our results are shown in the Figure 8. As we can see, we are able to learn the common CP-subset with few power relations, but it seems that there exists a limit to our learning : we can not succeed in 10% of the cases. The bigger is the common CP-subset, the more difficult it is to find it. We calculated the average number of coalitions in the rule found by our LP on our 1000 test for n = 4 (see Figure 8 in the annexe). The average number of coalition found by our LP is close to the number of coalitions that compose the common CP-subset.

Data with different rules (CP-majority with different coalitions)

Now we want to study the case were someone is not consistent in the use of a sub-rule. We have random power relations and social rankings, but social rankings haven't been generated by a specific sub-rule. For simplification, social ranking are transitive and contains no indifferences. As social rankings haven't been obtained through a unique sub-rule, it is very unlikely to find a single sub-rule that satisfies all the transitions from the power relations to the social rankings. For this reason, when a sub-rule is impossible to find we will modify our expected social ranking. The goal is to find a rule that, given the power relations, gives an approximation of the given social rankings as shown in Figure 9. As we can see the more coalitions we want to keep, the higher will be the Kemeny distance. For Y = 8, the Kemeny distance seems to tend to 3, knowing that for n = 4 the maximal distance is 6 (if the social order from our rule is the exact opposite of the one given), our learning model is not efficient. It is also harder to satisfy a lot of the social rankings. Such results are not surprising since our results are similar to a random selection when there is no structure in the data.

Conclusion and future work

In this paper, we presented some new results on the feasibility and the expected results of the implementation of the CP-Majority principle for social ranking. We analyzed the probability of having Condorcet cycles and presented an LP model in order to have a transitive social ranking as close as possible to a CP-majority rule. We addressed also the learning of a CP-majority like rule using a subset of coalitions as voters. We obtained interesting results for small n. Further simulations must be done with bigger n and different types of data. Moreover, we only studied complete power relations, but it may be unlikely to happen in real life. An in-depth study of CP-Majority principle on incomplete power relations is another interesting problem to study. Another direction is the analysis of the consequences of a small change in the power relation to our social ranking, similar to a sensibility analysis.
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 14 Figure 1. Probability to have one or more Condorcet winners

Figure 2 .

 2 Figure 2. Probability to have a Condorcet Winner [5]

Figure 3 .

 3 Figure 3. Probability to have indifference

Example 4 . 3 .

 43 Consider the following power relation : Applying the CP-majority rule we obtain 1P 2, 1I 3 and 2I 3, which is not transitive. By removing the coalition 2 from the rule, we obtain 1P 3, which makes our social order transitive (we have 1P 2I 3).

Figure 4 .

 4 Figure 4. Minimum number of coalitions to remove to have a transitive social order with 10 000 power relations

  data (power relation + social ranking) resulting from a common CP-majority with maximum coalitions rule (the same coalitions are kept for each power relation) : Subsection 4.1. • data (power relation + social ranking) resulting from CP-majority with maximum coalitions rules sharing a subset of coalitions (for instance half of the kept coalitions are common to the rules...) : Subsection 4.2. • data (power relation + social ranking) without any particular CPmajority rule : Subsection 4.3

Figure 5 .

 5 Figure 5. Learning rules

  {j} for the power relation k -1 if S ∪ {j} S ∪ {i} for the power relation k ii) Social ranking : R ijk = 1 if iP j in the social ranking k 0 otherwise

  k used to learn Probability to find the rule (in %) p = 0.25 p = 0.5 p = 0.75 p = 0.90

Figure 6 .

 6 Figure 6. probability to find the CP-majority rule with exact subset of voting coalition for n = 4

  Number of power relations k used to learnLearning time in sec for one rule

Figure 7 .

 7 Figure 7. Time to learn a rule (for n = 4)

  Power relation : P Sijk = 1 if S ∪ {i} S ∪ {j} for the power relation k -1 if S ∪ {j} S ∪ {i} for the power relation k ii) Objective social ranking : O ijk = 1 if iP jin the social ranking O k 0 otherwise iii) Decision Variables social ranking : R ijk = 1 if iP j in the social ranking k 0 otherwise iv) Decision variables for coalition : Ss = 1 if Ss is kept 0 otherwise v) Decision variables Kemeny distance :

Figure 8 .

 8 Figure 8. Learning rules with noise for n = 4, Y being the number of coalitions shared by all power relations, with 1000 simulations

Figure 9 .

 9 Figure 9. Learning rules with approximation

3Figure 10 .

 10 Figure 10. Kemeny distance between the real social ranking and the approximative one for n = 4
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	Example 2. Let's consider four individuals N = {1, 2, 3, 4}. We
	have the power relation over group's performances : 1234 123
	124	134	12	13	234	14	2	3	1	23
	24	23	4. We have 1P 2 because S ∪ {1} win 3 times for
	S = {34}, {4}, {3} against 1 for S ∪ {2} (when S = ∅)	

Table 1 .

 1 Number of possible and voting coalitions in function of n

				illustrates some of these
	values.			
	n Number of	Number of coalitions S	Number of coalitions S
	possible	being voter	voting for a precise couple
			at least for one couple	
	2	6	4	1
	3	5040	11	2
	4	∼ 10 12	26	4
	5	∼ 10 33	57	8
	6	∼ 10 87	120	16

Table 2 .

 2 Table 2 presents the information table of and . Information table of and

	1 versus 2 1 versus 3	2 versus 3
	1 2	1 3	2 3
	1 2	1 3	2 3
	13 23	12 23	12 13
	13 23	12 23	12 13

Definition 2 (CP-equivalence). Let N be a set of individuals and and be two power relations on 2 N . and are CP-equivalent if and only if ∀S, ∀i, j, S ∪ {i} S ∪ {j} ⇔ S ∪ {i} S ∪ {j}

Table 3 .

 3 Number of possible CP-information tables in function of n

	n	Number of
		possible CP-information table
	2	2
	3	36
	4	414720
	5	∼ 10 16
	6	∼ 10 48

  (since 13 12), 2P 1 (since 245 145, 24 14 and 13 23), but 1P 3 (since 12 23). So we have a Condorcet cycle.

	Example 3. Consider the following power relation : 2345 245
	1234	13	12	23	145	35	24	14. CP-majority
	implies that 3P 2					

Table 5 .

 5 Probability to have Condorcet winner and a transitive social ranking without coalition S = {∅}

	voters

1 

Note that ∅ is the only "coalition" S which is able to compare all couple of candidates, hence its cancellation allows us to have an odd number of

Table 7 .

 7 CP-information tables for N = {0, 1, 2}

	on 1	Order on 1		0R1	0R2	1R2	Order
		01 02 12 0P 1 0P 2 1P 2	0P 1P 2
		01 12 02	0I 1	0P 2 1P 2	0I 1P 2
	0 1 2	02 01 12 0P 1 0P 2 02 12 01 0P 1 0I 2	1I 2 1P 2	0P 1I 2
		12 01 02	0I 1	0I 2	1P 2
		12 02 01	0I 1	0I 2	1I 2	0I 1I 2
		01 02 12 0P 1 0P 2	1I 2	0P 1I 2
		01 12 02	0I 1	0I 2	1P 2
	0 2 1	02 01 12 0P 1 0P 2 2P 1 02 12 01 0P 1 0I 2 2P 1	0P 2P 1 0I 1P 2
		12 01 02	0I 1	0I 2	1I 2	0I 1I 2
		12 02 01	0I 1	0I 2	2P 1
		01 02 12	0I 1	0P 2 1P 2	0I 1P 2
		01 12 02 1P 0 0P 2 1P 2	1P 0P 2
	1 0 2	02 01 12 02 12 01	0I 1 0I 1	0I 2 0I 2	1P 2 1I 2	0I 1I 2
		12 01 02 1P 0	0I 2	1P 2	1P 0I 2
		12 02 01 0P 1	0I 2	1I 2
		01 02 12	0I 1	0I 2	1P 2
		01 12 02 1P 0	0I 2	1P 2	1P 0I 1
	1 2 0	02 01 12 02 12 01	0I 1 0I 1	0I 2 2P 0	1I 2 1I 2	0I I 1I 2
		12 01 02 1P 0 2P 0 1P 2	1P 2P 0
		12 02 01 1P 0 2P 0	1I 2	1I 2P 0
		01 02 12 0P 1	0I 2	1I 2
		01 12 02	0I 1	0I 2	1I 2	0I 1I 2
	2 0 1	02 01 12 0P 1 02 12 01 0P 1 2P 0 2P 1 0I 2 2P 1	0I 2P 1 2P 0P 1
		12 01 02	0I 1	2P 0	1I 2
		12 02 01	0I 1	2P 0 2P 1	2P 0I 1
		01 02 12	0I 1	0I 2	1I 2	0I 1I 2
		01 12 02 1P 0	0I 2	1I 2
	2 0 1	02 01 12 02 12 01	0I 1 0I 1	0I 2 2P 0 2P 1 2P 1	2P 0I 1
		12 01 02 1P 0 2P 0	1I 2	1I 2P 0
		12 02 01 1P 0 2P 0 2P 1	2P 1P 0
	Number of power	Y = 2	Y = 4	Y = 6	Y = 8
	relation used to learn				
		2	3.278	4.326	4.481	4.544
		3	3.736	5.427	6.619	7.567
		4	3.519	5.328	6.918	8.247
		5	3.219		5.22	7.05	8.605
		6	3.258	5.173	7.055	8.788
		7	3.127	5.112	7.016	8.84
		8		2.95	5.098	6.94	8.896
		9	2.661	4.913	6.973	8.896
		10	2.705	4.862	6.936	8.943
		11	2.505	4.765	6.847	8.887
		12		2.56	4.691	6.831	8.918
		13	2.406		4.61	6.806	8.885

Table 8 .

 8 Average number of coalition in learning rules with noise, Y : the nbr of coalitions shared by all power relations, tested on 1000 simulations

As we don't modify the rule, we can have social rankings that are not transitive