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Weak solutions for Navier—Stokes equations
with initial data in weighted L? spaces.

Pedro Gabriel Fernandez-Dalgo*!, Pierre Gilles Lemarié-Rieusset*

Abstract

We show the existence of global weak solutions of the 3D Navier-
Stokes equations with initial velocity in the weighted spaces Lfvw,
where wy(z) = (1 + |z|)77 and 0 < v < 2, using new energy controls.
As application we give a new proof of the existence of global weak
discretely self-similar solutions of the 3D Navier—Stokes equations for
discretely self-similar initial velocities which are locally square inte-
grable.

Keywords : Navier—Stokes equations, weighted spaces, discretely self-
similar solutions, energy controls

AMS classification : 35Q30, 76D05.

1 Introduction.

Infinite-energy weak Leray solutions to the Navier-Stokes equations were
introduced by Lemarié-Rieusset in 1999 [8] (they are presented more com-
pletely in [9] and [10]). This has allowed to show the existence of local weak
solutions for a uniformly locally square integrable initial data.

Other constructions of infinite-energy solutions for locally uniformly square
integrable initial data were given in 2006 by Basson [1] and in 2007 by Kikuchi
and Seregin [7]. These solutions allowed Jia and Sverak [6] to construct in
2014 the self-similar solutions for large (homogeneous of degree -1) smooth
data. Their result has been extended in 2016 by Lemarié-Rieusset [10] to
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solutions for rough locally square integrable data. We remark that an ho-
mogeneous (of degree -1) and locally square integrable data is automatically
uniformly locally L2,

Recently, Bradshaw and Tsai [2] and Chae and Wolf [3] considered the
case of solutions which are self-similar according to a discrete subgroup of
dilations. Those solutions are related to an initial data which is self-similar
only for a discrete group of dilations; in contrast to the case of self-similar
solutions for all dilations, such an initial data, when locally L?, is not nec-
essarily uniformly locally L?, therefore their results are no consequence of
constructions described by Lemarié-Rieusset in [10].

In this paper, we construct an alternative theory to obtain infinite-energy
global weak solutions for large initial data, which include the discretely self-
similar locally square integrable data. More specifically, we consider the
weights

1
= Ty
with 0 < 7, and the spaces
L2 = L*(w,dz).

Wy

Our main theorem is the following one :

Theorem 1 Let 0 < v < 2. If ug is a divergence-free vector field such
that uo € L2, (R®) and if F is a tensor F(t,x) = (F;(t,2)),, ;5 such that
F e L?((0, +00), L7, ), then the Navier-Stokes equations with initial value ug
du=Au—(u-V)u—Vp+V.-F
(NS)
V-u=0, u(0,.) =up
has a global weak solution u such that :

o for every 0 < T < 400, u belongs to L>((0,T), L;, ) and Vu belongs
to L*((0,7), L7, )

o the pressure p is related to u and ¥ through the Riesz transforms R; =

\/% by the formula

> RiRj(uu; — Fy)

1 j=1

3
p=

1

where, for every 0 < T < 400, Y7, Z?Zl R, R;(u;u;) belongs to
LY(0,7), Lify,) and 32 S35 RiR;F,; belongs to L*((0,T), L2, )

W6~y
5
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e the map t € [0,400) — u(t,.) is weakly continuous from [0,+00) to
L%UW, and 1is strongly continuous att =0 :

fim fut..) — |z, = 0.

e the solution u is suitable : there exists a mon-negative locally finite
measure p on (0,+00) x R® such that

a5 = a5~ 1wuk = v () 4w (7 ) -

In particular, we have the energy controls
t
2 2
(e, g, +2 [ V(s )z, ds
0

t t
§||u0||2ng —/0 /V|u|2~Vw7dxds+/0 /(|U|2+2p)u~V(w7) dr ds
303
_222/0 /Evj(aiuj>w7+ﬂ,jui8j(wry) dx ds

i=1 j=1

and
t t
Jutt. ), < lally +C [ IR dseCy [ sl s )l ds

A key tool for proving Theorem 1 and for applying it to the study of
discretely self-similar solutions is given by the following a priori estimates for
an advection-diffusion problem :

Theorem 2 Let 0 < v < 2. Let 0 <T < 4+o00. Let uy be a divergence-free
vector field such thatug € L7, (R*) and F be a tensor F(t, ) = (Fij(t, ));<; <3
such that F € Lz((O,T),LfUV). Let b be a time-dependent divergence free
vector-field (V - b = 0) such that b € L3((0,T), Lf’ﬂwz).

Let u be a solution of the following advection-diffusion problem

du=Au—(b-V)u—-Vp+V-F
(AD)
V-u=0, u(0,.) =uy

be such that :

e u belongs to L>=((0,T), L2

Wy

) and Vu belongs to L*((0,T), L}, )
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o the pressure p is related to u, b and F through the Riesz transforms
)
R, = Ve

3 3
b= ZZRZR]buJ Fij)

=1 j=1
where Y7 Z?Zl R;R;(b;u;) belongs to L*((0,T), L?U/i ) and 37, Z?Zl R,R;F; ;
5
belongs to L*((0,T), L3, )
e the map t € [0,T) — u(t,.) is weakly continuous from [0,T) to quv,

and 1s strongly continuous att =10 :

lim [[u(t.,.) — uollz, =0

e there exists a non-negative locally finite measure p on (0,T) x R3 such
that

[uf?

2

2
oL

) = A(

2
)—|Vul?* - V- (%b) —V-(pu)+u-(V-F)—pn. (1)
Then, we have the energy controls

t
lu(t, )H%%W + 2/ |Vu(s, )H%%W ds
0

¢ ¢
SHUOH%%U —/ /V|u|2-Vw7dxds+/ /|u|2b-V(ww)dacds

3

—1-2/ /pu V(w.) dxds—QZZ// 55 (Oug)wy + Fj ju;0;(wy) do ds

=1 j=1

and

t
(e, g, + [ IVul ds
0

t t
<y, +C; [ WGl dsC [ (4 bl luts. )l ds

where C., depends only on vy (and not on T', and not on b, u, uy nor IF).

In particular, we shall prove the following stability result :



Theorem 3 Let 0 < v < 2. Let 0 < T < +oo. Let uy, be divergence-
free vector fields such that v, € ngW (R3) and F,, be tensors such that F, €
L*((0,7), Lz, ). Let by, be time-dependent divergence free vector-fields such
that b, € L*((0,T), Ly, ,)-

Let u,, be solutions of the following advection-diffusion problems

o, = Au,, — (b, - V)u, — Vp, +V-F,
(AD»)
V-u, =0, u,(0,.) =ug,

such that :
e u, belongs to L=((0,T), L}, ) and Vu, belongs to L*((0,T), L3, )

e the pressure p, is related to u,, b, and F,, by the formula
3 3
Pn = Z Z RiRj(bn,iun,j - Fnzg)
i=1 j=1

o the map t € [0,T) + u,(t,.) is weakly continuous from [0,T) to L2,
and is strongly continuous att =10 :

lin [ () — o2, = 0.

e there erists a non-negative locally finite measure i, on (0,T) x R3 such
that

|un|2

2

|un|2

2

|un|2

2

at( ) = A(

)= 190,27 (P, ) -9 (V52

If vy, is strongly convergent to g o in LZJW, if the sequence ¥, is strongly
convergent to Fo, in LQ((O,T),LfUW), and if the sequence b, is bounded in
L3((0,T), Lf’vswz)’ then there ezists poo, Us, boo and an increasing sequence
(ng)ken with values in N such that

e u,, converges *-weakly to u in L>°((0,T), Lf%), Vu,, converges weakly
to Vuy, in L*((0,T), L7, )

e b, converges weakly to be, in L*((0,T), L?’fsw)’ Dn,, converges weakly

to pee in L3((0,T), Lilg,) + L*((0,T), L2, )
5



e u,, converges strongly to u., in L2 _([0,T)xR3) : for every Ty € (0,T)
and every R > 0, we have

To
lim / [, (5,y) — us(s,y)[>dsdy = 0.
0 ly|<R

k—4o00

Moreover, Uy is a solution of the advection-diffusion problem

atuoo = Auoo - (boo . V)uoo - vpoo +V. ]Foo
(AD..)
V Uy = O7 uoo((), ) — u0,00

and is such that :

o the map t € [0,T) = un(t,.) is weakly continuous from [0,T) to L7, ,
and is strongly continuous att =10 :

lin [ (f, ) — g ol = 0.

e there exists a non-negative locally finite measure i on (0,T) <R3 such

that
Uy |? Uy |? U |?
Notations.

All along the text, C, is a positive constant whose value may change from
line to line but which depends only on ~.

2 The weights w;.

We consider the weights ws = m where 0 < § and z € R3. A very
important feature of those weights is the control of their gradients :

Vusta)| = 6750 )

Lemma 1 (Muckenhoupt weights) If0 <6 <3 and 1 < p < +o0, then
ws belongs to the Muckenhoupt class A,.



Proof : We recall that a weight w belongs to A,(R?) for 1 < p < +oo if
and only if it satisfies the reverse Holder inequality

1
1 / )P 1 / dy !
sup | ————— w(y) dy —_— —_— < 4o00. (3
xeRa,R>O<|B<x,R>| - <|B<x7R>| o () ®)

For all 0 < R < 1 the inequality |z —y| < R implies (1 + [z]) < 1+ |y| <

2(1 + |z|), thus we can control the left side in (3) for ws by 47
For all R > 1 and || > 10R, we have that the inequality |z —y| < R

implies (1 + |x]) §6 1+ Jy| < (1 + |z|), thus we can control the left side

in (3) for ws by (4)».
Finally, for R > 1 and |z| < 10R, we write

1 v 1 dy -3
(\B@—, R>|/B<x;’§(y> dy) (m B(Oﬁ)w(y)pll)
: <|B(01, R)| /B(x,ll ;;J(y) dy) p(WlaRw/B(o,n R) w(ji&)
1
- <% /oler2(1 irmd) p <% /01er2<1 )7 dr) ’
oo (e ) (e [ )G [ )

=Cs,p

1
1 1 _
(3-06)r \ 3% B+ 2%
The lemma is proved. o

Lemma 2 [f0 < <3 and 1 < p < +o00, then the Riesz transforms R;
and the Hardy-Littlewood mazimal function operator are bounded on LE, =

LP(ws(z) dx) :
1R fllin, < Cpsllflliz, and [|Mlliz, < Cpsll fllzs,-

Proof: The boundedness of the Riesz transforms or of the Hardy—Littlewwod
maximal function on LP(w, dz) are basic properties of the Muckenhoupt class

A, [5]. o

We will use strategically the next corollary, which is specially useful to obtain
discretely self-similar solutions.



Corollary 1 (Non-increasing kernels) Let § € L'(R?) be a non-negative
radial function which is radially non-increasing. Then, if 0 < § < 3 and
1 < p < +o0, we have, for f € Lt the inequality

10 fllzz, < Cosll Fllez, 1911

ws

Proof : We have the well-known inequality for radial non-increasing kernels
[4]
|0 f ()] < ([0l M ()

so that we may conclude with Lemma 2. o

We illustrate the utility of Lemma 2 with the following corollaries:

Corollary 2 Let 0 <y < 2 and 0 < T < +oo. Let F be a tensor F(t,z) =
(Fij(t, @) <; j<s Such that F € LQ((O,T),LfUV). Let b be a time-dependent
divergence free vector-field (V -b = 0) such that b € L*((0,T), L3, )
Let u be a solution of the following advection-diffusion problem
du=Au—(b-V)u—-V¢g+V-F

(4)
V-u=0,

be such that : w belongs to L>((0,T), L7, ) and Vu belongs to L*((0,T), Lz, ),
and the pressure q belongs to D'((0,T) x R3).

Then, the gradient of the pressure Vq is necessarily related to u, b and
I through the Riesz transforms R; = Ve

Vg = (ZZRzRJ biu; — w))

=1 j5=1

and Y7, 23:1 R;R;(b;u;) belongs to L*((0,T), L?U/; ) and 373, Z?Zl R,R;F; ;
belongs to L*((0,T), Lz, ). )

Proof : We define

p= (ZZRJ@ biu; — ”)) .

=1 j=1

As 0 <y < 2 we can use Lemma 2 and (2) to obtain SO 12? L RiR;j(biu;)
belongs to L3((O,T),L§U/657) and 30 Z] , RiR;F; j belongs to L*((0,T), L, ).
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Taking the divergence in (4), we obtain A(¢ —p) = 0. We take a test
function @ € D(R) such that a(t) = 0 for all |[t| > &, and a test function
S € D(R3); then the distribution Vg*(a® ) is well defined on (g, T —¢) x R3.

We fix t € (e,T — ¢) and define

Aapr=(Vgx(a® B) — Vpx (a® B))(t,.).
We have

Aspr =(u* (=0 @B +a@AB)+(—u@b+F)  (a®VA))(t,.)

—(px(a®VA))(L,.). (5)

Convolution with a function in D(R?) is a bounded operator on Lfﬂ7 and on
LY (as, for p € D(R?) we have | f x| < C,M ;). Thus, we may conclude

We~ /5
from (5) tﬁlr/lgt Aapr € Lz, + Lﬁ]/;/S. If max{y, 2} < § < 5/2 , we have
AO&,ﬁ,t 6 Lw65/5.

In particular, A, g is a tempered distribution. As we have
Adgpe = (a@®f)x (Alg—p)(t,.) =0,

we find that A, g, is a polynomial. We remark that for all 1 < < +o0 and
0 <0 <3, Ly, does not contain non-trivial polynomials. Thus, A,z = 0.
We then use an approximation of identity %a(%)3(£) and conclude that
V(g —p)=0. o

Actually, we can answer a question posed by Bradshaw and Tsai in [2]
about the nature of the pressure for self-similar solutions of the Navier—Stokes
equations. In effect, we have the next corollary:

Corollary 3 Let 1 <y < 32 and 0 <T < +oo. Let F be a tensor F(t,z) =
(Fij(t, @) <; j<g Such that F € L2((0,7), L?Uﬁ/).
Let u be a solution of the following problem

u=Au—(u-V)u—-Vp+ V. -F
V-u=0,

be such that : u belongs to L™ ([0, +00), L?)0c and Vu belongs to L*([0, +00), L?)i0c,
and the pressure q is in D'((0,T) x R3).



We suppose that there exists X > 1 such that N*F(\*t, \z) = F(t,x) and
Au(N%t, \x) = u(t,z). Then, the gradient of the pressure Vq is necessarily

related to u and F through the Riesz transforms R; = \/% by the formula

vq:v(i

=1 3

Ri R (uiu; — Fm))
1
and 33 Z?zl RiR;(u;u;) belongs to L*((0,T), L?U/%) and 32 23:1 R,R;F; ;
belongs to L*((0,T), Lz, ).
Proof : We shall use Corollary 2, and thus we need to show that u belongs

1f:o L>((0,T), Ly, N L*(0,T), L3, ) and Vu belongs to L*((0,7), L7, ). In
act,

lu(t, z)|?
|| 7o 2y < su u(t, z)|* dz+c su / ———dx
lullo=omaz,) < sup. / tnPdrresp S [ G

keN
and
t,z)|? t
sup Z/ Mdmﬁ sup Z)\(17)k/ lu(~5, o) da
0<t<T 1= Jaetcapens A7 0<t<T £ Alclal<l A

< ¢ sup / lu(t, z)|* do < +o0.
A<z«

0<t<T

For Vu, we compute for k € N,

T L
/ / IVu(t,2)|? dt de = Ak/“ / IVu(t, 2)|? da dt.
0 JAF-l<|z|<)F 0 F<lzl<1

We may conclude that Vu belongs to L?((0, 7)), L?UW), since for v > 1 we have
Dren AT < o0,

Now, we use the Sobolev embeddings described in next Lemma (Lemma
3) to get that u belongs to L*((0,T), Lfvsw)’ and thus (by interpolation with
L>((0,7), Ly, )) to L*((0,T), L3, ).

W3~ /2
In particular, 327, Z?Zl R;R;(u;u;) belongs to L%(O,T),L?/;), since we
5

have

3 1
[(w @ wwylles < [lywyullezlly/wyulls < flywyulLlly/wyullzs

10



Lemma 3 (Sobolev embeddings) Let 6 > 0. If f € LZ)& and Vf € qué
then f € LS and

w3s

11l zg,

w3§

< Cs(If Nz, + 1V Fllzz,)-

1U5
Proof : Since both f and ws/, are locally in H 1 we write

(S$i

8i(fw6/2) = wé/Qaif + fai(wé/Z) = w6/2aif - Emws/zf

and thus

52
lwsy2f 115 + |V (wsy2 )3 < (1 + 5)!\w6/2fH§ + 2||lws 2V £113-

Thus, ws/» f belongs to L® (since H' C L), or equivalently f e LS . o

w3s

3 A priori estimates for the advection-diffusion
problem.

3.1 Proof of Theorem 2.

Let 0 < tg < t; < T. We take a function a € C*°(R) which is non-decreasing,
with a(t) equal to 0 for ¢ < 1/2 and equal to 1 for t > 1. For 0 < n <
min(%, T — t;), we define

t—1 t—1
0)—04( 1

7 n)'

Qo (1) = (

We take as well a non-negative function ¢ € D(R?) which is equal to 1 for

|z < 1 and to O for |x| > 2. For R > 0, we define ¢r(z) = ¢(%). Finally,
_ 1

we deﬁne, for € > O, Wy, e = m We have Q) 0,11 (t)gzﬁR(:l:)w%E(x) S

D((0,T) x R?*) and ay, 404, (£)dr(x)w, (x) > 0. Thus, using the local energy

11



balance (1) and the fact that x> 0, we find

uf?
— Tatan,tmtlgbRw%e dx ds

3
=3 [ onwani w00+ 6rdh,) dads
=1

_/ ]Vu|2 an,to,t1¢Rw%€d$ ds

3 2
u
+ Z // %bian,to,h (w'y,eai(bR + (ﬁRaﬂU%e) dx ds
=1
3
+ Z // C(nvto,t1pui(w'y,eai¢R + ¢Raiw%€) dx ds

_ZZ// Ui 1o 1, (We,0iOR + PROW, () d ds

=1 j=1

_ZZ//Fwauy Qi to,t1 PRW~ ¢ AT ds.

=1 j=1
We remark that, independently from R > 1 and ¢ > 0, we have (for 0 < v <

2)
w,(z)
“/1 l | | = Cﬁwi’w/?(x)'

Moreover, we know that u belongs to L>((0,T), L? )ﬂL2((0 T), LS, _) hence
to L*((0,7), L3, ). Since T' < +o00, we have as well u € L3((0, T) 8 ).

w3 3v/2 w3 ~v/2
(This is the same type of integrability as required for b). Moreover, we have

pu; € LY, since w,p € L*((0,T), LS5+ L?) and w, pu € L*((0,T), L>NLE).

ws 3v/2
All those remarks will allow us to use dominated convergence.
We first let n go to 0. We find that

|w’YE 2¢R| + |¢Ra W, e| >

12



: uf?
— lim Tatan,to,h ORW~ e dx ds

n—0

3 t1
= - Z/ /aiu “u(wy, idr + PrOW, ) dx ds
i=1 Y to

t1
—/ /|Vu|2 ORW. dT ds
to

3 t1 2
=30 [0 [ B 00n + ondn ) o s
i=1 Y to
3 t1
o3[ [t dn + ondu ) o ds
i=1 “to

3 3 th
— Z Z/ /Fz-,juj(w%eaigzﬁR + prO;w. ) dx ds
to

i=1 j=1
3 3 t1

— g g / /F’i’jaiu]‘ GRW-  dx ds.
i=1 j=1 710

Let us define
Ara(t) = [ fut.0)Pon(oye, (o) do.

As we have

u 2 1
- / / %&an,tom%wv,e dzds = —2 / Or0tn to,1: Ae(5) ds

we find that, when ¢y and ¢; are Lebesgue points of the measurable function
AR €

. u 2 1
lim — // %@Ozn,m,tléﬁﬁtwv,e dr ds = é(AR,e(tl) — Ap(to)).

n—0

Then, by continuity, we can let ¢, go to 0 and thus replace ¢y, by 0 in the
inequality. Moreover, if we let t; go to ¢, then by weak continuity, we find that
Ap(t) < limy, ¢ Ar(t1), so that we may as well replace t; by t € (0,7).
Thus we find that for every t € (0,T), we have

13



u(t, z)|?
JLE LI

2
S/%¢Rw'y,e dx

3 t
— Z/ /&;u ‘U (W, 0;0r + PrROW, ) dx ds
i=1 70

¢
—/ /|Vu|2 PrW, dx ds
0

3 t 2
- Z/o / %bi(wv,eaiébzz + ¢rOWw, ) dx ds (6)
i=1
3 t
+ Z/ /pui(w%eaigbl% + ¢rOw, ) dx ds
i=1 V0

3 3 t
— Z Z/ /Fi’juj(w%ﬁigzﬁg/ + ¢rOw, ) dz ds
0

i=1 j=1

3 3
n ZZ/:/FM@U]' ORW~ e dx ds.

i=1 j=1

Thus, letting R go to 400 and then e go to 0, we find by dominated
convergence that, for every t € (0,7), we have

t
(e, )12 +2/0 [Vu(s, )3 ds
t t
§||uo||%gu —/ /V|u|2-Vw7d:Eds+/ /(|U|2b+2pu)-V(w7)d:Eds
2l 0 0
3 3
_QZ

i=1 j

t
§2fy/ /\u||Vu|de:cd5
0

1 t t
S—/ [Vul|3. d3+4fy2/ llull3. ds.
4 Jo o 0 o

t
/0 / FZL'J (&uj)wv + Fi,juiaj(ww) dxds.
1

Now we write

t
/ /V|u|2 -Vw, dsds
0

14



Writing
3 3 3 3
b1 = Z Z RiRj(biuj) and py = — Z Z RiRj(Fz‘,j)

=1 j=1 i=1 j=1

and using the fact that we,/5s € Ag/s and w, € Ay, we get

/Ot /(|u|2b + o) - V(w,) da ds

t
37[;/ﬂufm++2mnhum@”dxds

t
< 7/ ||w§/2u||6(||wv|b||11|||6/5 + |lwyp1ll6/5)ds
0
t
saﬁwwwwmwwwws
t
sa/m%wmwmw@%mw
0
t
S@AWWW@HM%MM%WMMMS

1 t t
<3 [ 19l s+ [l (bl
0 0

W3v/2
t
/ /2p2u~V(w7) dx ds
0

t
§2fy/ /|p2Hu\wvd:cds
0

t
<y [ ulls, + sl ds
0

+Ibl3, )ds

and

t
<C, [l +IFIE;, ds.
0
Finally, we have

3 3 t
2 Z Z/o /Fi7j(8iuj)w7 + F; ju;0;(w,) dz ds

i=1 j=1

t
<2 [ [1F10val + o) w, dods
0

1 /[t t
= Z/ Hvu”%i dS—I—C%/ ||u||%%] + ||F||%120 ds.
0 K 0 v v

We have obtained

t
fa(t, ), + [ 19l ds
0

t t
<y, +C, [ IFGs )l dsC [ (4 bl luts, )l ds
(7

15



and Theorem 2 is proven. o

3.2 Passive transportation.
From inequality (7), we have the following direct consequence :

Corollary 4 Under the assumptions of Theorem 2, we have

Co (T+T/3|b|2 3 )
sup ||Ll||L%)’Y S (||110||L12“’Y + OWHFHLZ((O,T),L%W)) e L ((O’T)’Lw3w/2)
o<t<T
and
Co(T+T/3|b||2 )

L3(O.1), L3y )

IVull 2 o).z < (lwollzz, + (2 or).22,)) €
where the constant C, depends only on .

Another direct consequence is the following uniqueness result for the advection-
diffusion problem with a (locally in time), bounded b :

Corollary 5 . Let 0 < v <2. Let 0 <T' < +00. Letug be a divergence-free
vector field such thatug € L7, (R*) andF be a tensor F(t, ) = (Fij(t, )<, ;<
such that F € LQ((O,T),LfUV). Let b be a time-dependent divergence free
vector-field (V -b = 0) such that b € L3((O,T),Lf’03w2). Assume moreover
that b belongs to L2L(K) for every compact subset K of (0,T) x R3.

Let (uy, p1) and (ug, p2) be two solutions of the following advection-diffusion
problem

du=Au—(b-V)u—-Vp+V.-F
(AD)
V-u=0, u(0,.) =uy

be such that, fork =1 and k=2, :

o uy belongs to L*((0,T), L2 ) and Vuy belongs to L*((0,T), L, )

e the pressure py is related to ug, b and F through the Riesz transforms

— _ 0
R; = 2= by the formula

3 3
pr =YY RiRj(buw; — F,))
i=1 j=1

o the map t € [0,T) v w(t,.) is weakly continuous from [0,T) to L2, ,
and is strongly continuous att =10 :

lg% |lug(t,.) — uOHL%,W = 0.

16



Then u; = u,.

Proof : Let v=u; — uy and ¢ = p; — ps. Then we have

ov=Av—(b-V)v—-Vq

V-v=0, v(0,.) =0

Moreover on every compact subset K of (0,7) x R®, b®@ v is in L?L?, while
it belongs globally to L3LS[® .. Writing, for ¢, € D((0,T) x R3) such that

W6y /5

1 = 1 on the neigborhood of the support of ¢,

3 3 3 3
pr=at =0y > RilWbuy) +¢ Y > RRi((1—v)by)
=1 j=1 i=1 j=1
we find that HQ1HL2L2 S C(p,i[JHwb ® VHL2L2 and
@2l 3pee < Cuullb ® VHLgLZ/Gs/F

with

1/6
(1+ )\’
CGDJJJ < O”@HooHl - ¢||oo sup / (—3 < +00.
zESupp ¢ \ JyeSupp (1) [z =yl

Thus, we may take the scalar product of J,v with v and find that

v|® v|®

)_A(T)—Nv]?—v-(T )—V(qv)-

v|®

Oh( 5

Thus we are under the assumptions of Theorem 2 and we may use Corollary
4 to find that v = 0. o

3.3 Active transportation.
We begin with the following lemma :

Lemma 4 Let a be a non-negative bounded measurable function on [0,T)
such that, for two constants A, B > 0, we have

alt) <A+ B/Ota(s) + a(s)® ds.

]f TO > 0 and T1 = min(T, TO) 4B

m), we have, for every t € [0,T1],
a(t) < V2(A+ BTy).

17



Proof : We write a < 1 + a®. We define
t t
O(t) = A+ BTy + B/ o’ ds and U(t) = A+ BTy + B/ 3 () ds.
0 0

We have, for t € [0,T1], a < ® < U. Since ¥ is C!, we may write

U'(t) = BO(t)* < BU(t)?

and thus )
< 2Bt.
v(0)>  w(t)2
We thus find \If(0)2
U< — 7 < ou(0)
()" < 1—-2BY(0)% — (0)
The lemma is proven. o

Corollary 6 Assume that ug, u, p, F and b satisfy assumptions of Theorem
2, Assume moreover that b is controlled by u : for everyt € (0,T),

Ib(t, g, . < Collult, )l

Way/2 W3y/2

Then there exists a constant C, > 1 such that if Ty < T s such that

To 2
G+ G (1+ Gt Tl + [ IFI ds) Tos<
0
then
To
sup | u(t, 7. < Cy(1+ Cy+ [luolZs, +/ IFZ2 ds)
0<t<Top v 7 0 v

and
T() TO
| Ivuly ds <00+l + [ IFIE i)

Proof : We start from inequality (7) :
t

att. )y, + [ IValZ, ds
0

t t
SMM%“%AW@M%%+@AOHM&Mﬁ)W@Nﬁw

w3 /2
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We write
Ib(s, )2y < CRlla(s Iy < C2Cylulla, (lullsg, + I Vulzz,)
3v/2 3v/2 v v v
This gives
(e, s, +5 [ I9uls, ds
Slwolly, +C, [ FGs, I ds
0
t
#0, [l g, + Callate. ity + Gilluts, ), ds
t t
<luolty, + €, [ 1B ds+2C, [ luts, ), + Cillats. ), ds
0 0

For t < Tj, we get

fu(t. )2, + /wwﬂw
To t
smw%+@4nw%w+@ww®4wmm%+wmw%w

and we may conclude with Lemma 4. o

4 Stability of solutions for the advection-diffusion
problem.

4.1 The Rellich lemma.
We recall the Rellich lemma :

Lemma 5 (Rellich) If s > 0 and (f,) is a sequence of functions on R?
such that

o the family (f,) is bounded in H*(R?)

o there is a compact subset of R? such that the support of each f, is
included in K

then there exists a subsequence (f,,) such that f,, is strongly convergent in

L2(RY).
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We shall use a variant of this lemma (see [9]) :

Lemma 6 (space-time Rellich) Ifs >0, o € R and (f,) is a sequence of
functions on (0,T) x R? such that, for all Ty € (0,T) and all o € D(R3)

o ©f, is bounded in L?((0,Ty), H?)
o 0, f, is bounded in L*((0,Ty), H?)

then there exists a subsequence (f,,) such that f, is strongly convergent in
L2 ([0, T) x R3) : if fo is the limit, we have for all Ty € (0,T) and all

loc

Ry >0

ng—-+0o

To
lim / | o — fool® dzdt = 0.
0 |z|<R

Proof: With no loss of generality, we may assume that o < min(1, s). Define
g by gu(t,) = a(t)p(x) fult,2) i > 0 and gu(t,2) = a(t)p() ful—t,) if
t < 0, where a € C* on (0,7, is equal to 1 on [0,7p] and equal to 0 for
t > T2 and ¢(z) = 1 on B(0, Ry). Then the support of g, is contained
in [—@, %] X Supp¢. Moreover, g, is bounded in L?H*® and g, is
bounded in L?H? so that g, is bounded in H?(R x R?) with p = —— (just

2
) s+1—o

write (1+ 72+ €2)57 5 < ((1+ 72)(1 4 £2)7) 717 ((1 + £2)")71-7).. By the
Rellich lemma, we know that there is a subsequence g,, which is strongly
convergent in L?(RxR?), thus a subsequence f,,, which is strongly convergent
in LQ((O,T0> X B(O, R0)>

We then iterate this argument for an increasing sequence of times Ty <
Ty < -+ < Ty — T and an increasing sequence of radii Ry < Ry < --- <
Ry — 400 and finish the proof. by the classical diagonal process of Cantor.
o

4.2 Proof of Theorem 3.

Assume that ug, is strongly convergent to uy. in quw and that the se-
quence F,, is strongly convergent to Fo, in L?((0,T), Li)» and assume that
the sequence b,, is bounded in L3((0,7), L?UWQ). Then, by Theorem 2 and

Corollary 4, we know that u, is bounded in L>((0,T),L? ) and Vu, is
bounded in L*((0,7), L7, ). In particular, writing p, = pn1 + pn2 with

3 3 3 3
Pni1 = Z Z RiRj(bn,iun,j) and Pn2 = — Z Z RiRj(Fn,i,j)

i=1 j=1 i=1 j=1
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we get that py, 1 is bounded in L*((0,T), Lg,/(f7 ) and p,, 5 is bounded in L*((0,T), L2, ).
If o € D(R?), we find that pu, is bounded in L*((0,T), H') and, writing

3
atun = Aun - (Z az(bn,zun> + an,l) + (V : Fn - vpn,Z) )
i=1
¢, is bounded in L2L? + LW -1/ + [2H~-1 < [2((0,T), H"%). Thus,
by Lemma 6, there exists u,, and an increasing sequence (ng)reny with values

in N such that u,, converges strongly to u., in L2 .([0,7) x R3) : for every
Ty € (0,7T) and every R > 0, we have

loc

To

lim / [, (5, ) — us(s,y) > dyds = 0.
k=400 /g ly|<R

As u, is bounded in L>*((0,T), L3, ) and Vu, is bounded in L*((0,T), L2, ),

the convergence of u,, to us in D'((0,7T) x R?) implies that u,, converges

*-weakly to u., in L>((0,7), L3 ) and Vu,, converges weakly to Vu,, in

L2((0,T), L2,).

By Banach—Alaoglu’s theorem, we may assume that there exists b, such
that by, converges weakly to bee in L*((0,7), Ly, ,). In particular by, it ;
is weakly convergent in (LY°L%%),,. and thus in D'((0,T) x R3); as it is
bounded in L3((0,T), L?f;), it is weakly convergent in L3((0,T), L?U/;) to

5

boo,i’uooﬂ'. Let

pool_ZZRR oozum])andPOOQ_ ZZRR OO’L]

=1 j=1 =1 j=1

As the Riesz transforms are bounded on L and on LZW we find that p,, 1

or
5
is weakly convergent in L%(O,T),L?f;) to pooq and that p,, o is strongly

5

convergent in L*((0,T), L2, ) t0 pec,a-
In particular, we find that in D’((0,T) x R3)

3
Otloe = Alog — > Di(boo,illoe) = V(Poot + Poc2) + V - Fog

i=1

In particular, O,u. is locally in L?H 2, and thus u,, has representative such
that ¢ |—> uoo(t .) is continuous from [0,7") to D'(R?) and coincides with
u(0,.) + fo Opuy ds. In D'((0,T) x R?), we have that

t t
—l—/ Ol ds = Uoo = lim u,, = lim wug,, / oy, ds = u07oo+/ Oy ds
0 0 0

N —>+00 N —>—+00
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Thus, U (0,.) = Up ., and Uy is a solution of (AD,).
Next, we define

u, |” u, |” 5
)+A( )—V- Tb" —V-(pauy)+u, (V-F,) = |Vu,|"+p,.

As u, is bounded in L>*((0,T), L, ) and Vu, is bounded in L*((0,T), Lz, ),
it is bounded in L*((0,T), L,, ) and by interpolation with L>((0,T), L2, ) it

W3y /2

is bounded in L'9/3((0,T), L\ ). Thus, uy, is locally bounded in L'0/3[10/3

Ws+/3
and locally strongly convergent in L?L?; it is then strongly convergent in
L3L3. Thus, A, is convergent in D'((0,7) x R?) to

|u<><>|2 ‘U-OO|2
In particular, As = lim,, 100 [V, [* + pin,. If @ € D((0,T) x R?) is non-
negative, we have

//Aoo@dde: lim //Ankq)dxds Zlimsup//|Vunk|2<I>dxds Z/ VU |*® dx ds
ng—+00 ng—+00

(since vV®Vu,, is weakly convergent to v®Vu, in L?L?). Thus, there
exists a non-negative locally finite measure po on (0,7) x R3 such that
A = |VUug|? + plioo, i-e. such that

|u00|2

O(——) = 5

—)—]VuOOIQ—V-( boo) —V-(Poctioe)+u-(V-F oo ) — fioo-

Finally, we start from inequality (6) :
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t 2 2
JLCE I S

3 t
-y / / O, - 0y, (wy DR + drOsw,,.) da ds
i=1 70

t
—/ /|Vun|2 PrW~ dx ds
0
3 t
> [/
i—1

3 t
+ Z /0 /pnun,i<w'y,eai¢R + ¢Raiw'y,e) dz ds
i=1

3 3 t
— Z Z / / anun,j(ww@iqﬁR + QSR@iw%e) dx ds
0

i=1 j=1

3 3
N ZZ/Ot/Fnuazun ORW~ e dx ds.

i=1 j=1

2
|u;] bni(Wy,0;0R + PrROW, () dx ds

This gives

n (8 7)) '
limsup/wgblgww dx—i—/ /|Vunk|2 PrW dx ds
0

np——+00
2
< [Pl i

3 t
-3 / / Dtle - oo (w, Dibr + ddsws,) d ds
i=1 70

3 t 2
=30 [ a0+ ondi ) dvas
i=1 0
3 t
+ Z / /poouoo,i (w'\/,eaz‘gbR + ¢Raiw7,e) dz ds
i=1 0

3 3 t
- Z Z / / Foo,i,juoo,j<w'y,eai¢R + ¢Raiw7,e) dx ds
0

i=1 j=1

3 3
B ZZ/t/Foo,i,jaiuoo,j ORrW~  dx ds.
0

i=1 j=1
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As we have .
U, = Ugn, +/ oy, ds

we see that u,, (t,.) is convergent to u.(t,.) in D'(R?), hence is weakly
convergent in Lj,. (as it is bounded in L, ), so that :

U (t, 2)|? , u,, (t,2)]?
/M@aw%e dr < lim Sup/|k(—)|¢pbw%€ dx.
2 ng—-+0o0o 2
Similarly, as Vu,, is weakly convergent in L?L,_, we have

t 2 t 2
/ /Mqﬁ}gw%e dx ds < lim sup/ /wdmw%e dx ds.
0 0

ng—-+0oo

Thus, letting R go to 400 and then € go to 0, we find by dominated
convergence that, for every t € (0,7), we have

t
st g, +2 [ [Pu(s. )y, ds

t t
§||u0700||%%1 —/ /V|uoo|2.Vw7dxds+/ /(|uoo|2boo+2poouoo)-V(ww)dxds

_222// OOZJ@UOO] w7+FOOljuooza(w—y)d$dS

=1 j5=1

Letting ¢ go to 0, we find

lim sup [|[use (¢, )75, < [[wocllZs, -
t—0

On the other hand, we know that u,, is weakly continuous in L?H7 and thus
we have
0,00 175 < liminf [[us (£, )|[7; -

This gives ||u0700||%2 = limy_,¢ ||uso (%, )||L2 , which allows to turn the weak

convergence into a strong convergence. Theorem 3 is proven. o

5 Solutions of the Navier—Stokes problem with
initial data in L%UV.

We now prove Theorem 1. The idea is to approximate the problem by a

Navier-Stokes problem in L?, then use the a priori estimates (Theorem 2)

and the stability theorem (Theorem 3) to find a solution to the Navier-Stokes
problem with data in L ).
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5.1 Approximation by square integrable data.

Lemma 7 (Leray’s projection operator) Let 0 < 6 < 3 and 1 < r <
+oo. If v is a vector field on R® such that v € Ly, then there exists a
unique decompostion

V=V, +Vy

such that
° VUELZ)L; and V - vy = 0.
e vy € Lj, and V Avy =0.

We shall write v, = Pv, where P is Leray’s projection operator.
Similarly, if v is a distribution vector field of the type v .= V - G with
G € Ly, then there exists a unique decompostion

V=V, +Vy
such that
e there exists H € Ly, such that v, =V -H and V - v, = 0.
e there exists q € Ly, such that vy = Vq (and thus V A vy =0).

We shall still write v, = Pv. Moreover, the function q is given by

Proof : As ws € A, the Riesz transforms are bounded on L;é. Using the
identity
Av=V(V-v)=VA(VAV)

we find (if the decomposition exists) that
Avy, ==V AN(VAV,)==VA(VAV)and Avy =V(V -vy) =V(V- V).

This proves the uniqueness. By linearity, we just have to prove that v =
0 = vy =0. We have Avy = 0, and thus vy is harmonic; as it belongs to
§', we find that it is a polynomial. But a polynomial which belongs to L;,,
must be equal to 0. Similarly, if v¢ = Vg, then Aq =V -vg =V -v = 0;
thus ¢ is harmonic and belongs to L, , hence ¢ = 0.

For the existence, it is enough to check that vy ; = — Z?:l R;R;v; in the
first case and vy = Vg with ¢ = 377, 25:1 R,R;(G; ;) in the second case
fulfill the conclusions of the lemma. o
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Lemma 8 Let 0 < v < 2. Let uy be a divergence-free vector field such
that ug € L7, (R®) and F be a tensor F(t,x) = (£5j(t,2)),<; j<g Such that
F € L?((0,+00), L3 ). Let ¢ € D(R’) be a non-negative function which
is equal to 1 for |x| < 1 and to O for |x| > 2. For R > 0, we define
dr(x) = ¢(F), wo,r = P(¢ruo) and Fr = ¢gF. Then ugr is a divergence-
free square integrable vector field and limp_, | o HuO,R_uOHLﬁ,W = 0. Similarly,
Fgr belongs to L*L? and limp_, o [|[Fr — ]FHLz((O,JrOO),L%W) =0.

Proof : By dominated convergence, we have limg_, 1 |[[¢ruo — up| 2, =0.
We conclude by writing ug g — uy = P(¢rug — ug).

5.2 Leray’s mollification.

We want to solve the Navier—Stokes equations with initial value ug :

ou=Au—(u-V)ju—-Vp+V.F
(NS5)
V-u=0, u(0,.) =uy

We begin with Leray’s method [11] for solving the problem in L? :

atuR = ALIR — (llR : V)UR — VpR + V- F]R
(NSR)
V'HRZO, uR(O7.) = Uo,R

The idea of Leray is to mollify the non-linearity by replacing ug - V by
(ug *6,) -V, where 6(z) = 560(%), 0 € D(R?), 0 is non-negative and radially
decreasing and [ 6 dz = 1. We thus solve the problem
@uR,g = AUR7E — ((UR7E S 05) . V)UR76 — va,e + V . IFR
(NSRe)
V . uR7€ = 0, UR’E(O, ) = uO,R

The classical result of Leray states that the problem (NSg.) is well-
posed :

Lemma 9 Let vy € L? be a divergence-free vector field. Let G € L*((0,+00), L?).
Then the problem
Ove =Av, — ((vexb,) - V)v.— Vg +V -G
(NS,)
V-v.=0, v.(0,.) = vy

has a unique solution v. in L=((0,+00), L?) N L2((0,+o0), H'). Moreover,
this solution belongs to C([0, +00), L?).
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5.3 Proof of Theorem 1 (local existence)

We use Lemma 9 and find a solution ug, to the problem (NSg.). Then we
check that up, fulfills the assumptions of Theorem 2 and of Corollary 6 :

e up. belongs to L>*((0,T), L;, ) and Vug, belongs to L*((0,7), L, )

e the map t € [0, +00) — ug(t,.) is weakly continuous from [0, +00) to
L?UW, and is strongly continuous at ¢t =0 :

15% ||11R76(7f7 ) — u07R||L%u,Y =0.

e on (0,7) x R3 ug, fulfills the energy equality :
|uR e|2 |uR € |2
8 ) — A )

with br = ug, * 0..

>—|VuR,E|2—v~(—bR,€) V- (protin ) +ipe (VFR).

e by, is controlled by ug, : for every ¢t € (0,7),

re(t s, , < IMupeollez, < Colluret )l

W3y /2 W3y /2

Thus, we know that, for every time Ty such that
2

To
o1+ ) <1+0§+||uO,R||%gU + [ IRl ds) T <1
Yy O Wy

we have

To
sup || wrelt, )22 < C(1+Cht Juogl2s + / IFal2, ds)
0<t<Tp v v 0 v

and
To To
| I un s ds < €0+ Gl uonlly + [ IFlE; ds)
0 0

Moreover, we have that
luo,rllzz, < Cillaollee and [[Frllrz, < [[Fllz
so that

<Cllurcllesom.ez, ,

1
<C.T,” ((1 + VTo)llurel e (om),2,) + ||vuR,eHLQ((O,TO),L%U,Y)>

Pr.ecllzsom).ez,

To
SC’;’\/l—l-Cg—{—HuO”%gw—i-/o P, ds.
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Let R, — +oo and €, — 0. Let uy,, = ugr,, F, = Fgr,, b, = bg, ..
and u, = ug,.,.- We may then apply Theorem 3, since ug, is strongly
convergent to ug in L7 _, F, is strongly convergent to I in L*((0,Tp), L7, ),
and the sequence by, is bounded in L3((0,Tp), Lj, ). Thus there exists p,
u, b and an increasing sequence (ny)reny with values in N such that

e u,, converges *“-weakly to uin L>((0, 1), L?UW), Vu,, converges weakly
to Vu in L?((0,Tp), L2, )

e b, converges weakly to b in L3((0,Tp), L3 ), pn, converges weakly

W3~ /2
to p in L*((0,Ty), Lile, ) + L2((0, Tp), L2, )

5

e u,, converges strongly to u in L2 ([0, 7y) x R?).

Moreover, u is a solution of the advection-diffusion problem
u=Au—(b-V)u—Vp+V.-F

V-u=0, u(0,.) =uy
and is such that :

e the map t € [0,7y) = u(t,.) is weakly continuous from [0,Tp) to L7, ,
and is strongly continuous at t =0 :

lim [[u(..) — wollz, =0

e there exists a non-negative locally finite measure p on (0, Tp) X R? such
that

[uf?

= Al - vup - v

uf”
2

SH

—

\L
|

5 b)—V-(pu)—i—u-(V-IF)—p.
Finally, as b, = 6., * (u, — u) + 6., * u, we see that b,, is strongly
convergent to u in L ([0, Tp) x R?), so that b =u : thus, u is a solution of

loc

the Navier—Stokes problem on (0, 7). (It is easy to check that

> RiR;(usu; — Fy;)

1 j=1

3 3
p:

(]
6/5

as Ui, Uj,p, 1 weakly convergent to wu; in L*((0,Tp), Luly, ) and wey € Ags).
5 5
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5.4 Proof of Theorem 1 (global existence)

In order to finish the proof, we shall use the scaling properties of the Navier—
Stokes equations : if A > 0, then u is a solution of the Cauchy initial value
problem for the Navier-Stokes equations on (0,7") with initial value uy and
forcing tensor F if and only if uy(t,z) = Au(A?t, \z) is a solution of the
Navier-Stokes equations on (0,7/A?) with initial value ug,(z) = Aug(Ax)
and forcing tensor Fy (¢, z) = N?F(\*t, \z).

We take A > 1 and for n € N we consider the Navier-Stokes problem
with initial value vq, = A"uy(A\™-) and forcing tensor F,, = A*"F(A*"- A™.).
Then we have seen that we can find a solution v, on (0,7,), with

2

+o0
0 (1t vz, + [ IR, d5) To=1
0

Of course, we have v, (t, ) = A\"u,(A\*"t, \"x) where u,, is a solution of the
Navier-Stokes equations on (0, A**T;,) with initial value uy and forcing tensor

F
Lemma 10
li A
im =
n—-+oo | + ||V07n|’%%u7 + f0+ ||]FnH%i) dS

Proof : We have

o (L lal)
Moall, = [ o) P00 S ) e

We have
)\n(v—l) <\

as v < 2 and we have, by dominated convergence,

(1
lim /|u0 |2 +J2l) w(z)dr = 0.

n—>+oo (A™ + |z|)Y bt

Similarly, we have

/0 "I, ds:/o m/\w(s,xnwﬁl ((”A (z) dz ds = o(A").

X fal)y

Thus, lim,,_, 10 A2 T}, = +00. o
Now, for a given T' > 0, if A>*T,, > T for n > ny, then u, is a solution
of the Navier-Stokes problem on (0,7). Let w,(t,z) = \"Tu, (A\*"Tt, \"Tz).
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For n > np, w, is a solution of the Navier-Stokes problem on (0, \™2"7T)

with initial value vy ,, and forcing tensor IF,, .. As A2 T < T, we have

T

2

+oo
C’Y <1 + ||V0,nT||%2 +/ H]FTLTH%Q dS) AiQnTT S 1.
wry 0 Wy

By corollary 6, we have
)\_2"‘TT
sup [ walt My, <O+ Nolly + [ sl d)
0<t<A ™I T K R 0 gl

and
)\72"7‘TT )\72nTT
[ Iowily ds< s Vol + [ IBurliy, ds)
0 0
We have

(1 + [a])”

2 _ 2np 2ynp(y—1) ny(y—1) 2np 2
wallty, = [ T2 Par 60 S e () de 2 20D (00, )

and

2T T 1+ |.I")7
Vw,|?: ds:/ / Vu,(s,x QA”T(W_l)(—w ) dx ds
[ vy as= [ [19u e S @)

T
Z/\nT(v—l)/ ||Vun\|i; ds.
0 “

Thus, we have a uniform control of u,, and of Vu, on (0,7) for n > nr.
We may then apply the Rellich lemma (Lemma 6) and Theorem 3 to find
a subsequence u,, that converges to a global solution of the Navier—Stokes
equations. Theorem 1 is proven. o

6 Solutions of the advection-diffusion prob-
lem with initial data in L%}W.

The proof of Theorem 1 on the Navier—Stokes problem can be easily adapted
to the case of the advection-diffusion problem :

Theorem 4 Let 0 < v < 2. Let 0 <T < 4+o00. Let uy be a divergence-free

vector field such thatug € L7, (R*) andF be a tensor F(t, ) = (Fij(t, )<, <3
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such that F € LQ((O,T),LZJV). Let b be a time-dependent divergence free
vector-field (V - b =0) such that b € L*((0,T), Ly, ).
Then the advection-diffusion problem

du=Au—(b-V)u—-Vp+V-F
(AD)
V-ou=0, u(0,.) =uy

has a solution u such that :
e u belongs to L=((0,T), L, ) and Vu belongs to L*((0,T), L7, )

e the pressure p is related to u, b and F through the Riesz transforms
R, = \/% by the formula

3

p=Y_> RiRj(bu; — F))

=1 j=1

o the map t € [0,T) + u(t,.) is weakly continuous from [0,T) to L7, ,
and is strongly continuous att =0 :

lim [lu(t,.) — w3, = 0.

e there exists a non-negative locally finite measure p on (0,T) x R3 such
that
E

o(5-) = A~

[uf?

5 ) —IVu ? - <ﬂb)—v-(pu)+u-<v-w)—u.

2

Proof : Again, we define ¢r(z) = ¢(%), wo,r = P(¢ruo) and Fr = @gF.

Moreover, we define bg = P(¢rb). We then solve the mollified problem

atuR,e = AuR,e - ((bR * 96) ' v)uRﬁ - VpRr€ +V- FR’G
(ADg,)
V : uR,e = 07 uR,€(07 ) = uO,R

for which we easily find a unique solution ug, in L>((0,T), L*)NL*((0,T), H").
Moreover, this solution belongs to C([0,T'), L?).
Again, up, fulfills the assumptions of Theorem 2 :

e up, belongs to L>*((0,T), L;, ) and Vug, belongs to L*((0,7), L3, )
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o the map t € [0,7) = ug,(t,.) is weakly continuous from [0,7') to L7, ,
and is strongly continuous at t =0 :

lim [lup(t,.) = o rllez, = 0.

e on (0,7) x R3 up, fulfills the energy equality :
? ?

u €
= A(%)—|VUR7E|2—V~ (—bge) —V~(pRﬁuR,E)—i—uR,E'(V-FR).

a1l

with br = bg * 0..
Thus, by Corollary 4 we know that,

Cy(T+T3|bR,c|12 3 )
sup HuR,EHL%W S (HuO,RHL%W+C’Y||FRHL2((O,T),L?UW )e L ((O,T),Lw3w/2)
o<t<T

and

C’Y(T+T1/3||bR,eH23 3 )
||vuR,6|IL2((O,T),L2w7) S (HUORHL%W+OW||FR||L2((0,T),L%M)) e L ((O’T)’L“’M/?)
where the constant C, depends only on 7.

Moreover, we have that
ao.rllze, < Cylluollzs  IFrllzz, < |IFlLz
and

) < Clbllsqn.m, )

Prelzsom.es, ) < IMogllosqom g, Ser/2

/

Let R, — +oo and ¢, — 0. Let ug,, = uo7r,, F,, = Fg,, b, = bg, ..
and u, = ug,.,.- We may then apply Theorem 3, since uy, is strongly
convergent to ug in L7, , F, is strongly convergent to F in L*((0,7), L%UW),
and the sequence b, is strongly convergent to b in L3((0,7), Liawm)' Thus

there exists p, u and an increasing sequence (n)reny with values in N such
that

e u,, converges *-weakly to uin L*((0,7), wa), Vu,, converges weakly
to Vu in L*((0,7), L},.)

e p,, converges weakly to p in L*((0,T), Lg,/;) +L*((0,7),L3,)

5

e u,, converges strongly to uin L2 ([0,T) x R?).

We then easily finish the proof. o
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7 Application to the study of A-discretely self-
similar solutions

We may now apply our results to the study of A-discretely self-similar solu-
tions for the Navier—Stokes equations.
Definition 1 Letuy € L (R?). We say that ug is a A-discretely self-similar
function (A\-DSS) if there exists X > 1 such that Aug(Azx) = uy.

A wector fieldu € L2 ([0, +00) x R3) is \-DSS if there exists X > 1 such
that Au(N\t, \z) = u(t, r).

A forcing tensor F € L2 ([0,4+00) x R?) is A-DSS if there exists A > 1

loc

such that NX°F(\*t, \x) = TF(t, z).

We shall speak of self-similarity if ug, u or F are A-DSS for every A > 1.

Examples :

e Let v > 1 and A > 1. Then, for two positive constants A, \ and B, ,
we have : if ug € L2 (R?) is A-DSS, then ug € L?U7 and

loc

A [ u@)Pde < [ fuo@)Puse)dr < By [ Jule)?ds
1<|z|<X

1<|z|<X

e uy € L2 is self-similar if and only if it is of the form uy = WD|(1,'|”T‘) with

Wo € LQ(SQ)

e I belongs to L*((0, +00), L7, ) with y > 1 and is self-similar if and only

if it is of the form F(¢,z) = %]FO(%) with [ |Fo(z) 2|71‘ dx < +o00.

Proof :
e If ug is A-DSS and if £ € Z we have
[ mle@irs s [ wp
Ae<|z|<A\k+1 (1 + >\’“)” 1<|z|<A

with ), ., % < 400 for v > 1.

o If ug is self-similar, we have uy(z) = ﬁuo(i). From this equality, we

|z
find that, for A > 1

/1<|z|<>\ o) de = (A —1) /52 [ug()|* do
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o If I is self-similar, then it is of the form F(¢,x) = %IFO(\%) Moreover,

we have

+0oo +oo 2 dCL’
| [ reope @ [ [Fu@Pe ia % -, [Fwr

0
with O, = [[7 —1 < +00. o

(1+vVo)r f

In this section, we are going to give a new proof of the results of Chae and
Wolf [3] and Bradshaw and Tsai [2] on the existence of A-DSS solutions of the
Navier—Stokes problem (and of Jia and Sverdk [6] for self-similar solutions) :

Theorem 5 Let 4/3 < v <2 and X > 1. Ifuy is a \-DSS divergence-free
vector field (such that uy € L?, (R3)) and if F is a A-DSS tensor F(t,x) =

(Fij(t, @) <; j<s Such that F € Lloc([O, +00) x R?) | then the Navier—Stokes
equations with initial value ug

du=Au—(u-V)u—Vp+V.-F
(VS)
V-u=0, u(0,.) =up

has a global weak solution u such that :
e u is a A\-DSS vector field

o for every 0 < T < 400, u belongs to L>((0,7T), L?UQ and Vu belongs
to L*((0,7), L7, )

the map t € [0,+00) — u(t,.) is weakly continuous from [0,400) to
L?U , and is strongly continuous att =10 :

lim [lu(t,.) —wl|zz = 0.

the solution u s suitable : there exists a non-negative locally finite
measure p on (0,+00) x R® such that

[uf”

8t(u7) = A(

[uf?

5 ) — | Vuf® — ((%%—p)u)—l—u-(v-ﬂ?)—u.
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7.1 The linear problem.

Following Chae and Wolf, we consider an approximation of the problem that
is consistent with the scaling properties of the equations : let # be a non-
negative and radially decreasing function in D(R?) with [ 6 dz = 1; We define
O.(x) = ﬁ 0(-2). We then will study the “mollified” problem

ou, = Au, — ((ue *0.4) - V)u. — Vp. + V- F
(NS,)
V-u=0, u(0,.) =uy

and begin with the linearized problem

Ov=Av—((bx0.,) -V)v—-Vqg+V-F
(LNS,)
V-v=0, v(0,.) =uy

Lemma 11 Let 1 < v < 2. Let A > 1 Let ug be a A\-DSS divergence-
free vector field such that vy € L7, (R?) and F be a A-DSS tensor F(t,x) =
(F3j(t, @) <; j<g Such that, for every T >0, F € L*((0,7),L;, ). Letb be a
A-DSS time-dependent divergence free vector-field (V -b = 0) such that, for
every T >0, b € L3((0,7), L?Uam).

Then the advection-diffusion problem

ov=Av—((bx0.,) - V)v—-Vqg+V-F
(LNS.)
V-v=0, v(0,.) =uy

has a unique solution v such that :

e for every positive T', v belongs to L‘X’((O,T),Lf%) and Vv belongs to
L*((0,T),L3,)

e the pressure p is related to v, b and F through the Riesz transforms

R, = \/% by the formula

3 3
p= Z Z RZR]((bZ * Qe,t)vj - F’imj)

i=1 j=1

e the map t € [0,400) — Vv(t,.) is weakly continuous from [0,+0o0) to
L?UW, and 1s strongly continuous att =10 :

11_{% v(t,.) — uOHL%,W = 0.
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This solution v is a \-DSS vector field.
Proof : As we have |b(t,.) * 0| < My, ) and thus

Hb(t, ) * 96,t||L3((0,T),L3 ) <C ||bHL3( (0,7),L3

by o)

we see that we can use Theorem 4 to get a solution v on (0,7).
As clearly b * 6., belongs to L?L°(K) for every compact subset K of
(0,T) x R, we can use Corollary 5 to see that v is unique.

Let w(t,z) = yv(52, £). As bx0., is still \-DSS, we see that w is solution

of (LNS,) on (0,7, so that w = v. This means that v is \-DSS. o

7.2 The mollified Navier—Stokes equations.
The solution v provided by Lemma 11 belongs to L3((0,7),L3 ) (as v

W3y /2
belongs to LOO((O,T),LZJW) and Vv belongs to Lz((O,T),LZW)). Thus we
have a mapping L. : b — v which is defined from

={be L*(0,T), L / bis A — DSS}

’LU3 /2>
to X7, by Le(b) = v.

Lemma 12 For 4/3 < v, X, is a Banach space for the equivalent norms
||bHL3((0,T),L3wW2) and ||b|’L3((0,T/A2),x3(o,§))-

Proof : We have

// b(t,z)|* dz dt = )\2/ / b(t, z)|* dx dt
B(0,1)

and , for k € N,

T i3
/ / |b(t,x)|3d:vdt:/\2k/A / Ib(t, 2)|? dx dt.
0 JAR—l<|zl<)F 0 1<lz|<1

We may conclude, since for v > 4/3 we have ), A=) < o0,

>«\H

Lemma 13 For4/3 < v < 2, the mapping L. is continuous and compact on
X7y
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Proof : Let b, be a bounded sequence in X7, and let v,, = L.(b,). We
remark that the sequence b, (¢, .)* 0., is bounded in X7 . Thus, by Theorem
2 and Corollary 4, the sequence v, is bounded in L*((0,7), Liw) and Vv,
is bounded in L*((0,T), L, ).

We now use Theorem 3 and get that then there exists ¢o, Voo, Boo and
an increasing sequence (ny)geny with values in N such that

e v, converges *-weakly to v in L>((0,7), L?UW), Vv, converges weakly
to Vve in L*((0,7), L3,)

e b, *0., converges weakly to By, in L3((0,7), L3

wﬁw/2)7 ’

e the associated pressures g, converge weakly to ¢, in L3((0,7), LY Gi )+

L2((0,T), I2) :

e v, converges strongly to v in L2 _([0,T) x R?) : for every Ty € (0,T)
and every R > 0, we have

To
lim / Vi, (8,9) — Voo (s, y)[? ds dy = 0.
k—+oco /o ly|<R

As /W, vy, is bounded in L>((0,T'), L*) and in L*((0, T), L), it is bounded
in L1%3((0,T) x R?). The strong convergence of v,,, in L2 _([0,7) x R?) then
implies the strong convergence of v,,, in L} ((0,T) x R?).

Moreover, v, is still A-DSS (a property that is stable under weak lim-
its).We find that v, € X7, and that

T
lim ’ / [V, (8, 9) — Voo(s,y) > ds dy = 0.
0 B(0,5)

ng—-+o0o

This proves that L. is compact.

If we assume moreover that b, is convergent to b, in X7, then necessar-
ily we have By, = bo # 0., and v, = L.(bs). Thus, the relatively compact
sequence v, can have only one limit point; thus it must be convergent. This
proves that L. is continuous. o

Lemma 14 Let 4/3 < v < 2. If, for some pu € [0,1], v is a solution of
v = pL.(v) then

IVllxr, < Cupror
where the constant Cy, .~ 1 depends only on vy, F, v and T (but not on p
nor on €).
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Proof : We have v = pyw; with
ow=Aw — ((vx0.,) - V)IwW—-Vq+ V- -F
V-w=0, w(0,.) = ug
Multiplying by pu, we find that
Ov=Av—((v*0.) - V)v—V(uq) +V-uF
V-v=0, v(0,.) = pug

We then use Corollary 6. We choose Tp € (0,7") such that

Ty 2
e, (1+ Il + [ 91 ds) To<
0

Then, as
2

To
e, (1wl + [ 1Bl as) o<t
0

we know that

To
sup || v(t, )72 < Co(1+ il +M2/ IF||72_ds)
0<t<To K K 0 v

and
To To
| IV ds < cua il o [ IR, ds)
0 0
In particular, we have

To TO
| vl ds < Tl + [ BN, ds)t
0 v/2 vy 0 2l

As v is \-DSS, we can go back from Tj to T

<

Lemma 15 Let 4/3 < v < 2. There is at least one solution u. of the

equation u. = L(u,).

Proof : Obvious due to the Leray—Schauder principle (and the Schaefer
theorem), since L. is continuous and compact and since we have uniform a

priori estimates for the fixed points of puL, for 0 < p < 1.
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7.3 Proof of Theorem 5.

We may now finish the proof of Theorem 5. We consider the solutions u, of
u. = L.(u,).

By Lemma 14, u, is bounded in L3((0,7), LfUSW), and so is u, x 0. ;. We
then know, by Theorem 2 and Corollary 4, that the familly u, is bounded in
L>((0,7), L%UW) and Vu, is bounded in L*((0,7), L?UW).

We now use Theorem 3 and get that then there exists p, u, B and a
decreasing sequence (€x)ren (converging to 0) with values in (0,4o00) such
that

* u,, converges *-weakly to uwin L=((0,7T), L3, ), Vu,, converges weakly
to Vu in L*((0,7), L},.)
e u, 0 ; converges weakly to B in L3((0,7),L3 )

W3y /2

6/5

Wey
5

e the associated pressures p., converge weakly to p in L3((0,7T), L
L*((0,7), L3,)

)+

e u,, converges strongly to u in L2 _([0,7) x R?).

loc

Moreover we easily see that B = u. Indeed, we have that u * ., converges
strongly in L2 _((0,7) x R?) as € goes to 0 (since it is bounded by M,
and converges, for each fixed ¢, strongly in L (R?)); moreover, we have
|(u—u.) *0c¢| < My_u,, so that the strong convergence of u,, to u is kept
by convolution with 6., as far as we work on compact subsets of (0,7) x R?
(and thus don’t allow ¢ to go to 0).

Thus, Theorem 5 is proven. o
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