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Weak solutions for Navier-Stokes equations with initial

data in weighted L 2 spaces.

1 Introduction.

Infinite-energy weak Leray solutions to the Navier-Stokes equations were introduced by Lemarié-Rieusset in 1999 [START_REF] Lemarié-Rieusset | Solutions faibles d'énergie infinie pour les équations de Navier-Stokes dans R 3[END_REF] (they are presented more completely in [START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF] and [START_REF] Lemarié-Rieusset | The Navier-Stokes problem in the 21st century[END_REF]). This has allowed to show the existence of local weak solutions for a uniformly locally square integrable initial data.

Other constructions of infinite-energy solutions for locally uniformly square integrable initial data were given in 2006 by Basson [START_REF] Basson | Solutions spatialement homogènes adaptées des équations de Navier-Stokes[END_REF] and in 2007 by Kikuchi and Seregin [START_REF] Kikuchi | Weak solutions to the Cauchy problem for the Navier-Stokes equations satisfying the local energy inequality[END_REF]. These solutions allowed Jia and Sverak [START_REF] Jia | Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions[END_REF] to construct in 2014 the self-similar solutions for large (homogeneous of degree -1) smooth data. Their result has been extended in 2016 by Lemarié-Rieusset [START_REF] Lemarié-Rieusset | The Navier-Stokes problem in the 21st century[END_REF] to solutions for rough locally square integrable data. We remark that an homogeneous (of degree -1) and locally square integrable data is automatically uniformly locally L 2 .

Recently, Bradshaw and Tsai [START_REF] Bradshaw | Discretely self-similar solutions to the Navier-Stokes equations with data in L 2 loc , to appear in Analysis and PDE[END_REF] and Chae and Wolf [START_REF] Chae | Existence of discretely self-similar solutions to the Navier-Stokes equations for initial value in L 2 loc (R 3 )[END_REF] considered the case of solutions which are self-similar according to a discrete subgroup of dilations. Those solutions are related to an initial data which is self-similar only for a discrete group of dilations; in contrast to the case of self-similar solutions for all dilations, such an initial data, when locally L 2 , is not necessarily uniformly locally L 2 , therefore their results are no consequence of constructions described by Lemarié-Rieusset in [START_REF] Lemarié-Rieusset | The Navier-Stokes problem in the 21st century[END_REF].

In this paper, we construct an alternative theory to obtain infinite-energy global weak solutions for large initial data, which include the discretely selfsimilar locally square integrable data. More specifically, we consider the weights w γ (x) = 1 (1 + |x|) γ with 0 < γ, and the spaces L 2 wγ = L 2 (w γ dx). Our main theorem is the following one : Theorem 1 Let 0 < γ ≤ 2. If u 0 is a divergence-free vector field such that u 0 ∈ L 2 wγ (R 3 ) and if F is a tensor F(t, x) = (F i,j (t, x)) 1≤i,j≤3 such that F ∈ L 2 ((0, +∞), L 2 wγ ), then the Navier-Stokes equations with initial value u 0

(N S)    ∂ t u = ∆u -(u • ∇)u -∇p + ∇ • F ∇ • u = 0, u(0, .) = u 0
has a global weak solution u such that :

• for every 0 < T < +∞, u belongs to L ∞ ((0, T ), L 2 wγ ) and ∇u belongs to L 2 ((0, T ), L 2 wγ ) • the pressure p is related to u and F through the Riesz transforms

R i = ∂ i √ -∆ by the formula p = 3 i=1 3 j=1 R i R j (u i u j -F i,j )
where, for every 0 < T < +∞, 3 i=1 3 j=1 R i R j (u i u j ) belongs to L 4 ((0, T ), L 6/5 w 6γ

5

) and 3 i=1 3 j=1 R i R j F i,j belongs to L 2 ((0, T ), L 2 wγ )

• the map t ∈ [0, +∞) → u(t, .) is weakly continuous from [0, +∞) to L 2 wγ , and is strongly continuous at t = 0 : lim t→0 u(t, .) -u 0 L 2 wγ = 0.

• the solution u is suitable : there exists a non-negative locally finite measure µ on (0, +∞) × R 3 such that

∂ t ( |u| 2 2 ) = ∆( |u| 2 2 ) -|∇u| 2 -∇ • ( |u| 2 2 + p)u + u • (∇ • F) -µ.
In particular, we have the energy controls u(t, .) 2 A key tool for proving Theorem 1 and for applying it to the study of discretely self-similar solutions is given by the following a priori estimates for an advection-diffusion problem :

Theorem 2 Let 0 < γ ≤ 2. Let 0 < T < +∞. Let u 0 be a divergence-free vector field such that u 0 ∈ L 2 wγ (R 3 ) and F be a tensor F(t, x) = (F i,j (t, x)) 1≤i,j≤3 such that F ∈ L 2 ((0, T ), L 2 wγ ). Let b be a time-dependent divergence free vector-field (∇ • b = 0) such that b ∈ L 3 ((0, T ), L 3 w 3γ/2 ). Let u be a solution of the following advection-diffusion problem

(AD)    ∂ t u = ∆u -(b • ∇)u -∇p + ∇ • F ∇ • u = 0,
u(0, .) = u 0 be such that :

• u belongs to L ∞ ((0, T ), L 2 wγ ) and ∇u belongs to L 2 ((0, T ), L 2 wγ )

• the pressure p is related to u, b and F through the Riesz transforms

R i = ∂ i √ -∆ by the formula p = 3 i=1 3 j=1 R i R j (b i u j -F i,j )
where

3 i=1 3 j=1 R i R j (b i u j ) belongs to L 3 ((0, T ), L 6/5 w 6γ 5 
) and 3 i=1 3 j=1 R i R j F i,j belongs to L 2 ((0, T ), L 2 wγ )

• the map t ∈ [0, T ) → u(t, .) is weakly continuous from [0, T ) to L 2 wγ , and is strongly continuous at t = 0 : lim t→0 u(t, .) -u 0 L 2 wγ = 0.

• there exists a non-negative locally finite measure µ on (0, T ) × R 3 such that

∂ t ( |u| 2 2 ) = ∆( |u| 2 2 )-|∇u| 2 -∇• |u| 2 2 b -∇•(pu)+u•(∇•F)-µ. (1) 
Then, we have the energy controls u(t, .) 2

L 2 wγ + 2 t 0 ∇u(s, .) 2 L 2 wγ ds ≤ u 0 2 L 2 wγ - t 0 ∇|u| 2 • ∇w γ dx ds + t 0 |u| 2 b • ∇(w γ ) dx ds + 2 t 0 pu • ∇(w γ ) dx ds -2 3 i=1 3 j=1 t 0 F i,j (∂ i u j )w γ + F i,j u i ∂ j (w γ ) dx ds and u(t, .) 2 L 2 wγ + t 0 ∇u 2 L 2 wγ ds ≤ u 0 2 L 2 wγ + C γ t 0 F(s, .) 2 L 2 wγ ds + C γ t 0 (1 + b(s, .) 2 L 3 w 3γ/2 ) u(s, .) 2 L 2 wγ ds
where C γ depends only on γ (and not on T , and not on b, u, u 0 nor F).

In particular, we shall prove the following stability result :

Theorem 3 Let 0 < γ ≤ 2.
Let 0 < T < +∞. Let u 0,n be divergencefree vector fields such that u 0,n ∈ L 2 wγ (R 3 ) and F n be tensors such that F n ∈ L 2 ((0, T ), L 2 wγ ). Let b n be time-dependent divergence free vector-fields such that b n ∈ L 3 ((0, T ), L 3 w 3γ/2 ). Let u n be solutions of the following advection-diffusion problems

(AD n )    ∂ t u n = ∆u n -(b n • ∇)u n -∇p n + ∇ • F n ∇ • u n = 0, u n (0, .) = u 0,n
such that :

• u n belongs to L ∞ ((0, T ), L 2 
wγ ) and ∇u n belongs to L 2 ((0, T ), L 2 wγ )

• the pressure p n is related to u n , b n and F n by the formula

p n = 3 i=1 3 j=1 R i R j (b n,i u n,j -F n,i,j ) • the map t ∈ [0, T ) → u n (t, .
) is weakly continuous from [0, T ) to L 2 wγ , and is strongly continuous at t = 0 :

lim t→0 u n (t, .) -u 0,n L 2 wγ = 0.
• there exists a non-negative locally finite measure µ n on (0, T ) × R 3 such that

∂ t ( |u n | 2 2 ) = ∆( |u n | 2 2 )-|∇u n | 2 -∇• |u n | 2 2 b n -∇•(p n u n )+u n •(∇•F n )-µ n . If u 0,n is strongly convergent to u 0,∞ in L 2 wγ , if the sequence F n is strongly convergent to F ∞ in L 2 ((0, T ), L 2 
wγ ), and if the sequence b n is bounded in L 3 ((0, T ), L 3 w 3γ/2 ), then there exists p ∞ , u ∞ , b ∞ and an increasing sequence

(n k ) k∈N with values in N such that • u n k converges *-weakly to u ∞ in L ∞ ((0, T ), L 2 wγ ), ∇u n k converges weakly to ∇u ∞ in L 2 ((0, T ), L 2 wγ ) • b n k converges weakly to b ∞ in L 3 ((0, T ), L 3 w 3γ/2 ), p n k converges weakly to p ∞ in L 3 ((0, T ), L 6/5 w 6γ 5 ) + L 2 ((0, T ), L 2 wγ ) • u n k converges strongly to u ∞ in L 2 loc ([0, T ) × R 3 )
: for every T 0 ∈ (0, T ) and every R > 0, we have

lim k→+∞ T 0 0 |y|<R |u n k (s, y) -u ∞ (s, y)| 2 ds dy = 0.
Moreover, u ∞ is a solution of the advection-diffusion problem

(AD ∞ )    ∂ t u ∞ = ∆u ∞ -(b ∞ • ∇)u ∞ -∇p ∞ + ∇ • F ∞ ∇ • u ∞ = 0, u ∞ (0, .) = u 0,∞
and is such that :

• the map t ∈ [0, T ) → u ∞ (t, .
) is weakly continuous from [0, T ) to L 2 wγ , and is strongly continuous at t = 0 :

lim t→0 u ∞ (t, .) -u 0,∞ L 2 wγ = 0.
• there exists a non-negative locally finite measure µ ∞ on (0, T )×R 3 such that

∂ t ( |u ∞ | 2 2 ) = ∆( |u ∞ | 2 2 )-|∇u ∞ | 2 -∇• |u ∞ | 2 2 b ∞ -∇•(p ∞ u ∞ )+u ∞ •(∇•F ∞ )-µ ∞ .

Notations.

All along the text, C γ is a positive constant whose value may change from line to line but which depends only on γ.

2 The weights w δ .

We consider the weights w δ = 1 (1+|x|) δ where 0 < δ and x ∈ R 3 . A very important feature of those weights is the control of their gradients :

|∇w δ (x)| = δ w δ (x) 1 + |x| (2)
Lemma 1 (Muckenhoupt weights) If 0 < δ < 3 and 1 < p < +∞, then w δ belongs to the Muckenhoupt class A p .

Proof : We recall that a weight w belongs to A p (R 3 ) for 1 < p < +∞ if and only if it satisfies the reverse Hölder inequality sup

x∈R 3 ,R>0 1 |B(x, R)| B(x,R)
w(y) dy w(y) dy

1 p 1 |B(x, R)| B(x,R) dy w(y) 1 p-1 1-1 p < +∞. (3) For all 0 < R ≤ 1 the inequality |x -y| < R implies 1 2 (1 + |x|) ≤ 1 + |y| ≤ 2(1 + |x|),
1 p 1 |B(x, R)| B(0,R) dy w(y) 1 p-1 1-1 p ≤ 1 |B(0, R)| B(x,11 R)
w(y) dy

1 p 1 |B(0, R)| B(0,11 R) dy w(y) 1 p-1 1-1 p = 1 R 3 11 R 0 r 2 dr (1 + r) δ 1 p 1 R 3 11 R 0 r 2 (1 + r) δ p-1 dr 1-1 p ≤c δ,p 1 R 3 11 R 0 r 2 dr r δ 1 p 1 R 3 11 R 0 r 2 dr 1-1 p + 1 R 3 11 R 0 r 2+ δ p-1 dr 1-1 p =c δ,p 11 3 
(3 -δ)

1 p   (11R) -δ p 3 1-1 p + 1 (3 + δ p-1 ) 1-1 p   .
The lemma is proved.

Lemma 2 If 0 < δ < 3 and 1 < p < +∞, then the Riesz transforms R i and the Hardy-Littlewood maximal function operator are bounded on L p w δ = L p (w δ (x) dx) :

R j f L p w δ ≤ C p,δ f L p w δ and M f L p w δ ≤ C p,δ f L p w δ . Proof :
The boundedness of the Riesz transforms or of the Hardy-Littlewwod maximal function on L p (w γ dx) are basic properties of the Muckenhoupt class A p [START_REF] Grafakos | Modern harmonic analysis[END_REF].

We will use strategically the next corollary, which is specially useful to obtain discretely self-similar solutions.

Corollary 1 (Non-increasing kernels) Let θ ∈ L 1 (R 3 ) be a non-negative radial function which is radially non-increasing. Then, if 0 < δ < 3 and 1 < p < +∞, we have, for f ∈ L p w δ , the inequality

θ * f L p w δ ≤ C p,δ f L p w δ θ 1 . Proof :
We have the well-known inequality for radial non-increasing kernels [START_REF] Grafakos | Classical harmonic analysis[END_REF] |θ

* f (x)| ≤ θ 1 M f (x)
so that we may conclude with Lemma 2.

We illustrate the utility of Lemma 2 with the following corollaries:

Corollary 2 Let 0 < γ < 5 2 and 0 < T < +∞. Let F be a tensor F(t, x) = (F i,j (t, x)) 1≤i,j≤3 such that F ∈ L 2 ((0, T ), L 2 wγ ). Let b be a time-dependent divergence free vector-field (∇ • b = 0) such that b ∈ L 3 ((0, T ), L 3 w 3γ/2
). Let u be a solution of the following advection-diffusion problem

   ∂ t u = ∆u -(b • ∇)u -∇q + ∇ • F ∇ • u = 0, (4) 
be such that : u belongs to L ∞ ((0, T ), L 2 wγ ) and ∇u belongs to L 2 ((0, T ), L 2 wγ ), and the pressure q belongs to D ((0, T ) × R 3 ).

Then, the gradient of the pressure ∇q is necessarily related to u, b and F through the Riesz transforms

R i = ∂ i √ -∆ by the formula ∇q = ∇ 3 i=1 3 j=1 R i R j (b i u j -F i,j ) and 3 i=1 3 j=1 R i R j (b i u j ) belongs to L 3 ((0, T ), L 6/5 w 6γ 5 ) and 3 i=1 3 j=1 R i R j F i,j belongs to L 2 ((0, T ), L 2 
wγ ).

Proof : We define

p = 3 i=1 3 j=1 R i R j (b i u j -F i,j ) .
As 0 < γ < 5 2 we can use Lemma 2 and (2) to obtain

3 i=1 3 j=1 R i R j (b i u j ) belongs to L 3 ((0, T ), L 6/5 w 6γ 5 ) and 3 i=1 3 j=1 R i R j F i,j belongs to L 2 ((0, T ), L 2 wγ ).
Taking the divergence in (4), we obtain ∆(q -p) = 0. We take a test function α ∈ D(R) such that α(t) = 0 for all |t| ≥ ε, and a test function β ∈ D(R 3 ); then the distribution ∇q * (α⊗β) is well defined on (ε, T -ε)×R 3 .

We fix t ∈ (ε, T -ε) and define

A α,β,t = (∇q * (α ⊗ β) -∇p * (α ⊗ β))(t, .).
We have

A α,β,t =(u * (-∂ t α ⊗ β + α ⊗ ∆β) + (-u ⊗ b + F) • (α ⊗ ∇β))(t, .) -(p * (α ⊗ ∇β))(t, .). (5) 
Convolution with a function in D(R 3 ) is a bounded operator on L 2 wγ and on L 6/5 w 6γ/5 (as, for ϕ ∈ D(R 3 ) we have |f * ϕ| ≤ C ϕ M f ). Thus, we may conclude from (5) that A α,β,t ∈ L 2 wγ + L 6/5

w 6γ/5 . If max{γ, γ+2 2 } < δ < 5/2 , we have A α,β,t ∈ L 6/5 w 6δ/5 .
In particular, A α,β,t is a tempered distribution. As we have ∆A α,β,t = (α ⊗ β) * (∆(q -p))(t, .) = 0, we find that A α,β,t is a polynomial. We remark that for all 1 < r < +∞ and 0 < δ < 3, L r w δ does not contain non-trivial polynomials. Thus, A α,β,t = 0. We then use an approximation of identity 1 4 α( t )β( x ) and conclude that ∇(q -p) = 0.

Actually, we can answer a question posed by Bradshaw and Tsai in [START_REF] Bradshaw | Discretely self-similar solutions to the Navier-Stokes equations with data in L 2 loc , to appear in Analysis and PDE[END_REF] about the nature of the pressure for self-similar solutions of the Navier-Stokes equations. In effect, we have the next corollary:

Corollary 3 Let 1 < γ < 5
2 and 0 < T < +∞. Let F be a tensor F(t, x) = (F i,j (t, x)) 1≤i,j≤3 such that F ∈ L 2 ((0, T ), L 2 wγ ). Let u be a solution of the following problem

   ∂ t u = ∆u -(u • ∇)u -∇p + ∇ • F ∇ • u = 0,
be such that : u belongs to L ∞ ([0, +∞), L 2 ) loc and ∇u belongs to L 2 ([0, +∞), L 2 ) loc , and the pressure q is in D ((0, T ) × R 3 ).

We suppose that there exists λ > 1 such that λ 2 F(λ 2 t, λx) = F(t, x) and λu(λ 2 t, λx) = u(t, x). Then, the gradient of the pressure ∇q is necessarily related to u and F through the Riesz transforms

R i = ∂ i √ -∆ by the formula ∇q = ∇ 3 i=1 3 j=1 R i R j (u i u j -F i,j ) and 3 i=1 3 j=1 R i R j (u i u j ) belongs to L 4 ((0, T ), L 6/5 w 6γ 5 ) and 3 i=1 3 j=1 R i R j F i,j belongs to L 2 ((0, T ), L 2 
wγ ).

Proof : We shall use Corollary 2, and thus we need to show that u belongs to L ∞ ((0, T ), L 2 wγ ∩ L 3 ((0, T ), L 3 3γ/2 )) and ∇u belongs to L 2 ((0, T ), L 2 wγ ). In fact,

u L ∞ ((0,T ),L 2 wγ ) ≤ sup 0≤t≤T |x|<1 |u(t, x)| 2 dx+c sup 0≤t≤T k∈N λ k-1 <|x|<λ k |u(t, x)| 2 λ γk dx and sup 0≤t≤T k≥1 λ k-1 <|x|<λ k |u(t, x)| 2 λ γk dx ≤ sup 0≤t≤T k∈N λ (1-γ)k λ -1 <|x|<1 |u( t λ 2k , x)| 2 dx ≤ c sup 0≤t≤T λ -1 <|x|<1 |u(t, x)| 2 dx < +∞.
For ∇u, we compute for k ∈ N,

T 0 λ k-1 <|x|<λ k |∇u(t, x)| 2 dt dx = λ k T λ 2k 0 1 λ <|x|<1 |∇u(t, x)| 2 dx dt.
We may conclude that ∇u belongs to L 2 ((0, T ), L 2 wγ ), since for γ > 1 we have k∈N λ (1-γ)k < +∞. Now, we use the Sobolev embeddings described in next Lemma (Lemma 3) to get that u belongs to L 2 ((0, T ), L 6 w 3γ ), and thus (by interpolation with

L ∞ ((0, T ), L 2 wγ )) to L 4 ((0, T ), L 3 w 3γ/2 ). In particular, 3 i=1 3 j=1 R i R j (u i u j ) belongs to L 4 ((0, T ), L 6/5 w 6γ 5
), since we have

(u ⊗ u)w γ L 6/5 ≤ √ w γ u L 2 √ w γ u L 3 ≤ √ w γ u 3 2 L 2 √ w γ u 1 2 L 6 . Lemma 3 (Sobolev embeddings) Let δ > 0. If f ∈ L 2 w δ and ∇f ∈ L 2 w δ then f ∈ L 6 w 3δ and f L 6 w 3δ ≤ C δ ( f L 2 w δ + ∇f L 2 w δ
).

Proof : Since both f and w δ/2 are locally in H1 , we write

∂ i (f w δ/2 ) = w δ/2 ∂ i f + f ∂ i (w δ/2 ) = w δ/2 ∂ i f - δ 2 
x i |x| w δ/2 f
and thus

w δ/2 f 2 2 + ∇(w δ/2 f ) 2 2 ≤ (1 + δ 2 2 ) w δ/2 f 2 2 + 2 w δ/2 ∇f 2 2 .
Thus, w δ/2 f belongs to L 6 (since

H 1 ⊂ L 6 ), or equivalently f ∈ L 6 w 3δ .
3 A priori estimates for the advection-diffusion problem.

3.1 Proof of Theorem 2.

Let 0 < t 0 < t 1 < T . We take a function α ∈ C ∞ (R) which is non-decreasing, with α(t) equal to 0 for t < 1/2 and equal to 1 for t > 1. For 0 < η < min( t 0 2 , T -t 1 ), we define

α η,t 0 ,t 1 (t) = α( t -t 0 η ) -α( t -t 1 η ).
We take as well a non-negative function φ ∈ D(R 3 ) which is equal to 1 for |x| ≤ 1 and to 0 for |x| ≥ 2. For R > 0, we define φ R (x) = φ( x R ). Finally, we define, for > 0, w γ, = balance (1) and the fact that µ ≥ 0, we find

- |u| 2 2 ∂ t α η,t 0 ,t 1 φ R w γ, dx ds ≤ - 3 i=1 ∂ i u • u α η,t 0 ,t 1 (w γ, ∂ i φ R + φ R ∂ i w γ, ) dx ds - |∇u| 2 α η,t 0 ,t 1 φ R w γ, dx ds + 3 i=1 |u| 2 2 b i α η,t 0 ,t 1 (w γ, ∂ i φ R + φ R ∂ i w γ, ) dx ds + 3 i=1 α η,t 0 ,t 1 pu i (w γ, ∂ i φ R + φ R ∂ i w γ, ) dx ds - 3 i=1 3 j=1 F i,j u j α η,t 0 ,t 1 (w γ, ∂ i φ R + φ R ∂ i w γ, ) dx ds - 3 i=1 3 j=1 F i,j ∂ i u j α η,t 0 ,t 1 φ R w γ, dx ds.
We remark that, independently from R > 1 and > 0, we have (for 0 < γ ≤ 2)

|w γ, ∂ i φ R | + |φ R ∂ i w γ, | ≤ C γ w γ (x) 1 + |x| ≤ C γ w 3γ/2 (x).
Moreover, we know that u belongs to L ∞ ((0, T ), L 2 wγ )∩L 2 ((0, T ), L 6 w 3γ ) hence to L 4 ((0, T ), L 3 w 3γ/2 ). Since T < +∞, we have as well u ∈ L 3 ((0, T ), L 3 w 3γ/2 ). (This is the same type of integrability as required for b). Moreover, we have

pu i ∈ L 1 w 3γ/2 since w γ p ∈ L 2 ((0, T ), L 6/5 +L 2 ) and w γ/2 u ∈ L 2 ((0, T ), L 2 ∩L 6
). All those remarks will allow us to use dominated convergence.

We first let η go to 0. We find that

-lim η→0 |u| 2 2 ∂ t α η,t 0 ,t 1 φ R w γ, dx ds ≤ - 3 i=1 t 1 t 0 ∂ i u • u (w γ, ∂ i φ R + φ R ∂ i w γ, ) dx ds - t 1 t 0 |∇u| 2 φ R w γ, dx ds + 3 i=1 t 1 t 0 |u| 2 2 b i (w γ, ∂ i φ R + φ R ∂ i w γ, ) dx ds + 3 i=1 t 1 t 0 pu i (w γ, ∂ i φ R + φ R ∂ i w γ, ) dx ds - 3 i=1 3 j=1 t 1 t 0 F i,j u j (w γ, ∂ i φ R + φ R ∂ i w γ, ) dx ds - 3 i=1 3 j=1 t 1 t 0 F i,j ∂ i u j φ R w γ, dx ds. Let us define A R, (t) = |u(t, x)| 2 φ R (x)w γ, (x) dx.
As we have

- |u| 2 2 ∂ t α η,t 0 ,t 1 φ R w γ, dx ds = - 1 2 ∂ t α η,t 0 ,t 1 A R, (s) ds
we find that, when t 0 and t 1 are Lebesgue points of the measurable function

A R, lim η→0 - |u| 2 2 ∂ t α η,t 0 ,t 1 φ R w γ, dx ds = 1 2 (A R, (t 1 ) -A R, (t 0 )).
Then, by continuity, we can let t 0 go to 0 and thus replace t 0 by 0 in the inequality. Moreover, if we let t 1 go to t, then by weak continuity, we find that A R, (t) ≤ lim t 1 →t A R, (t 1 ), so that we may as well replace t 1 by t ∈ (0, T ). Thus we find that for every t ∈ (0, T ), we have

|u(t, x)| 2 2 φ R w γ, dx ≤ |u 0 (x)| 2 2 φ R w γ, dx - 3 i=1 t 0 ∂ i u • u (w γ, ∂ i φ R + φ R ∂ i w γ, ) dx ds - t 0 |∇u| 2 φ R w γ, dx ds + 3 i=1 t 0 |u| 2 2 b i (w γ, ∂ i φ R + φ R ∂ i w γ, ) dx ds + 3 i=1 t 0 pu i (w γ, ∂ i φ R + φ R ∂ i w γ, ) dx ds - 3 i=1 3 j=1 t 0 F i,j u j (w γ, ∂ i φ R + φ R ∂ i w γ, ) dx ds - 3 i=1 3 j=1 t 0 F i,j ∂ i u j φ R w γ, dx ds. (6) 
Thus, letting R go to +∞ and then go to 0, we find by dominated convergence that, for every t ∈ (0, T ), we have

u(t, .) 2 L 2 wγ + 2 t 0 ∇u(s, .) 2 L 2 wγ ds ≤ u 0 2 L 2 wγ - t 0 ∇|u| 2 • ∇w γ dx ds + t 0 (|u| 2 b + 2pu) • ∇(w γ ) dx ds -2 3 i=1 3 j=1 t 0 F i,j (∂ i u j )w γ + F i,j u i ∂ j (w γ ) dx ds. Now we write t 0 ∇|u| 2 • ∇w γ ds ds ≤2γ t 0 |u||∇u| w γ dx ds ≤ 1 4 t 0 ∇u 2 L 2 wγ ds + 4γ 2 t 0 u 2 L 2
wγ ds.

Writing

p 1 = 3 i=1 3 j=1 R i R j (b i u j ) and p 2 = - 3 i=1 3 j=1 R i R j (F i,j )
and using the fact that w 6γ/5 ∈ A 6/5 and w γ ∈ A 2 , we get

t 0 (|u| 2 b + 2p 1 u) • ∇(w γ ) dx ds ≤γ t 0 (|u| 2 |b| + 2|p 1 | |u|) w 3/2 γ dx ds ≤ γ t 0 w 1/2 γ u 6 ( w γ |b||u| 6/5 + w γ p 1 6/5 )ds ≤ C γ t 0 w 1/2 γ u 6 w γ |b||u| 6/5 ds ≤ C γ t 0 w 1/2 γ u 6 w 1/2 γ b 3 w 1/2 γ u 2 ds ≤ C γ t 0 ( ∇u L 2 wγ + u L 2 wγ ) b L 3 w 3γ/2 u L 2 wγ ds ≤ 1 4 t 0 ∇u 2 L 2 wγ ds + C γ t 0 u 2 L 2 wγ ( b L 3 w 3γ/2 + b 2 L 3 w 3γ/2
) ds

and t 0 2p 2 u • ∇(w γ ) dx ds ≤2γ t 0 |p 2 | |u| w γ dx ds ≤γ t 0 u 2 L 2 wγ + p 2 2 L 2 wγ ds ≤C γ t 0 u 2 L 2 wγ + F 2 L 2
wγ ds. Finally, we have

2 3 i=1 3 j=1 t 0 F i,j (∂ i u j )w γ + F i,j u i ∂ j (w γ ) dx ds ≤2 t 0 |F | (|∇u| + γ|u|) w γ dx ds ≤ 1 4 t 0 ∇u 2 L 2 wγ ds + C γ t 0 u 2 L 2 wγ + F 2 L 2 wγ ds. We have obtained u(t, .) 2 L 2 wγ + t 0 ∇u 2 L 2 wγ ds ≤ u 0 2 L 2 wγ + C γ t 0 F(s, .) 2 L 2 wγ ds + C γ t 0 (1 + b(s, .) 2 L 3 w 3γ/2 ) u(s, .) 2 L 2 wγ ds (7)
and Theorem 2 is proven.

Passive transportation.

From inequality [START_REF] Kikuchi | Weak solutions to the Cauchy problem for the Navier-Stokes equations satisfying the local energy inequality[END_REF], we have the following direct consequence : Corollary 4 Under the assumptions of Theorem 2, we have

sup 0<t<T u L 2 wγ ≤ ( u 0 L 2 wγ + C γ F L 2 ((0,T ),L 2 wγ ) ) e Cγ (T +T 1/3 b 2 L 3 ((0,T ),L 3 w 3γ/2 )
)

and

∇u L 2 ((0,T ),L 2 wγ ) ≤ ( u 0 L 2 wγ + C γ F L 2 ((0,T ),L 2 wγ ) ) e Cγ (T +T 1/3 b 2 L 3 ((0,T ),L 3 w 3γ/2 )
)

where the constant C γ depends only on γ.

Another direct consequence is the following uniqueness result for the advectiondiffusion problem with a (locally in time), bounded b :

Corollary 5 . Let 0 < γ ≤ 2. Let 0 < T < +∞. Let u 0 be a divergence-free vector field such that u 0 ∈ L 2 wγ (R 3 ) and F be a tensor F(t, x) = (F i,j (t, x)) 1≤i,j≤3 such that F ∈ L 2 ((0, T ), L 2 wγ ). Let b be a time-dependent divergence free vector-field (∇ • b = 0) such that b ∈ L 3 ((0, T ), L 3 w 3γ/2
). Assume moreover that b belongs to L 2 t L ∞ x (K) for every compact subset K of (0, T ) × R 3 . Let (u 1 , p 1 ) and (u 2 , p 2 ) be two solutions of the following advection-diffusion problem

(AD)    ∂ t u = ∆u -(b • ∇)u -∇p + ∇ • F ∇ • u = 0, u(0, .) = u 0
be such that, for k = 1 and k = 2, :

• u k belongs to L ∞ ((0, T ), L 2 wγ ) and ∇u k belongs to L 2 ((0, T ), L 2 wγ ) • the pressure p k is related to u k , b and F through the Riesz transforms R i = ∂ i √ -∆ by the formula p k = 3 i=1 3 j=1 R i R j (b i u k,j -F i,j ) • the map t ∈ [0, T ) → u k (t, .
) is weakly continuous from [0, T ) to L 2 wγ , and is strongly continuous at t = 0 :

lim t→0 u k (t, .) -u 0 L 2 wγ = 0.
Then u 1 = u 2 .

Proof : Let v = u 1 -u 2 and q = p 1 -p 2 . Then we have

   ∂ t v = ∆v -(b • ∇)v -∇q ∇ • v = 0, v(0, .) = 0 Moreover on every compact subset K of (0, T ) × R 3 , b ⊗ v is in L 2 t L 2
x , while it belongs globally to L 3 t L 6/5

w 6γ/5 . Writing, for ϕ, ψ ∈ D((0, T ) × R 3 ) such that ψ = 1 on the neigborhood of the support of ϕ,

ϕq = q 1 + q 2 = ϕ 3 i=1 3 j=1 R i R j (ψb i v j ) + ϕ 3 i=1 3 j=1 R i R j ((1 -ψ)b i v j ) we find that q 1 L 2 L 2 ≤ C ϕ,ψ ψb ⊗ v L 2 L 2 and q 2 L 3 L ∞ ≤ C ϕ,ψ b ⊗ v L 3 L 6/5 w 6γ/5 with C ϕ,ψ ≤ C ϕ ∞ 1 -ψ ∞ sup x∈Supp ϕ y∈Supp (1-ψ) (1 + |y|) γ |x -y| 3 6 1/6 < +∞.
Thus, we may take the scalar product of ∂ t v with v and find that

∂ t ( |v| 2 2 ) = ∆( |v| 2 2 ) -|∇v| 2 -∇ • |v| 2 2 b -∇ • (qv).
Thus we are under the assumptions of Theorem 2 and we may use Corollary 4 to find that v = 0.

Active transportation.

We begin with the following lemma :

Lemma 4 Let α be a non-negative bounded measurable function on [0, T ) such that, for two constants A, B ≥ 0, we have

α(t) ≤ A + B t 0 α(s) + α(s) 3 ds. If T 0 > 0 and T 1 = min(T, T 0 , 1 4B(A+BT 0 ) 2 ), we have, for every t ∈ [0, T 1 ], α(t) ≤ √ 2(A + BT 0 ).
Proof : We write α ≤ 1 + α 3 . We define

Φ(t) = A + BT 0 + B t 0 α 3 ds and Ψ(t) = A + BT 0 + B t 0 Φ 3 (s) ds.
We have, for t ∈ [0, T 1 ], α ≤ Φ ≤ Ψ. Since Ψ is C 1 , we may write

Ψ (t) = BΦ(t) 3 ≤ BΨ(t) 3 and thus 1 Ψ(0) 2 - 1 Ψ(t) 2 ≤ 2Bt.
We thus find

Ψ(t) 2 ≤ Ψ(0) 2 1 -2BΨ(0) 2 t ≤ 2Ψ(0) 2 .
The lemma is proven.

Corollary 6 Assume that u 0 , u, p, F and b satisfy assumptions of Theorem 2, Assume moreover that b is controlled by u : for every t ∈ (0, T ),

b(t, .) L 3 w 3γ/2 ≤ C 0 u(t, .) L 3 w 3γ/2
.

Then there exists a constant C γ ≥ 1 such that if T 0 < T is such that

C γ (1 + C 4 0 ) 1 + C 4 0 + u 0 2 L 2 wγ + T 0 0 F 2 L 2 wγ ds 2 T 0 ≤ 1 then sup 0≤t≤T 0 u(t, .) 2 L 2 wγ ≤ C γ (1 + C 4 0 + u 0 2 L 2 wγ + T 0 0 F 2 L 2 wγ ds)
and

T 0 0 ∇u 2 L 2 wγ ds ≤ C γ (1 + C 4 0 + u 0 2 L 2 wγ + T 0 0 F 2 L 2
wγ ds).

Proof : We start from inequality [START_REF] Kikuchi | Weak solutions to the Cauchy problem for the Navier-Stokes equations satisfying the local energy inequality[END_REF] :

u(t, .) 2 L 2 wγ + t 0 ∇u 2 L 2 wγ ds ≤ u 0 2 L 2 wγ + C γ t 0 F(s, .) 2 L 2 wγ ds + C γ t 0 (1 + b(s, .) 2 L 3 w 3γ/2 ) u(s, .) 2 L 2 wγ ds
We write b(s, .) 2

L 3 w 3γ/2 ≤ C 2 0 u(s, .) 2 L 3 w 3γ/2 ≤ C 2 0 C γ u L 2 wγ ( u L 2 wγ + ∇u L 2 wγ ).
This gives u(t, .) 2

L 2 wγ + 1 2 ∇u 2 L 2 wγ ds ≤ u 0 2 L 2 wγ + C γ t 0 F(s, .) 2 L 2 wγ ds + C γ t 0 u(s, .) 2 L 2 wγ + C 2 0 u(s, .) 4 L 2 wγ + C 4 0 u(s, .) 6 L 2 wγ ds ≤ u 0 2 L 2 wγ + C γ t 0 F(s, .) 2 L 2 wγ ds + 2C γ t 0 u(s, .) 2 L 2 wγ + C 4 0 u(s, .) 6 L 2
wγ ds.

For t ≤ T 0 , we get u(t, .) 2

L 2 wγ + 1 2 ∇u 2 L 2 wγ ds ≤ u 0 2 L 2 wγ + C γ T 0 0 F 2 L 2 wγ ds + C γ (1 + C 4 0 ) t 0 u(t, .) 2 L 2 wγ + u(t, .) 6 L 2
wγ ds and we may conclude with Lemma 4.

4 Stability of solutions for the advection-diffusion problem.

4.1 The Rellich lemma.

We recall the Rellich lemma :

Lemma 5 (Rellich) If s > 0 and (f n ) is a sequence of functions on R d such that • the family (f n ) is bounded in H s (R d )
• there is a compact subset of R d such that the support of each f n is included in K then there exists a subsequence

(f n k ) such that f n k is strongly convergent in L 2 (R d ).
We shall use a variant of this lemma (see [START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF]) :

Lemma 6 (space-time Rellich) If s > 0, σ ∈ R and (f n ) is a sequence of functions on (0, T ) × R d such that, for all T 0 ∈ (0, T ) and all ϕ ∈ D(R 3 )

• ϕf n is bounded in L 2 ((0, T 0 ), H s ) • ϕ∂ t f n is bounded in L 2 ((0, T 0 ), H σ )
then there exists a subsequence

(f n k ) such that f n k is strongly convergent in L 2 loc ([0, T ) × R 3 ) : if f ∞ is the limit, we have for all T 0 ∈ (0, T ) and all R 0 > 0 lim n k →+∞ T 0 0 |x|≤R |f n k -f ∞ | 2 dx dt = 0.
Proof : With no loss of generality, we may assume that σ < min(1, s). Define

g by g n (t, x) = α(t)ϕ(x)f n (t, x) if t > 0 and g n (t, x) = α(t)ϕ(x)f n (-t, x) if t < 0, where α ∈ C ∞ on (0, T )
, is equal to 1 on [0, T 0 ] and equal to 0 for t > T +T 0 2 , and ϕ(x) = 1 on B(0, R 0 ). Then the support of

g n is contained in [-T +T 0 2 , T +T 0 2 ] × Supp ϕ. Moreover, g n is bounded in L 2 t H s and ∂ t g n is bounded in L 2 H σ so that g n is bounded in H ρ (R × R 3 ) with ρ = s s+1-σ (just write (1 + τ 2 + ξ 2 ) s s+1-σ ≤ ((1 + τ 2 )(1 + ξ 2 ) σ ) s s+1-σ ((1 + ξ 2 ) s ) 1-σ s+1-σ ).
. By the Rellich lemma, we know that there is a subsequence g n k which is strongly convergent in L 2 (R×R 3 ), thus a subsequence f n k which is strongly convergent in L 2 ((0, T 0 ) × B(0, R 0 )).

We then iterate this argument for an increasing sequence of times

T 0 < T 1 < • • • < T N → T and an increasing sequence of radii R 0 < R 1 < • • • < R N → +∞
and finish the proof. by the classical diagonal process of Cantor.

Proof of Theorem 3.

Assume that u 0,n is strongly convergent to u 0,∞ in L 2 wγ and that the sequence

F n is strongly convergent to F ∞ in L 2 ((0, T ), L 2 
wγ ), and assume that the sequence b n is bounded in L 3 ((0, T ), L 3 w 3γ/2 ). Then, by Theorem 2 and Corollary 4, we know that u n is bounded in L ∞ ((0, T ), L 2 wγ ) and ∇u n is bounded in L 2 ((0, T ), L 2 wγ ). In particular, writing p n = p n,1 + p n,2 with

p n,1 = 3 i=1 3 j=1 R i R j (b n,i u n,j ) and p n,2 = - 3 i=1 3 j=1 R i R j (F n,i,j )
we get that p n,1 is bounded in L 3 ((0, T ), L 6/5 w 6γ

5

) and p n,2 is bounded in L 2 ((0, T ), L 2 wγ ). If ϕ ∈ D(R 3 ), we find that ϕu n is bounded in L 2 ((0, T ), H 1 ) and, writing

∂ t u n = ∆u n - 3 i=1 ∂ i (b n,i u n ) + ∇p n,1 + (∇ • F n -∇p n,2 ) , ϕ∂ t u n is bounded in L 2 L 2 + L 2 W -1,6/5 + L 2 H -1 ⊂ L 2 ((0, T ), H -2
). Thus, by Lemma 6, there exists u ∞ and an increasing sequence (n k ) k∈N with values in N such that u n k converges strongly to u ∞ in L 2 loc ([0, T ) × R 3 ) : for every T 0 ∈ (0, T ) and every R > 0, we have

lim k→+∞ T 0 0 |y|<R |u n k (s, y) -u ∞ (s, y)| 2 dy ds = 0. As u n is bounded in L ∞ ((0, T ), L 2 wγ ) and ∇u n is bounded in L 2 ((0, T ), L 2 wγ ), the convergence of u n k to u ∞ in D ((0, T ) × R 3 ) implies that u n k converges *-weakly to u ∞ in L ∞ ((0, T ), L 2 
wγ ) and ∇u n k converges weakly to ∇u ∞ in L 2 ((0, T ), L 2 wγ ). By Banach-Alaoglu's theorem, we may assume that there exists b ∞ such that b n k converges weakly to b ∞ in L 3 ((0, T ), L 3 w 3γ/2 ). In particular b n k ,i u n k ,j is weakly convergent in (L 6/5 L 6/5 ) loc and thus in D ((0, T ) × R 3 ); as it is bounded in L 3 ((0, T ), L 6/5 w 6γ

5

), it is weakly convergent in L 3 ((0, T ), L

6/5 w 6γ 5 ) to b ∞,i u ∞,j . Let p ∞,1 = 3 i=1 3 j=1 R i R j (b ∞,i u ∞,j ) and p ∞,2 = - 3 i=1 3 j=1 R i R j (F ∞,i,j ).
As the Riesz transforms are bounded on L 6/5 w 6γ 5 and on L 2 wγ , we find that p n k ,1 is weakly convergent in L 3 ((0, T ), L 6/5 w 6γ

5

) to p ∞,1 and that p n k ,2 is strongly convergent in L 2 ((0, T ), L 2 wγ ) to p ∞,2 . In particular, we find that in D ((0, T ) × R 3 )

∂ t u ∞ = ∆u ∞ - 3 i=1 ∂ i (b ∞,i u ∞ ) -∇(p ∞,1 + p ∞,2 ) + ∇ • F ∞ .
In particular, ∂ t u ∞ is locally in L 2 H -2 , and thus u ∞ has representative such that t → u ∞ (t, .) is continuous from [0, T ) to D (R 3 ) and coincides with u ∞ (0, .)

+ t 0 ∂ t u ∞ ds. In D ((0, T ) × R 3 ), we have that u ∞ (0, .)+ t 0 ∂ t u ∞ ds = u ∞ = lim n k →+∞ u n k = lim n k →+∞ u 0,n k + t 0 ∂ t u n k ds = u 0,∞ + t 0 ∂ t u ∞ ds
Thus, u ∞ (0, .) = u 0,∞ , and u ∞ is a solution of (AD ∞ ).

Next, we define

A n = -∂ t ( |u n | 2 2 )+∆( |u n | 2 2 )-∇• |u n | 2 2 b n -∇•(p n u n )+u n •(∇•F n ) = |∇u n | 2 +µ n .
As u n is bounded in L ∞ ((0, T ), L 2 wγ ) and ∇u n is bounded in L 2 ((0, T ), L 2 wγ ), it is bounded in L 2 ((0, T ), L 6 w 3γ/2 ) and by interpolation with L ∞ ((0, T ), L 2 wγ ) it is bounded in L 10/3 ((0, T ), L 10/3 w 5γ/3 ). Thus, u n k is locally bounded in L 10/3 L 10/3 and locally strongly convergent in L 2 L 2 ; it is then strongly convergent in

L 3 L 3 . Thus, A n k is convergent in D ((0, T ) × R 3 ) to A ∞ = -∂ t ( |u ∞ | 2 2 )+∆( |u ∞ | 2 2 )-∇• |u ∞ | 2 2 b ∞ -∇•(p ∞ u ∞ )+u ∞ •(∇•F ∞ ).
In particular,

A ∞ = lim n k →+∞ |∇u n k | 2 + µ n k . If Φ ∈ D((0, T ) × R 3 ) is non- negative, we have A ∞ Φ dx ds = lim n k →+∞ A n k Φ dx ds ≥ lim sup n k →+∞ |∇u n k | 2 Φ dx ds ≥ |∇u ∞ | 2 Φ dx ds (since √ Φ∇u n k is weakly convergent to √ Φ∇u ∞ in L 2 L 2
). Thus, there exists a non-negative locally finite measure µ ∞ on (0, T

) × R 3 such that A ∞ = |∇u ∞ | 2 + µ ∞ , i.e. such that ∂ t ( |u ∞ | 2 2 ) = ∆( |u ∞ | 2 2 )-|∇u ∞ | 2 -∇• |u ∞ | 2 2 b ∞ -∇•(p ∞ u ∞ )+u•(∇•F ∞ )-µ ∞ .
Finally, we start from inequality (6) :

|u n (t, x)| 2 2 φ R w γ, dx ≤ |u 0,n (x)| 2 2 φ R w γ, dx - 3 i=1 t 0 ∂ i u n • u n (w γ, ∂ i φ R + φ R ∂ i w γ, ) dx ds - t 0 |∇u n | 2 φ R w γ, dx ds + 3 i=1 t 0 |u n | 2 2 b n,i (w γ, ∂ i φ R + φ R ∂ i w γ, ) dx ds + 3 i=1 t 0 p n u n,i (w γ, ∂ i φ R + φ R ∂ i w γ, ) dx ds - 3 i=1 3 j=1 t 0 F n,i,j u n,j (w γ, ∂ i φ R + φ R ∂ i w γ, ) dx ds - 3 i=1 3 j=1 t 0 F n,i,j ∂ i u n, φ R w γ, dx ds.
This gives lim sup

n k →+∞ |u n k (t, x)| 2 2 φ R w γ, dx + t 0 |∇u n k | 2 φ R w γ, dx ds ≤ |u 0,∞ (x)| 2 2 φ R w γ, dx - 3 i=1 t 0 ∂ i u ∞ • u ∞ (w γ, ∂ i φ R + φ R ∂ i w γ, ) dx ds + 3 i=1 t 0 |u ∞ | 2 2 b ∞,i (w γ, ∂ i φ R + φ R ∂ i w γ, ) dx ds + 3 i=1 t 0 p ∞ u ∞,i (w γ, ∂ i φ R + φ R ∂ i w γ, ) dx ds - 3 i=1 3 j=1 t 0 F ∞,i,j u ∞,j (w γ, ∂ i φ R + φ R ∂ i w γ, ) dx ds - 3 i=1 3 j=1 t 0 F ∞,i,j ∂ i u ∞,j φ R w γ, dx ds.
As we have

u n k = u 0,n k + t 0 ∂ t u n k ds we see that u n k (t, .) is convergent to u ∞ (t, .) in D (R 3 ), hence is weakly convergent in L 2 loc (as it is bounded in L 2 wγ ), so that : |u ∞ (t, x)| 2 2 φ R w γ, dx ≤ lim sup n k →+∞ |u n k (t, x)| 2 2 φ R w γ, dx.
Similarly, as ∇u n k is weakly convergent in L 2 L 2 wγ , we have

t 0 |∇u ∞ (s, x)| 2 2 φ R w γ, dx ds ≤ lim sup n k →+∞ t 0 |∇u n k (s, x)| 2 2 φ R w γ, dx ds.
Thus, letting R go to +∞ and then go to 0, we find by dominated convergence that, for every t ∈ (0, T ), we have

u ∞ (t, .) 2 L 2 wγ + 2 t 0 ∇u ∞ (s, .) 2 L 2 wγ ds ≤ u 0,∞ 2 L 2 wγ - t 0 ∇|u ∞ | 2 • ∇w γ dx ds + t 0 (|u ∞ | 2 b ∞ + 2p ∞ u ∞ ) • ∇(w γ ) dx ds -2 3 i=1 3 j=1 t 0 F ∞,i,j (∂ i u ∞,j )w γ + F ∞,i,j u ∞,i ∂ j (w γ ) dx ds.
Letting t go to 0, we find lim sup

t→0 u ∞ (t, .) 2 L 2 wγ ≤ u 0,∞ 2 L 2 wγ .
On the other hand, we know that u ∞ is weakly continuous in L 2

wγ and thus we have

u 0,∞ 2 L 2 wγ ≤ lim inf t→0 u ∞ (t, .) 2 L 2 wγ . This gives u 0,∞ 2 L 2 wγ = lim t→0 u ∞ (t, .) 2 L 2
wγ , which allows to turn the weak convergence into a strong convergence. Theorem 3 is proven.

5 Solutions of the Navier-Stokes problem with initial data in L 2 w γ .

We now prove Theorem 1. The idea is to approximate the problem by a Navier-Stokes problem in L 2 , then use the a priori estimates (Theorem 2) and the stability theorem (Theorem 3) to find a solution to the Navier-Stokes problem with data in L 2 wγ ).

Approximation by square integrable data.

Lemma 7 (Leray's projection operator) Let 0 < δ < 3 and 1 < r < +∞. If v is a vector field on R 3 such that v ∈ L r w δ , then there exists a unique decompostion

v = v σ + v ∇ such that • v σ ∈ L r w δ and ∇ • v σ = 0.
• v ∇ ∈ L r w δ and ∇ ∧ v ∇ = 0. We shall write v σ = Pv, where P is Leray's projection operator.

Similarly, if v is a distribution vector field of the type v = ∇ • G with G ∈ L r w δ then there exists a unique decompostion

v = v σ + v ∇ such that • there exists H ∈ L r w δ such that v σ = ∇ • H and ∇ • v σ = 0.
• there exists q ∈ L r w δ such that v ∇ = ∇q (and thus ∇ ∧ v ∇ = 0). We shall still write v σ = Pv. Moreover, the function q is given by

q = - 3 i=1 3 j=1 R i R j (G i,j ).
Proof : As w δ ∈ A r the Riesz transforms are bounded on L r w δ . Using the

identity ∆v = ∇(∇ • v) -∇ ∧ (∇ ∧ v)
we find (if the decomposition exists) that

∆v σ = -∇ ∧ (∇ ∧ v σ ) = -∇ ∧ (∇ ∧ v) and ∆v ∇ = ∇(∇ • v ∇ ) = ∇(∇ • v).
This proves the uniqueness. By linearity, we just have to prove that v = 0 =⇒ v ∇ = 0. We have ∆v ∇ = 0, and thus v ∇ is harmonic; as it belongs to S , we find that it is a polynomial. But a polynomial which belongs to L r w δ must be equal to 0. Similarly, if v ∇ = ∇q, then ∆q = ∇ • v ∇ = ∇ • v = 0; thus q is harmonic and belongs to L r w δ , hence q = 0. For the existence, it is enough to check that v ∇,i = -3 j=1 R i R j v j in the first case and v ∇ = ∇q with q = 3 i=1 3 j=1 R i R j (G i,j ) in the second case fulfill the conclusions of the lemma.

Lemma 8 Let 0 < γ ≤ 2. Let u 0 be a divergence-free vector field such that u 0 ∈ L 2 wγ (R 3 ) and F be a tensor F(t, x) = (F i,j (t, x)) 1≤i,j≤3 such that F ∈ L 2 ((0, +∞), L 2 wγ ). Let φ ∈ D(R 3 ) be a non-negative function which is equal to 1 for |x| ≤ 1 and to 0 for |x| ≥ 2. For R > 0, we define φ R (x) = φ( x R ), u 0,R = P(φ R u 0 ) and F R = φ R F. Then u 0,R is a divergencefree square integrable vector field and lim R→+∞ u 0,R -u 0 L 2 wγ = 0. Similarly, F R belongs to L 2 L 2 and lim R→+∞ F R -F L 2 ((0,+∞),L 2 wγ ) = 0. Proof : By dominated convergence, we have lim R→+∞ φ R u 0 -u 0 L 2 wγ = 0. We conclude by writing u 0,R -u 0 = P(φ R u 0 -u 0 ).

Leray's mollification.

We want to solve the Navier-Stokes equations with initial value u 0 :

(N S)    ∂ t u = ∆u -(u • ∇)u -∇p + ∇ • F ∇ • u = 0, u(0, .) = u 0
We begin with Leray's method [START_REF] Leray | Essai sur le mouvement d'un fluide visqueux emplissant l'espace[END_REF] for solving the problem in L 2 :

(N S R )    ∂ t u R = ∆u R -(u R • ∇)u R -∇p R + ∇ • F R ∇ • u R = 0, u R (0, .) = u 0,R
The idea of Leray is to mollify the non-linearity by replacing u R • ∇ by (u R * θ ) • ∇, where θ(x) = 1 3 θ( x ), θ ∈ D(R 3 ), θ is non-negative and radially decreasing and θ dx = 1. We thus solve the problem

(N S R, )    ∂ t u R, = ∆u R, -((u R, * θ ) • ∇)u R, -∇p R, + ∇ • F R ∇ • u R, = 0, u R, (0, .) = u 0,R
The classical result of Leray states that the problem (N S R, ) is wellposed :

Lemma 9 Let v 0 ∈ L 2 be a divergence-free vector field. Let G ∈ L 2 ((0, +∞), L 2 ).
Then the problem

(N S )    ∂ t v = ∆v -((v * θ ) • ∇)v -∇q + ∇ • G ∇ • v = 0, v (0, .) = v 0 has a unique solution v in L ∞ ((0, +∞), L 2 ) ∩ L 2 ((0, +∞), Ḣ1
). Moreover, this solution belongs to C([0, +∞), L 2 ).

Proof of Theorem 1 (local existence)

We use Lemma 9 and find a solution u R, to the problem (N S R, ). Then we check that u R, fulfills the assumptions of Theorem 2 and of Corollary 6 :

• u R, belongs to L ∞ ((0, T ), L 2 wγ ) and ∇u R, belongs to L 2 ((0, T ),

L 2 wγ ) • the map t ∈ [0, +∞) → u R, (t, .) is weakly continuous from [0, +∞) to L 2
wγ , and is strongly continuous at t = 0 : lim

t→0 u R, (t, .) -u 0,R L 2 wγ = 0.
• on (0, T ) × R 3 , u R, fulfills the energy equality :

∂ t ( |u R, | 2 2 ) = ∆( |u R, | 2 2 )-|∇u R, | 2 -∇• |u| 2 2 b R, -∇•(p R, u R, )+u R, •(∇•F R ). with b R, = u R, * θ . • b R, is controlled by u R, : for every t ∈ (0, T ), b R, (t, .) L 3 w 3γ/2 ≤ M u R, (t,.) L 3 w 3γ/2 ≤ C 0 u R, (t, .) L 3 w 3γ/2
.

Thus, we know that, for every time T 0 such that

C γ (1 + C 4 0 ) 1 + C 4 0 + u 0,R 2 L 2 wγ + T 0 0 F R 2 L 2 wγ ds 2 T 0 ≤ 1 we have sup 0≤t≤T 0 u R, (t, .) 2 L 2 wγ ≤ C γ (1 + C 4 0 + u 0,R 2 L 2 wγ + T 0 0 F R 2 L 2 wγ ds)
and

T 0 0 ∇u R, 2 L 2 wγ ds ≤ C γ (1 + C 4 0 + u 0,R 2 L 2 wγ + T 0 0 F R 2 L 2 wγ ds).
Moreover, we have that

u 0,R L 2 wγ ≤ C γ u 0 L 2 wγ and F R L 2 wγ ≤ F L 2 wγ so that b R, L 3 ((0,T 0 ),L 3 w 3γ/2 ≤C γ u R, L 3 ((0,T 0 ),L 3 w 3γ/2 ≤C γ T 1 12 0 (1 + T 0 ) u R, L ∞ ((0,T 0 ),L 2 wγ ) + ∇u R, L 2 ((0,T 0 ),L 2 wγ ) ≤C γ 1 + C 4 0 + u 0 2 L 2 wγ + T 0 0 F 2 L 2
wγ ds.

Let R n → +∞ and n → 0. Let u 0,n = u 0,Rn , F n = F Rn , b n = b Rn, n and u n = u Rn, n . We may then apply Theorem 3, since u 0,n is strongly convergent to u 0 in L 2 wγ , F n is strongly convergent to F in L 2 ((0, T 0 ), L 2 wγ ), and the sequence b n is bounded in L 3 ((0, T 0 ), L 3 w 3γ/2 ). Thus there exists p, u, b and an increasing sequence (n k ) k∈N with values in N such that

• u n k converges *-weakly to u in L ∞ ((0, T 0 ), L 2 wγ ), ∇u n k converges weakly to ∇u in L 2 ((0, T 0 ), L 2 wγ ) • b n k converges weakly to b in L 3 ((0, T 0 ), L 3 w 3γ/2 ), p n k converges weakly to p in L 3 ((0, T 0 ), L 6/5 w 6γ 5 ) + L 2 ((0, T 0 ), L 2 wγ ) • u n k converges strongly to u in L 2 loc ([0, T 0 ) × R 3 ).
Moreover, u is a solution of the advection-diffusion problem

   ∂ t u = ∆u -(b • ∇)u -∇p + ∇ • F ∇ • u = 0, u(0, .) = u 0
and is such that :

• the map t ∈ [0, T 0 ) → u(t, .
) is weakly continuous from [0, T 0 ) to L 2 wγ , and is strongly continuous at t = 0 : lim t→0 u(t, .) -u 0 L 2 wγ = 0.

• there exists a non-negative locally finite measure µ on (0, T 0 ) × R 3 such that

∂ t ( |u| 2 2 ) = ∆( |u| 2 2 ) -|∇u| 2 -∇ • |u| 2 2 b -∇ • (pu) + u • (∇ • F) -µ. Finally, as b n = θ n * (u n -u) + θ n * u, we see that b n k is strongly convergent to u in L 3 loc ([0, T 0 ) × R 3 ), so that b = u : thus, u is a solution of the Navier-Stokes problem on (0, T 0 ). (It is easy to check that p = 3 i=1 3 j=1 R i R j (u i u j -F i,j ) as u i,n k u j,n k is weakly convergent to u i u j in L 4 ((0, T 0 ), L 6/5 w 6γ 5
) and w 6γ 5 ∈ A 6/5 ).

Proof of Theorem 1 (global existence)

In order to finish the proof, we shall use the scaling properties of the Navier-Stokes equations : if λ > 0, then u is a solution of the Cauchy initial value problem for the Navier-Stokes equations on (0, T ) with initial value u 0 and forcing tensor F if and only if u λ (t, x) = λu(λ 2 t, λx) is a solution of the Navier-Stokes equations on (0, T /λ 2 ) with initial value u 0,λ (x) = λu 0 (λx) and forcing tensor F λ (t, x) = λ 2 F(λ 2 t, λx).

We take λ > 1 and for n ∈ N we consider the Navier-Stokes problem with initial value v 0,n = λ n u 0 (λ n •) and forcing tensor

F n = λ 2n F(λ 2n •, λ n •).
Then we have seen that we can find a solution v n on (0, T n ), with

C γ 1 + v 0,n 2 L 2 wγ + +∞ 0 F n 2 L 2 wγ ds 2 T n = 1.
Of course, we have v n (t, x) = λ n u n (λ 2n t, λ n x) where u n is a solution of the Navier-Stokes equations on (0, λ 2n T n ) with initial value u 0 and forcing tensor F Lemma 10

lim n→+∞ λ n 1 + v 0,n 2 L 2 wγ + +∞ 0 F n 2 L 2 wγ ds = +∞. Proof : We have v 0,n 2 L 2 wγ = |u 0 (x)| 2 λ n(γ-1) (1 + |x|) γ (λ n + |x|) γ w γ (x) dx.
We have λ n(γ-1) ≤ λ n as γ ≤ 2 and we have, by dominated convergence,

lim n→+∞ |u 0 (x)| 2 (1 + |x|) γ (λ n + |x|) γ w γ (x) dx = 0.
Similarly, we have

+∞ 0 F n 2 L 2 wγ ds = +∞ 0 |F(s, x)| 2 λ n(γ-1) (1 + |x|) γ (λ n + |x|) γ w γ (x) dx ds = o(λ n ).
Thus, lim n→+∞ λ 2n T n = +∞. Now, for a given T > 0, if λ 2n T n > T for n ≥ n T , then u n is a solution of the Navier-Stokes problem on (0, T ). Let w n (t, x) = λ n T u n (λ 2n T t, λ n T x).

For n ≥ n T , w n is a solution of the Navier-Stokes problem on (0, λ -2n T T ) with initial value v 0,n T and forcing tensor F n T . As λ -2n T T ≤ T n T , we have

C γ 1 + v 0,n T 2 L 2 wγ + +∞ 0 F n T 2 L 2 wγ ds 2 λ -2n T T ≤ 1.
By corollary 6, we have sup

0≤t≤λ -2n T T w n (t, .) 2 L 2 wγ ≤ C γ (1 + v 0,n T 2 L 2 wγ + λ -2n T T 0 F n T 2 L 2 wγ ds) and λ -2n T T 0 ∇w n 2 L 2 wγ ds ≤ C γ (1 + v 0,n T 2 L 2 wγ + λ -2n T T 0 F n T 2 L 2 wγ ds).
We have Thus, we have a uniform control of u n and of ∇u n on (0, T ) for n ≥ n T . We may then apply the Rellich lemma (Lemma 6) and Theorem 3 to find a subsequence u n k that converges to a global solution of the Navier-Stokes equations. Theorem 1 is proven.

w n 2 L 2 wγ = |u n (λ 2n T t, x)| 2 λ n T (γ-1) (1 + |x|) γ (λ n T + |x|) γ w γ (x) dx ≥ λ n T (γ-1) u n (λ 2n T t, .) 2
6 Solutions of the advection-diffusion problem with initial data in L 2 w γ .

The proof of Theorem 1 on the Navier-Stokes problem can be easily adapted to the case of the advection-diffusion problem :

Theorem 4 Let 0 < γ ≤ 2. Let 0 < T < +∞. Let u 0 be a divergence-free vector field such that u 0 ∈ L 2 wγ (R 3 ) and F be a tensor F(t, x) = (F i,j (t, x)) 1≤i,j≤3

such that F ∈ L 2 ((0, T ), L 2 wγ ). Let b be a time-dependent divergence free vector-field (∇ • b = 0) such that b ∈ L 3 ((0, T ), L 3 w 3γ/2 ). Then the advection-diffusion problem

(AD)    ∂ t u = ∆u -(b • ∇)u -∇p + ∇ • F ∇ • u = 0, u(0, .) = u 0
has a solution u such that :

• u belongs to L ∞ ((0, T ), L 2 wγ ) and ∇u belongs to L 2 ((0, T ), L 2 wγ )

• the pressure p is related to u, b and F through the Riesz transforms

R i = ∂ i √ -∆ by the formula p = 3 i=1 3 j=1 R i R j (b i u j -F i,j ) • the map t ∈ [0, T ) → u(t, .
) is weakly continuous from [0, T ) to L 2 wγ , and is strongly continuous at t = 0 : lim t→0 u(t, .) -u 0 L 2 wγ = 0.

• there exists a non-negative locally finite measure µ on (0, T ) × R 3 such that

∂ t ( |u| 2 2 ) = ∆( |u| 2 2 ) -|∇u| 2 -∇ • |u| 2 2 b -∇ • (pu) + u • (∇ • F) -µ.
Proof : Again, we define φ R (x) = φ( x R ), u 0,R = P(φ R u 0 ) and F R = φ R F. Moreover, we define b R = P(φ R b). We then solve the mollified problem

(AD R, )    ∂ t u R, = ∆u R, -((b R * θ ) • ∇)u R, -∇p R, + ∇ • F R, ∇ • u R, = 0, u R, (0, .) = u 0,R
for which we easily find a unique solution u R, in L ∞ ((0, T ), L 2 )∩L 2 ((0, T ), Ḣ1 ). Moreover, this solution belongs to C([0, T ), L 2 ). Again, u R, fulfills the assumptions of Theorem 2 :

• u R, belongs to L ∞ ((0, T ), L 2 wγ ) and ∇u R, belongs to L 2 ((0, T ), L 2 wγ )

• the map t ∈ [0, T ) → u R, (t, .) is weakly continuous from [0, T ) to L 2 wγ , and is strongly continuous at t = 0 : lim t→0 u R, (t, .) -u 0,R L 2 wγ = 0.

• on (0, T ) × R 3 , u R, fulfills the energy equality :

∂ t ( |u R, | 2 2 ) = ∆( |u R, | 2 2 )-|∇u R, | 2 -∇• |u| 2 2 b R, -∇•(p R, u R, )+u R, •(∇•F R ). with b R, = b R * θ .
Thus, by Corollary 4 we know that,

sup 0<t<T u R, L 2 wγ ≤ ( u 0,R L 2 wγ +C γ F R L 2 ((0,T ),L 2 wγ ) ) e Cγ (T +T 1/3 b R, 2 L 3 ((0,T ),L 3 w 3γ/2 ) ) and ∇u R, L 2 ((0,T ),L 2 wγ ) ≤ ( u 0,R L 2 wγ +C γ F R L 2 ((0,T ),L 2 wγ ) ) e Cγ (T +T 1/3 b R, 2 L 3 ((0,T ),L 3 w 3γ/2 )
)

where the constant C γ depends only on γ. Moreover, we have that

u 0,R L 2 wγ ≤ C γ u 0 L 2 wγ , F R L 2 wγ ≤ F L 2 wγ and b R, L 3 ((0,T ),L 3 w 3γ/2 ) ≤ M b R L 3 ((0,T ),L 3 w 3γ/2 ) ≤ C γ b L 3 ((0,T ),L 3 w 3γ/2 )
Let R n → +∞ and n → 0. Let u 0,n = u 0,Tn , F n = F Rn , b n = b Rn, n and u n = u Rn, n . We may then apply Theorem 3, since u 0,n is strongly convergent to u 0 in L 2 wγ , F n is strongly convergent to F in L 2 ((0, T ), L 2 wγ ), and the sequence b n is strongly convergent to b in L 3 ((0, T ), L 3 w 3γ/2 ). Thus there exists p, u and an increasing sequence (n k ) k∈N with values in N such that

• u n k converges *-weakly to u in L ∞ ((0, T ), L 2 
wγ ), ∇u n k converges weakly to ∇u in L 2 ((0, T ), L 2 wγ )

• p n k converges weakly to p in L 3 ((0, T ), L 6/5 w 6γ

5

) + L 2 ((0, T ), L 2 wγ )

• u n k converges strongly to u in L 2 loc ([0, T ) × R 3 ).

We then easily finish the proof.

7 Application to the study of λ-discretely selfsimilar solutions

We may now apply our results to the study of λ-discretely self-similar solutions for the Navier-Stokes equations.

Definition 1 Let u 0 ∈ L 2 loc (R 3 ). We say that u 0 is a λ-discretely self-similar function (λ-DSS) if there exists λ > 1 such that λu 0 (λx) = u 0 .

A vector field u ∈ L 2 loc ([0, +∞) × R 3 ) is λ-DSS if there exists λ > 1 such that λu(λ 2 t, λx) = u(t, x).

A forcing tensor

F ∈ L 2 loc ([0, +∞) × R 3 ) is λ-DSS if there exists λ > 1 such that λ 2 F(λ 2 t, λx) = F(t, x).
We shall speak of self-similarity if u 0 , u or F are λ-DSS for every λ > 1.

Examples :

• Let γ > 1 and λ > 1. Then, for two positive constants A γ,λ and B γ,λ , we have : if

u 0 ∈ L 2 loc (R 3 ) is λ-DSS, then u 0 ∈ L 2 wγ and A γ,λ 1<|x|≤λ |u 0 (x)| 2 dx ≤ |u 0 (x)| 2 w γ (x) dx ≤ B γ,λ 1<|x|≤λ |u 0 (x)| 2 dx • u 0 ∈ L 2 loc is self-similar if and only if it is of the form u 0 = w 0 ( x |x| ) |x| with w 0 ∈ L 2 (S 2 ).
• F belongs to L 2 ((0, +∞), L 2 wγ ) with γ > 1 and is self-similar if and only if it is of the form

F(t, x) = 1 t F 0 ( x √ t ) with |F 0 (x)| 2 1 |x| dx < +∞. Proof : • If u 0 is λ-DSS and if k ∈ Z we have λ k <|x|<λ k+1 |u 0 (x)| 2 w γ (x) dx ≤ λ k (1 + λ k ) γ 1<|x|<λ |u 0 (x)| 2 dx with k∈Z λ k (1+λ k ) γ < +∞ for γ > 1.
• If u 0 is self-similar, we have u 0 (x) = 1 |x| u 0 ( x |x| ). From this equality, we find that, for λ > 1

1<|x|<λ |u 0 (x)| 2 dx = (λ -1) S 2 |u 0 (σ)| 2 dσ • If F is self-similar, then it is of the form F(t, x) = 1 t F 0 ( x √ t ). Moreover, we have +∞ 0 |F(t, x)| 2 w γ (x) dx ds = +∞ 0 |F 0 (x)| 2 w γ ( √ t x) dx dt √ t = C γ |F 0 (x)| 2 dx |x| with C γ = +∞ 0 1 (1+ √ θ) γ dθ √ θ < +∞.
In this section, we are going to give a new proof of the results of Chae and Wolf [START_REF] Chae | Existence of discretely self-similar solutions to the Navier-Stokes equations for initial value in L 2 loc (R 3 )[END_REF] and Bradshaw and Tsai [START_REF] Bradshaw | Discretely self-similar solutions to the Navier-Stokes equations with data in L 2 loc , to appear in Analysis and PDE[END_REF] on the existence of λ-DSS solutions of the Navier-Stokes problem (and of Jia and Šverák [START_REF] Jia | Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions[END_REF] for self-similar solutions) :

Theorem 5 Let 4/3 < γ ≤ 2 and λ > 1. If u 0 is a λ-DSS divergence-free vector field (such that u 0 ∈ L 2 wγ (R 3 )) and if F is a λ-DSS tensor F(t, x) = (F i,j (t, x)) 1≤i,j≤3 such that F ∈ L 2 loc ([0, +∞) × R 3 ) , then the Navier-Stokes equations with initial value u 0 (N S)    ∂ t u = ∆u -(u • ∇)u -∇p + ∇ • F ∇ • u = 0, u(0, .) = u 0
has a global weak solution u such that :

• u is a λ-DSS vector field

• for every 0 < T < +∞, u belongs to L ∞ ((0, T ), L 2 wγ ) and ∇u belongs to L 2 ((0, T ), L 2 wγ )

• the map t ∈ [0, +∞) → u(t, .) is weakly continuous from [0, +∞) to L 2 wγ , and is strongly continuous at t = 0 :

lim t→0 u(t, .) -u 0 L 2 wγ = 0.
• the solution u is suitable : there exists a non-negative locally finite measure µ on (0, +∞) × R 3 such that

∂ t ( |u| 2 2 ) = ∆( |u| 2 2 ) -|∇u| 2 -∇ • ( |u| 2 2 + p)u + u • (∇ • F) -µ.
7.1 The linear problem.

Following Chae and Wolf, we consider an approximation of the problem that is consistent with the scaling properties of the equations : let θ be a nonnegative and radially decreasing function in D(R 3 ) with θ dx = 1; We define

θ ,t (x) = 1 ( √ t) 3 θ( x √ t )
. We then will study the "mollified" problem

(N S )    ∂ t u = ∆u -((u * θ ,t ) • ∇)u -∇p + ∇ • F ∇ • u = 0, u(0, .) = u 0
and begin with the linearized problem

(LN S )    ∂ t v = ∆v -((b * θ ,t ) • ∇)v -∇q + ∇ • F ∇ • v = 0, v(0, .) = u 0 Lemma 11 Let 1 < γ ≤ 2. Let λ > 1 Let u 0 be a λ-DSS divergence- free vector field such that u 0 ∈ L 2 wγ (R 3 ) and F be a λ-DSS tensor F(t, x) = (F i,j (t, x)) 1≤i,j≤3 such that, for every T > 0, F ∈ L 2 ((0, T ), L 2 wγ ). Let b be a λ-DSS time-dependent divergence free vector-field (∇ • b = 0) such that, for every T > 0, b ∈ L 3 ((0, T ), L 3 w 3γ/2
). Then the advection-diffusion problem

(LN S )    ∂ t v = ∆v -((b * θ ,t ) • ∇)v -∇q + ∇ • F ∇ • v = 0, v(0, .) = u 0
has a unique solution v such that :

• for every positive T , v belongs to L ∞ ((0, T ), L 2 wγ ) and ∇v belongs to L 2 ((0, T ), L 2 wγ )

• the pressure p is related to v, b and F through the Riesz transforms

R i = ∂ i √ -∆ by the formula p = 3 i=1 3 j=1 R i R j ((b i * θ ,t )v j -F i,j ) • the map t ∈ [0, +∞) → v(t, .
) is weakly continuous from [0, +∞) to L 2 wγ , and is strongly continuous at t = 0 :

lim t→0 v(t, .) -u 0 L 2 wγ = 0.
This solution v is a λ-DSS vector field.

Proof : As we have |b(t, .) * θ ,t | ≤ M b(t,.) and thus b(t, .) * θ ,t L 3 ((0,T ),L 3

w 3γ/2 ) ≤ C γ b L 3 ((0,T ),L 3 w 3γ/2
)

we see that we can use Theorem 4 to get a solution v on (0, T ).

As clearly b * θ ,t belongs to L 2 t L ∞ x (K) for every compact subset K of (0, T ) × R 3 , we can use Corollary 5 to see that v is unique.

Let w(t, x) = 1 λ v( t λ 2 , x λ ). As b * θ ,t is still λ-DSS, we see that w is solution of (LN S ) on (0, T ), so that w = v. This means that v is λ-DSS.

The mollified Navier-Stokes equations.

The solution v provided by Lemma 11 belongs to L 3 ((0, T ), L 3 w 3γ/2 ) (as v belongs to L ∞ ((0, T ), L 2 wγ ) and ∇v belongs to L 2 ((0, T ), L 2 wγ )). Thus we have a mapping L : b → v which is defined from

X T,γ = {b ∈ L 3 ((0, T ), L 3 w 3γ/2 ) / b is λ -DSS} to X T,γ by L (b) = v.
Lemma 12 For 4/3 < γ, X T,γ is a Banach space for the equivalent norms b L 3 ((0,T ),L 3 w 3γ/2

) and b L 3 ((0,T /λ 2 ),×B(0, 1 λ )) .

Proof : We have We may conclude, since for γ > 4/3 we have k∈N λ k(2-3γ 2 ) < +∞.

Proof : Let b n be a bounded sequence in X T,γ and let v n = L (b n ). We remark that the sequence b n (t, .) * θ ,t is bounded in X T,γ . Thus, by Theorem 2 and Corollary 4, the sequence v n is bounded in L ∞ ((0, T ), L 2 wγ ) and ∇v n is bounded in L 2 ((0, T ), L 2 wγ ). We now use Theorem 3 and get that then there exists q ∞ , v ∞ , B ∞ and an increasing sequence (n k ) k∈N with values in N such that • v n k converges *-weakly to v ∞ in L ∞ ((0, T ), L 2 wγ ), ∇v n k converges weakly to ∇v ∞ in L 2 ((0, T ), L 2 wγ )

• b n k * θ ,t converges weakly to B ∞ in L 3 ((0, T ), L 3 w 3γ/2 ), ,

• the associated pressures q n k converge weakly to q ∞ in L 3 ((0, T ), L 6/5 w 6γ

5

)+

L 2 ((0, T ), L 2 wγ )

• v n k converges strongly to v ∞ in L 2 loc ([0, T ) × R 3 ) : for every T 0 ∈ (0, T ) and every R > 0, we have As √ w γ v n is bounded in L ∞ ((0, T ), L 2 ) and in L 2 ((0, T ), L 6 ), it is bounded in L 10/3 ((0, T ) × R 3 ). The strong convergence of v n k in L 2 loc ([0, T ) × R 3 ) then implies the strong convergence of v n k in L 3 loc ((0, T ) × R 3 ). Moreover, v ∞ is still λ-DSS (a property that is stable under weak limits).We find that v ∞ ∈ X T,γ and that lim

n k →+∞ T λ 2 0 B(0, 1 λ )
|v n k (s, y) -v ∞ (s, y)| 3 ds dy = 0.

This proves that L is compact.

If we assume moreover that b n is convergent to b ∞ in X T,γ , then necessarily we have B ∞ = b ∞ * θ ,t , and v ∞ = L (b ∞ ). Thus, the relatively compact sequence v n can have only one limit point; thus it must be convergent. This proves that L is continuous.

Lemma 14 Let 4/3 < γ ≤ 2. If, for some µ ∈ [0, 1], v is a solution of v = µL (v) then v X T,γ ≤ C u 0 ,F,γ,T

where the constant C u 0 ,F,γ,T depends only on u 0 , F, γ and T (but not on µ nor on ). Multiplying by µ, we find that

   ∂ t v = ∆v -((v * θ ,t ) • ∇)v -∇(µq) + ∇ • µF ∇ • v = 0, v(0, .) = µu 0
We then use Corollary 6. We choose T 0 ∈ (0, T ) such that

C γ 1 + u 0 2 L 2 wγ + T 0 0 F 2 L 2 wγ ds 2 T 0 ≤ 1.
Then, as As v is λ-DSS, we can go back from T 0 to T .

Lemma 15 Let 4/3 < γ ≤ 2. There is at least one solution u of the equation u = L (u ).

Proof : Obvious due to the Leray-Schauder principle (and the Schaefer theorem), since L is continuous and compact and since we have uniform a priori estimates for the fixed points of µL for 0 ≤ µ ≤ 1.

Proof of Theorem 5.

We may now finish the proof of Theorem 5. We consider the solutions u of u = L (u ).

By Lemma 14, u is bounded in L 3 ((0, T ), L 3 w 3γ/2 ), and so is u * θ ,t . We then know, by Theorem 2 and Corollary 4, that the familly u is bounded in L ∞ ((0, T ), L 2 wγ ) and ∇u is bounded in L 2 ((0, T ), L 2 wγ ). We now use Theorem 3 and get that then there exists p, u, B and a decreasing sequence ( k ) k∈N (converging to 0) with values in (0, +∞) such that

• u k converges *-weakly to u in L ∞ ((0, T ), L 2 wγ ), ∇u k converges weakly to ∇u in L 2 ((0, T ), L 2 wγ )

• u k * θ k ,t converges weakly to B in L 3 ((0, T ), L 3 w 3γ/2 )

• the associated pressures p k converge weakly to p in L 3 ((0, T ), L 6/5 w 6γ

5

) +

L 2 ((0, T ), L 2 wγ )

• u k converges strongly to u in L 2 loc ([0, T ) × R 3 ). Moreover we easily see that B = u. Indeed, we have that u * θ ,t converges strongly in L 2 loc ((0, T ) × R 3 ) as goes to 0 (since it is bounded by M u and converges, for each fixed t, strongly in L 2 loc (R 3 )); moreover, we have |(u -u ) * θ ,t | ≤ M u-u , so that the strong convergence of u k to u is kept by convolution with θ ,t as far as we work on compact subsets of (0, T ) × R 3 (and thus don't allow t to go to 0). Thus, Theorem 5 is proven.

∇|u| 2 • ∇w γ dx ds + t 0 (|u| 2 F 2 L 2 wγ

 20222 + 2p)u • ∇(w γ ) dx ds i,j (∂ i u j )w γ + F i,j u i ∂ j (w γ )dx ds and u(t, .)

  s, x)| 2 λ n T (γ-1) (1 + |x|) γ (λ n T + |x|) γ w γ (x) dx ds ≥λ n T (γ-1) 

2 T λ 2 0λ 2k 0 1 λ

 221 |b(t, x)| 3 dx dt = λ B(0, 1 λ ) |b(t, x)| 3 dx dt and , for k ∈ N, T 0 λ k-1 <|x|<λ k |b(t, x)| 3 dx dt = λ 2k T <|x|<1 |b(t, x)| 3 dx dt.

  n k (s, y) -v ∞ (s, y)| 2 ds dy = 0.

Proof:

  We have v = µw; with    ∂ t w = ∆w -((v * θ ,t ) • ∇)w -∇q + ∇ • F ∇ • w = 0, w(0, .) = u 0

C γ 1 2 L 2 wγ ≤ C γ ( 1 + µ 2 u 0 2 L 2 wγ + µ 2 2 L 2 wγ ds ≤ C γ ( 1 + µ 2 u 0 2 L 2 wγ + µ 2 T 0 0 F 2 L 2 wγ
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  thus we can control the left side in (3) for w δ by 4

	δ p .
	For all R > 1 and |x| > 10R, we have that the inequality |x -y| < R
	implies 9 10 (1 + |x|) ≤ 1 + |y| ≤ 11 10 (1 + |x|), thus we can control the left side in (3) for w δ by ( 11 9 ) δ p .
	Finally, for R > 1 and |x| ≤ 10R, we write
	1
	|B(x, R)| B(x,R)

(1+√

+|x| 2 ) δ . We have α η,t 0 ,t 1 (t)φ R (x)w γ, (x) ∈ D((0, T ) × R

) and α η,t 0 ,t 1 (t)φ R (x)w γ, (x) ≥ 0. Thus, using the local energy