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In recent years, design of wireless sensor networks using methodologies and mechanisms from other disciplines has gained popularity for addressing many networking aspects and providing more flexible and robust algorithms. We address in this paper the problem of random walk to model routing for data gathering in wireless sensor networks. While at first glance, this approach may seem to be overly simplistic and highly inefficient, many encouraging results that prove its comparability with other approaches have been obtained over the years. In this approach, a packet generated from a given sensor node performs a random motion until reaching a sink node where it is collected. The objective of this paper is to give an analytical model to evaluate the performance of the envisioned routing scheme with special attention to two metrics: the mean system data gathering delay and the induced spatial distribution of energy consumption. The main result shows that this approach achieves acceptable performance for applications without too stringent QoS requirements provided that the ratio of sink nodes over the total number of sensor nodes is carefully tuned.

INTRODUCTION

Random walks have been studied extensively in a large number of interdisciplinary works, to which mathematicians, physicists, chemists, engineers, and others have toiled and all made significant contributions. More recently, connection with networking research area have been established providing a variety of algorithms including routing, selfstabilization, data gathering and query processing in wireless networks, peer-to-peer networks and other distributed systems [START_REF] Lima | Random walks on sensor networks[END_REF][START_REF] Alanyali | A random-walk model for distributed computation in energy-limited network[END_REF][START_REF] Dolev | Random walk for self-stabilizing group communication in ad-hoc networks[END_REF][START_REF] Avin | Efficient and robust query processing in dynamic environments using random walk techniques[END_REF][START_REF] Gkantsidis | Random walks in peer-to-peer networks[END_REF][START_REF] Servetto | Constrained random walks on random graphs: routing algorithms for large scale wireless sensor networks[END_REF]. In wireless sensor networks (WSNs) research area, this approach is gaining popularity because random walk techniques present locality, simplicity, low overhead and inherent robustness to structural changes. Such networks, formed by a large number of small, simple, battery-operated and resource-constrained nodes, are usually subject to dramatic structural changes created by sleep modes, channel fluctuations, mobility, frequent device failures, and other factors. Therefore, topology-driven algorithms are at a disadvantage for such networks as they induce high overhead to maintain up-to-date topology and routing information, and also have to provide recovery mechanisms for critical points of failure (e.g., cluster heads, nodes close to the root in a spanning tree). By contrast, stateless algorithms, such as the random walk, require no knowledge of network topology to make decisions, and thus, fit better the WSN constraints but often at the expense of QoS support.

Many earlier recent research efforts have raised this vision by focusing primarily on basic properties of random walks. For example, in [START_REF] Lima | Random walks on sensor networks[END_REF] the authors addressed the problem of data gathering in large-scale WSNs with static sensor nodes and one mobile collector node that performs a random walk on a square lattice. Whenever the collector node enters the transmission range of a sensor node, the data are collected. In this context, the authors derived analytical bounds for the expected number of distinct visited sensor nodes within a given time frame. To improve this performance metric, they proposed a practical algorithm that constrains the random walk and validated it by simulations. Constrained random walk techniques, already suggested in [START_REF] Servetto | Constrained random walks on random graphs: routing algorithms for large scale wireless sensor networks[END_REF] for multipath routing, have the advantage to achieve load balancing property in uncontrolled dynamics characterized by random ON-OFF transitions to save energy. Besides the load balancing property, which is difficult to achieve for other routing protocols, it is also proven in [START_REF] Tian | Random walk routing for wireless sensor networks[END_REF] that a random walk based routing in regular patterned WSNs consumes the same amount of energy as the shortest path routing provided that messages are of small size, which characterizes many WSN applications.

Throughout the variety of random walk based algorithms in WSN area, we realize that most of the results are derived from a qualitative view or by means of simulations and that little analytical studies use the powerful techniques of random walk theory. In addition, these results often provide lower and upper bounds on system performance and not a closed form analytical evaluation [START_REF] Lima | Random walks on sensor networks[END_REF][START_REF] Avin | Efficient and robust query processing in dynamic environments using random walk techniques[END_REF][START_REF] Servetto | Constrained random walks on random graphs: routing algorithms for large scale wireless sensor networks[END_REF]. Instead, our take in this paper is to obtain a fundamental insight into random walk performance by constructing an analytical model that owes much to the powerful analytic tools developed in the physics community [START_REF] Lindenberg | Lattice random walks for sets of random walkers. first passage times[END_REF][START_REF] Montroll | Random walks on lattices[END_REF][START_REF] Liyanage | A bibliography on applications of random-walks in theoretical chemistry and physics[END_REF]. In particular, we address here the problem of data gathering in WSNs comprised of a large number of sensor nodes and a smaller number of sink nodes to gather, process and control data. A packet generated at any sensor node performs a random walk until it reaches a sink node for the first time. At this moment, we consider that the data gathering process occurs with success. Our motivation for considering random walks in this context comes from the following observations. First, the many important papers of Scher and his collaborators [START_REF] Scher | Stochastic transport in a disordered solid. I. theory[END_REF] for modeling stochastic transport in the physics community strongly influenced us to use this approach but from a networking view. Second, to cope with the resource constraint, the multihop strategy is better, since the transmission energy consumption dominates the total power consumption induced by the circuitry of active nodes [START_REF] Chakrabarti | Multi-hop communication is order-optimal for homogeneous sensor networks[END_REF][START_REF] Chen | Energy efficient system design with optimum transmission range for wireless ad hoc networks[END_REF][START_REF] Ergen | On multi-hop routing for energy efficiency[END_REF]. Third, searching a large space of possible routes derived from having a large number of nodes may prove computationally prohibitive for low complexity devices such as sensor nodes. Thus, without any state information, sensor nodes would blindly forward data. This leads to the Unicast Random Walk based Routing (URWR).

The remainder of this paper is organized as follows. A formal network model description followed by backgrounds and theoretical elements of random walk theory are given in Section II. In section III, which forms our original contribution, we focus on the URWR performance with prior attention to two performance metrics: the mean system data gathering delay and the induced spatial distribution of energy consumption. Finally, we conclude this paper in section IV.

RANDOM WALK MODEL

Network Description

We consider a graph G(Ω, E) where Ω is a countable set of nodes wirelessly connected pairwise by a set E of undirected arcs or edges to represent communication links between nodes. At a given node r, let Z( r) = { s1, • • • , s l r } be the set of neighbors of r. Let π r = {p1, • • • , p l r } be nonnegative reals such that i pi = 1. This defines a transition probability distribution over the neighbors of r. When a packet reaches node r, the next hop is chosen by tossing a die whose i-th face occurs with probability pi, and the packet is then forwarded over the link ( r, si). The random sequence of nodes selected this way is a random walk on graph G(Ω, E).

By making different assumptions on the topology of the underlying network and on constraints imposed on π r , we are
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Figure 2: Equivalence between the infinite periodic square lattice (a) and the torus lattice (b). For the sake of clarity, we have deliberately missed some transitions except for the origin.

able to explore a large space of possible routing schemes. In particular, we consider in this paper a regular deployment topology where nodes are spread over an area of interest with a hexagon lattice pattern (or equivalently an equilateral triangular lattice). This pattern is of fourfold interest. First, many WSN applications are often desired to follow regular patterns for at least two reasons: (i) convenience of deployment and (ii) to achieve a higher degree of connectivity. Second, under full sensing coverage requirement, the hexagon lattice has the lowest node density [START_REF] Kershner | The number of circles covering a set[END_REF], which is important for economic reasons. Third, sensor placement can be viewed as spatial sampling from signal processing perspective. The literature there also suggests the superiority of hexagonal sampling lattice over the square lattice when the spatial spectrum of 2-D signal being measured (such as a temperature field) is bandlimited with a circular support. Finally, with a communication range rc ≥ √ 3rs, where rs stands for the sensing range, the hexagon lattice pattern provides both coverage and connectivity [START_REF] Bai | Deploying wireless sensors to achieve both coverage and connectivity[END_REF].

In this paper, we consider the case where rc = √ 3rs which corresponds to a 6-connectivity. Moreover, it is assumed that there is unbiased random motion, so that all of the 6 possible next steps away from the current position are equally likely, each having probability 1 6 . There exist two kinds of network nodes: sensor nodes and a smaller number of sink nodes distributed in a regular way, one sink node for every N 2 vertices without any specific mapping between sensor and sink nodes. A packet generated at a given sensor node performs then a random walk until it reaches a sink node for the first time. At this moment, we consider that the data gathering process occurs with success.

As illustrated in Figure 1, the induced network has a periodic structure, in which each unit cell of size N × N and in the form of a rhombus contains N 2 -1 sensor nodes and 1 sink node. Since we are interested only in which nodes are connected to which, not in the visual appearance of the unit cell, we may transform this unit cell to obtain a new cell in the form of a square lattice of size N ×N with one additional diagonal bond inserted in each fundamental square. The obtained cell has the advantage that we can assign to nodes integer coordinates while maintaining the original network topology. With a large number of unit cells and recalling the assumption that there is no specific mapping between sensor nodes and sink nodes, we can assume that the formed network is infinite and hence, it is equivalent to a torus lattice T formed by connecting the opposite ends of the square unit cell (Figure 2). Therefore, in the remainder of this paper we investigate the URWR in reference to torus lattice T . Every node s ∈ T is labeled with (s1, s2), where s1 and s2 are integers such that 0 ≤ s1, s2 ≤ N -1. The obtained results will be valid for the original network. However, before investigating the performance of the URWR, we introduce in the following backgrounds and theoretical elements of random walk theory that will be used to evaluate the URWR. Deeper discussions of random walk results can be found in [START_REF] Hughes | Random Walks and Random Environments[END_REF].

Elements of Random Theory

Node Occupation and First-Passage Probabilities

We define, for n ≥ 1, Pn( r, s) the probability of being at node s after n hops, given that the packet has been issued at node r. We also define Fn( r, s) the probability of arriving at node s for the first time on the nth hop, given that the walk started at node r. We shall refer to these probabilities as the node occupation probability and the first-passage probability respectively. By convention we have P0( r, s) = δ r s and F0( r, s) = 0.

We make use in this paper of the generating function formalism [START_REF] Lando | Lectures on Generating Functions[END_REF] to deal with a sequence {cn} n∈N by capturing all these coefficients into a formal infinite series defined as C(z) = ∞ n=0 cn z n where the complex variable z is small enough to ensure the convergence of this series. C(z) is called the generating function associated with {cn} n∈N . The interest of this formalism arises especially in probability theory to completely characterize a discrete random variable by associating a generating function to its probability distribution. Once the generating function is determined, a lot of information about the random variable, such as the expectation or the variance, can be then derived.

In the following, we denote the generating functions associated with {Pn( r, s)} n∈N and {Fn( r, s)} n∈N as P ( r, s|z) and F ( r, s|z) respectively. Hereafter we present two well-known classical relations extensively used in random walk theory, and upon which the theoretical results derived in this paper rely.

Lemma 1. At fixed r, P ( r, s | z) satisfies the normaliza- tion condition s∈T P ( r, s | z) = 1 1 -z • (1) 
Proof. As long as there is no possibility that the packet is removed from T at any time n (this is so for the walks considered here), Pn( r, s) is a distribution over the nodes of T at fixed n and r, which leads to s∈T Pn( r, s) = 1, for all n ≥ 0. By taking the generating functions of both sides of this relation, (1) follows. 

F ( r, s | z) = P ( r, s | z) -δ r s P ( s, s | z) , r, s ∈ T. (2) 
Proof. The proof is presented in Appendix A.

Random Walk Characterization

A key issue in the problem of random walk is the resolution of the following question: how likely does the walk evolve in the future under some initial conditions? Answering this question consists in finding an explicit expression of P ( r, s | z), which completely determines the node occupation probability distribution. Globally, throughout the large number of interdisciplinary works in random walk theory, the exact closed-form solution was mostly carried out under restrictive conditions such as the periodicity of the network, the homogeneity of the system and the infiniteness of the structure on which the random walk takes place. Among these special cases, the problem of random walk on finite lattice with periodic boundary conditions (i.e., toroidal lattices) has been extensively studied. The investigation of this type of system was motivated by many situations and process encountered in statistical mechanics, solid state theory (e.g., diffusion of electrons, excitons, energy transfer, conductivity, dislocations). Montroll and Weiss [START_REF] Montroll | Random walks on lattices[END_REF] originally proposed this special problem and solved it for k-dimension. In particular, in case of square lattice with diagonal bond, they established an explicit expression of P (0, s | z), that is

P (0, s | z) = 1 N 2 m∈T e -i 2π N m• s 1 -zλ( 2π N m) (3) 
where function λ( θ) is defined on R 2 as

λ( θ) = 1 3 cos(θ1) + cos(θ2) + cos(θ1 -θ2) .
Even though relation (3) does not give a simple form of P (0, s | z), it is of great importance and represents our basic relation upon which relies most of our contribution in this paper.

PERFORMANCE ANALYSIS

In the present section, we investigate the performance of the URWR. We shall focus our attention primarily on two performance metrics: (i) how long does it take for the data gathering process and (ii) how much energy does it require? These two metrics, which characterize the global system behavior, are analytically studied by using the general formalism introduced in subsection 2.2. We first focus on (i) the system data gathering delay and then (ii) the spatial distribution of the energy consumption.

System Data Gathering Delay

We define the data gathering delay of a packet at a given sensor node s as the time or the number of hops it takes to reach the sink node for the first time after it leaves sensor node s. The system data gathering delay is then obtained by averaging the packet delay over all sensor nodes contained in T . This time is a random variable denoted by DN . We consider here a uniform traffic distribution, that is, a packet has the probability 1 N 2 -1 of being generated at any sensor node in T . For studying the mean system data gathering delay, we determine first the generating function associated with the probability distribution of random variable DN .

Generating Function Analysis of DN

Suppose that at time n = 0 a packet has the probability 1 N 2 -1 of being generated at any sensor node in T . If Gn(N ) denotes the probability that the packet will reach the sink node for the first time on the nth hop, then in terms of probability notation we have

Pr DN = n = Gn(N ), n ≥ 0.
Using now the law of total probability, it is possible to decompose the event that a packet generated anywhere will reach the sink node for the first time on the nth hop, which has the probability Gn(N ), into the N 2 -1 mutually exclusive events that the packet is initially released at sensor node s with probability 1 N 2 -1 , and then arrives at the sink node for the first time after n hops, which has the probability Fn( s, 0). Thus, Gn(N ) can be expressed as

Gn(N ) = 1 N 2 -1 s =0 Fn( s, 0), n ≥ 0.
Multiplying both sides of this relation by z n and summing over all n yield

G(N | z) = 1 N 2 -1 s =0 F ( s, 0 | z),
where G(N | z) stands for the generating function associated with sequence {Gn(N )} n∈N . Then, from (2) we obtain

G(N | z) = 1 N 2 -1 s =0 P ( s, 0 | z) P (0, 0 | z) = 1 (N 2 -1)P (0, 0 | z) s∈T P ( s, 0 | z) -P (0, 0 | z) .
However, since it it assumed that there is no directional bias on any hop, the considered random walk is symmetric and therefore we have P ( s, 0 | z) = P (0, s | z). Further, using the normalization condition stated in (1), we find

G(N | z) = 1 N 2 -1 1 (1 -z) P (0, 0 | z) -1 • (4) 
Various statistics of the system data gathering delay can be now extracted from this key relation using the general formalism of generating function. In particular, we propose next to derive the mean system data gathering delay, i.e., the expectation of DN denoted by E(DN ).

Mean System Data Gathering Delay

The mean system data gathering delay can be written as

E(DN ) = ∞ n=0 n Gn(N ) = lim z→1 - ∂ ∂z G(N | z)•
Although this formula does not give an explicit expression of the mean system data gathering delay, we can fortunately extract a closed-form by a Taylor 's series expansion of G(N | z) at point z = 1. Indeed, the limit of the first derivative of G(N | z) as z → 1 -is nothing but the firstorder term of its Taylor 's series. To obtain the first order Taylor 's series expansion of G(N | z) at point z = 1, we proceed as follows. We first calculate the asymptotic expansion of P (0, 0 | z) as z → 1, which is obtained by setting s = 0 in the asymptotic expansion of P (0, s | z) as z → 1 given by [START_REF] Servetto | Constrained random walks on random graphs: routing algorithms for large scale wireless sensor networks[END_REF] in Appendix B. Second, by plugging the asymptotic expansion of P (0, 0 | z) as z → 1 into (4), we obtain

G(N | z) = 1 + N 4 1 + 4ϕN (0, 1) -N 2 4(N 2 -1) (z -1) + o(z -1)
where ϕN (0, 1) is an N -dependent series obtained by setting s = 0 and z = 1 in ϕN ( s, z) defined by [START_REF] Scher | Stochastic transport in a disordered solid. I. theory[END_REF] in Appendix B.

By differentiating this Taylor 's series expansion with respect to z and then taking the limit as z → 1 -, we obtain the following closed-form expression of the mean system data gathering delay

E(DN ) = 1 4 N 2 + N 4 N 2 -1 ϕN (0, 1). ( 5 
)
Some general remarks can be drawn from the previous results. First, from the first-order Taylor 's series expansion, the value of G(N | z) at point z = 1 is equal to unit, which represents the probability that the sink node is ever reached by a packet generated anywhere in the network. This means that the data gathering process ensured by the URWR is certain. Second, referring to (5), the mean system data gathering delay is finite and depends only on the size of a unit cell via parameter N . To study this dependence, one has to estimate series ϕN (0, 1). Two ways are possible. First, the mean system data gathering delay is estimated by a numerical calculation of series ϕN (0, 1). A second way consists in approximating E(DN ) by an asymptotic expansion of series ϕN (0, 1) as N → ∞, which is provided by (21) in Appendix C. Plugging (21) into ( 5), we obtain our first analytical result Result 1.

E(DN ) = √ 3 π N 2 ln(N ) + N 2 √ 3 π γ + √ 3 π ln( √ 3 π ) + ℓ + 1 4 + √ 3 π ln(N ) + √ 3 π γ + ln( √ 3 π ) + √ 3 3 πℓ + √ 3 π ln(N ) N 2 + O( 1 N 2 )• (6) 
where "O" stands for the "Big-O" Landau symbol, γ is the Euler's constant (γ = 0.5772156649) and ℓ = -0.0047473394.

Discussion

As mentioned earlier, the main question we want to ask in this paper is to what extend the URWR can be efficient while being simple and light. In this section, we have focused on the mean system data gathering delay as a performance metric of the URWR. As shown by Result 1, this performance metric depends only on cell size or equivalently on the number of sensor nodes to be spread per sink node. This result is of threefold interest. First, the dependence of the achievable mean system data gathering delay on cell size alone and not on the overall network size shows that the URWR can scale up with the network size. Second, it is not necessary that N be very large for approximation formula (6) to be numerically useful. For N = 3, ( 6) gives E(D3) = 8.226 hops, which is only about 0.29 per cent different from the exact result from ( 5) that E(D3) = 8.25 hops. Third, it is always possible to guarantee an acceptable mean system data gathering delay provided that the number of sensor node per sink node is carefully tuned. Thus, approximation formula (6) can be put into practical use for WSN dimensioning with respect to crucial parameters such as the minimum ratio of sink nodes to be deployed over the total number of sensor nodes while ensuring a required threshold mean system data gathering delay.

Concretely, consider now IEEE 802.15.4 enabled network nodes with maximum and minimum supported data rates of 250 kbps and 20 kbps respectively. Since in many applications of WSNs, sensor nodes often send only beep-like small packets to the sink node to report their status, we can assume here an average packet size of about 10 bytes. Therefore, the minimum achievable mean system data gathering delay for the maximum data rate is about 938 µs while for the minimum data rate, it is about 11.7 ms. This corresponds to 2.93 hops for a unit cell of size N 2 = 4 nodes. However, as illustrated in Figure 3, to guarantee a mean system data gathering delay threshold of 1 s, the unit cell size should not exceed N 2 = 37 2 nodes for the maximum data rate, and N 2 = 12 2 for the minimum data rate. As these values approach upper bounds of practical interest, we can conclude that for applications without too stringent required delay, which often characterize a large range of WSN applications, the URWR can perform acceptable performance in terms of delay provided that the number of sensor nodes to be deployed per sink node is well managed.

Energy Consumption

Besides the mean system data gathering delay, another important performance metric of the URWR is the energy consumption: how much energy does it require for a packet to be gathered by a sink node? We do not take here into account all possible sources of energy consumption, but only the contribution of the URWR induced by successive transmissions/receptions at relay sensor nodes. A straightforward metric that measures the successive transmissions/receptions cost is the number of visits of a packet to a relay sensor node before reaching the sink node. At a given relay sensor node s, we denote by VN ( s) the number of visits during the random walk before visiting the sink node, and we assume again a uniform traffic distribution. In the following, we first put this physical picture into a mathematical form and then evaluate at relay sensor node s the mean number of visits denoted by E VN ( s) .

Sink-Avoiding Node Occupation Probability

Let us define P † n ( r, s) as the probability of being at relay sensor node s on the nth hop before reaching the sink node, given that the packet has been initially issued at sensor node r. We refer to this probability as the sink-avoiding node occupation probability. We show next how P † n ( r, s) and Pn( r, s) are related to each other. Indeed, using the law of total probability, it is possible to decompose the event that a packet generated at sensor node r will be at relay sensor node s on the nth hop, which has the probability Pn( r, s), into the two exclusive events: (i) the packet visits sensor node s on the nth hop before visiting the sink node, which has the probability P † n ( r, s), (ii) the packet first arrived at the sink node after j hops and subsequently performed a walk of n -j hops arriving at sensor node s, which has the probability Fj ( r, 0)Pn-j ( 0, s). Thus,

Pn( r, s) = P † n ( r, s) + n j=0
Fj ( r, 0)Pn-j (0, s), n ≥ 0.

Multiplying both sides by z n , summing over all n and observing that the convolution of two sequences corresponds to the multiplication of their generating functions, we obtain

P ( r, s | z) = P † ( r, s | z) + F ( r, 0 | z)P (0, s | z) (7) 
where P † ( r, s | z) stands for the generating function associated with {P † n ( r, s)} n∈N . Then, substituting the expression of F ( r, 0 | z) given by ( 2) into (7) yields this key relation

P † ( r, s | z) = P ( r, s | z) -P (0, s | z) P ( r, 0 | z) P (0, 0 | z) . (8) 
Next, we evaluate the mean number of visits E VN ( s) based on this relation.

Mean Number of Visits

Let us suppose that at time n = 0 a packet has the probability 1 N 2 -1 of being generated at any sensor node in T . At a given relay sensor node s, we define an indicator random variable In( s), which takes the value 1 if relay sensor node s is visited by the packet on the nth hop before reaching the sink node, and is zero otherwise. Let us also define Hn( s) and H( s | z) the probability that relay sensor node s is visited on the nth hop by the packet before reaching the sink node and its associated generating function respectively, so that, in terms of probability notation we have Pr In( s) = 1 = Hn( s).

Therefore, it can be deduced that the number of visits of the packet to relay sensor node s before reaching the sink node during the walk is simply

VN ( s) = ∞ n=0
In( s), and hence,

E VN ( s) = E ∞ n=0 In( s) = ∞ n=0 E In( s) = ∞ n=0 Hn( s) = lim z→1 - H( s | z).
Now, it remains to make explicit H( s | z). Using the law of total probability, it is possible to decompose the event that a packet generated at any sensor node will visit relay sensor node s on the nth hop before visiting the sink node, which has the probability Hn( s), into the N 2 -1 mutually exclusive events that the packet is initially generated at sensor node r with probability 1 N 2 -1 , and then visits relay sensor node s after n hops before visiting the sink node, which occurs with probability P † n ( r, s). Thus, we obtain By multiplying both sides by z n and summing over all n, we obtain

Hn( s) = 1 N 2 -1 r =0 P † n ( r, s), n ≥ 0.
H( s | z) = 1 N 2 -1 r =0 P † ( r, s | z). (9) 
Finally, by plugging ( 8) into ( 9), using successively the symmetric property of P ( r, 0 | z) and the normalization condition stated in (1), we find

H( s | z) = 1 (N 2 -1)(1 -z) 1 - P (0, s | z) P (0, 0 | z) • (10) 
Since the mean number of visits is defined as the limit of

H( s | z) as z → 1 -, a zero-order Taylor 's series expansion of H( s | z) at point z = 1 is sufficient to derive E VN ( s) .
Likewise the calculation of the mean system data gathering delay, we proceed first to evaluate the asymptotic expansion of P (0, s | z) P (0,0 | z) as z → 1 -, which can be derived from [START_REF] Servetto | Constrained random walks on random graphs: routing algorithms for large scale wireless sensor networks[END_REF] in Appendix B. Second, after elementary calculus, we obtain the limit of H( s | z) as z → 1 -, i.e., E VN ( s) as follows

Result 2. E VN ( s) = N 2 N 2 -1 ϕN (0, 1) -ϕN ( s, 1) + 3s2(N -s2) 2(N 2 -1) • (11) 
where ϕN ( s, 1) is a series obtained by setting z = 1 in ϕN ( s, z) defined by [START_REF] Scher | Stochastic transport in a disordered solid. I. theory[END_REF] in Appendix B.

Discussion

Some general remarks can be drawn from Result 2. First, note that the mean number of visits depends on both cell size via parameter N , and the position of relay sensor node s. This is predictable since the nodes of T are not equivalent: sensor nodes in the vicinity of the sink node are not equivalent to those in the middle of the cell. Second, as shown in Figure 4, the mean number of visits achieved far away from the sink node is much closer to uniform and with higher values than the one in the vicinity of the sink node. Then we can conclude that the URWR achieves a load balancing property. Intuitively, this can be explained by the fact that a packet visiting a relay sensor node located in the vicinity of the sink node is more likely to reach it during the next fewer hops than when visiting a relay sensor node far away from the sink node, and thus, it is more likely to return once again to the latter relay sensor node. In other words, the proximity to the sink node decreases the likelihood of the return to the initial position. In this way, relay sensor nodes in the middle of the cell are expected to be more visited than the others. This is consistent with Figure 4. Interestingly enough, and at first glance surprising to us -although rather obviously with the benefit of hindsight-is the fact that the energy consumption distribution achieved along the diagonal between the upper left corner and the lower right corner is lower than the one along the opposite diagonal. This can be explained by the fact that only hops along the former diagonal are allowed and hence, accelerating random walks along this direction.

Although there is no unified definition of network lifetime, as this concept depends on the objective of an application, we adopt here a common definition which characterizes the network lifetime as the time until the first node in the network depletes its energy. In case of the URWR, the first node that depletes its energy corresponds to the most visited node during the data gathering process. As illustrated in Figure 5, the maximum mean number of visits grows logarithmically with large values of N . Therefore, the network lifetime does not degrade quickly when the number of sensor nodes per sink node increases.

Let us now consider a practical case where nodes are equipped with the MC13192, an IEEE 802.15.4 compliant radio transceiver from Freescale Semiconductor [START_REF] Mc | 4 GHz low power transceiver for the IEEE[END_REF], which offers a data rate of 250 kbps and operates in transmit/receive mode at (30 mA, 2.7 V) and (37 mA, 2.7 V) respectively. Since a visit to a sensor node counts for one reception followed by one transmission, the energy required for a 10 byte message per visit is about 57.88 µJ. Therfore, for a given energy source and a frequency for measure updates, it is possible to derive the network lifetime for a given cell size based on Figure 5.

CONCLUSION

In this paper we addressed the problem of random walk to model data gathering in large-scale WSNs with regular structure. Our motivation for this approach comes from the inherent properties of random walks such as the locality, the simplicity and the robustness to structural changes. We presented a mathematical formulation of the problem of random walk that largely owes to the powerful theoretical tools developed in the physics community. Using the generating function formalism, we established closed-form expressions for the mean system data gathering delay and the energy consumption based on the mean number of visits.

Our main results could be summarized as follows. First, the dependence of the achievable mean system data gathering delay on only the ratio of sink nodes over the total number of sensor nodes shows that the random walk can scale with the network size. Second, it is always possible to guarantee an acceptable mean system data gathering delay for delay-tolerant applications provided that this ratio is carefully tuned and that the packets are of small size. Third, as regards to energy consumption, the random walk achieves a load balancing property.

There are several interesting directions that extend the model presented in this paper. This consists for instance in deriving other significant statistics of the random walk such as the dispersion of the system data gathering delay, studying biased random walks to improve performance and considering other network topologies such as the square lattice, which will be soon published.

APPENDIX A. PROOF OF LEMMA 2

The event "the packet is at node s after n hops, given that the walk started at node r", which has the probability Pn( r, s), can be decomposed into n mutually exclusive events "the packet first arrived at node s after j hops and subsequently performed a walk of n -j hops returning to node s", with probabilities Fj ( r, s)Pn-j ( s, s). Thus

Pn( r, s) = n j=1 Fj ( r, s)Pn-j ( s, s), n ≥ 1.
If this sum is interpreted as void when n = 0, recalling the convention that P0( r, s) = δ r s and F0( r, s) = 0, we may rewrite this relation as Pn( r, s) = δ r s δ0n + n j=0 Fj( r, s)Pn-j( s, s), n ≥ 0.

Taking the generating functions of both sides yields (2).

B. ASYMPTOTIC ANALYSIS OF

P (0, S | Z) B.1 Singularity of P (0, s | z) at z = 1
We propose here to simplify the expression of P (0, s | z) given by ( 3) and to study its singularity at point z = 1. By factorizing the denominator of the summand and using the addition theorems of trigonometric functions, we obtain

P (0, s | z) = 1 N 2 N-1 m 1 =0 N-1 m 2 =0 e -i 2π N m 1 s 1 1 -z 3 cos( 2π N m1) × e -i 2π N m 2 s 2 1 -cm 1 (z) cos π N (m1 -2m2) = 1 N 2 N-1 m 1 =0 e -i 2π N m 1 s 1 1 -z 3 cos( 2π N m1) × Sm 1 (z) (12) 
where functions cm 1 (z) and Sm 1 (z) are defined as

cm 1 (z) = 2z cos( π N m1) 3 -z cos( 2π N m1) (13a) Sm 1 (z) = N-1 m 2 =0 e -i 2π N m 2 s 2 1 -cm 1 (z) cos π N (m1 -2m2) • (13b)
Next, we propose to simplify Sm 1 (z). The first step is to see from (13a) that 0 < |cm 1 (z)| < 1 for 0 < z < 1 unless m1 = N 2 , which occurs only when N is even. In this case, c N 2 (z) = 0 and we find S N 2 (z) = N δ0, s 2 where the delta symbol stands for the Kronecker symbol. Let us now assume that m1 = N 2 , so that, by using the exponential representation of trigonometric functions, Sm 1 (z) can be written as follows

Sm 1 (z) = - 2 cm 1 (z) N-1 m 2 =0 e i π N (m 1 -2m 2 (1+s 2 )) e i π N (m 1 -2m 2 ) -αm 1 (z) × 1 e i π N (m 1 -2m 2 ) -α -1 m 1 (z)
where αm 1 (z) is the smaller root of the equation

X 2 - 2 cm 1 (z) X + 1 = 0
whose discriminant is nonnegative. Thus, we find

αm 1 (z) = 1 -1 -c 2 m 1 (z) cm 1 (z) • (14) 
Using partial fraction decomposition, Sm 1 (z) becomes

Sm 1 (z) = 1 -c 2 m 1 (z) -1 2 N-1 m 2 =0 e -i 2π N m 2 s 2 1 -αm 1 (z) e -i π N (m 1 -2m 2 ) + αm 1 (z) e i π N (m 1 -2m 2 (1+s 2 )) 1 -αm 1 (z) e i π N (m 1 -2m 2 )
• Noting that |αm 1 (z)| < 1, it is then possible to expand each sum involved in Sm 1 (z) by using successively the expansion 1/(1 -x) = ∞ k=0 x k and the identity

N-1 m=0 e i 2π N mn = N for n = 0, ± N, ± 2N, • • • 0 otherwise.
which can be derived by remarking that the vectors e i 2π N mn form an orthogonal basis over the set of N-dimensional complex vectors. Therefore, we obtain [START_REF] Lindenberg | Lattice random walks for sets of random walkers. first passage times[END_REF] which is established for m1 = N 2 and 0 < z < 1. However, when cm 1 (z) → 0, which occurs at m1 → N 2 , αm 1 (z) goes to zero. Thus, if we extend the expression [START_REF] Lindenberg | Lattice random walks for sets of random walkers. first passage times[END_REF] to include m1 = N 2 , we obtain S N

Sm 1 (z) = N e -i π N m 1 s 2 1 -c 2 m 1 (z) 1 2 × α s 2 m 1 (z) + α N-s 2 m 1 (z) cos(πm1) 1 -α N m 1 (z) cos(πm1)

2

(z) = N δ0, s 2 , which is consistent with (13b). Therefore [START_REF] Lindenberg | Lattice random walks for sets of random walkers. first passage times[END_REF] holds for all 0 ≤ m1 ≤ N -1.

Finally, by substituting ( 15) into [START_REF] Kershner | The number of circles covering a set[END_REF], we obtain

P (0, s | z) = 1 N N-1 m 1 =0 e -i π N m 1 (2s 1 +s 2 ) 1 -z 3 cos( 2π N m1) 1 -c 2 m 1 (z) 1 2 × α s 2 m 1 (z) + α N-s 2 m 1 (z) cos(πm1) 1 -α N m 1 (z) cos(πm1) • (16) 
Note that the summand involved in ( 16) is holomorphic over 0 < z < 1 for all 0 ≤ m1 ≤ N -1. However, it diverges at z = 1 when m1 = 0. Thus, the singularity of P (0, s | z) at z = 1 comes only from the first term of the sum given by [START_REF] Liyanage | A bibliography on applications of random-walks in theoretical chemistry and physics[END_REF]. It is convenient therefore to separate out the singular and non-singular parts of P (0, s | z) as follows

P (0, s | z) = √ 3 N (1 -z) 1 2 (3 + z) 1 2 × α s 2 0 (z) + α N-s 2 0 (z) 1 -α N 0 (z) + ϕN ( s, z) (17) 
where

ϕN ( s, z) = 1 N N-1 m 1 =1 e -i π N m 1 (2s 1 +s 2 ) 1 -z 3 cos( 2π N m1) 1 -c 2 m 1 (z) 1 2 × α s 2 m 1 (z) + α N-s 2 m 1 (z) cos(πm1) 1 -α N m 1 (z) cos(πm1) (18) 
is holomorphic at z = 1. The first term involved in [START_REF] Montroll | Random walks on lattices[END_REF] corresponds to the term m1 = 0 in [START_REF] Liyanage | A bibliography on applications of random-walks in theoretical chemistry and physics[END_REF], and the second term, ϕN ( s, z), corresponds to the sum 1 ≤ m1 ≤ N -1.

B.2 Asymptotic expansion of

P (0, s | z) as z → 1
To obtain the zero-order asymptotic expansion of P (0, s | z) as z → 1, let us successively expand the first term of P (0, s | z) involved in [START_REF] Montroll | Random walks on lattices[END_REF] and then function ϕN ( s, z) close to z = 1. After expanding function α0(z), it can be deduced that √ 3

N (1 -z) 1 2 (3 + z) 1 2 × α s 2 0 (z) + α N-s 2 0 (z) 1 -α N 0 (z) = 1 N 2 (1 -z) + N 2 -6N s2 + 6s2 2 -1 4N 2 + o (1 -z) 1 2 
.

Using now the Taylor 's Theorem, ϕN ( s, z) can be represented by its zero-order Taylor series expansion at z = 1

ϕN ( s, z) = ϕN ( s, 1) + o (1 -z) 1 2 .
Finally, combining this asymptotic expansion with the one of the first term of P (0, s | z), we obtain

P (0, s | z) = 1 N 2 (1 -z) + N 2 1 + 4ϕN ( s, 1) -6N s2 + 6s2 2 -1 4N 2 + o (1 -z) 1 2 . (19) 
C. ASYMPTOTIC EXPANSION OF ϕN (0, 1)

Setting s = 0 and z = 1 in (18), we obtain

ϕN (0, 1) = √ 3 2N N-1 m 1 =1 1 sin( π N m1) 1 + 1 3 sin 2 ( π N m1) 1 2 × 1 + α N m 1 (1) cos(πm1) 1 -α N m 1 (1) cos(πm1) • (20) 
In this section, we show that series ϕN (0, 1) has the following asymptotic expansion as N → ∞

ϕN (0, 1) = √ 3 π ln(N ) + √ 3 π γ + ln( √ 3 π ) + √ 3π 3 ℓ + O 1 N 4 ( 21 
)
where γ is the Euler 's constant and ℓ is a constant. This asymptotic expansion is obtained by writing ϕN (0, 1) as

ϕN (0, 1) = Q1(N ) + Q2(N ) + Q3(N ),
where

Q1(N ) = √ 3 2N N-1 m 1 =1 1 sin( π N m1) , Q2(N ) = √ 3 2N N-1 m 1 =1 1 + 1 3 sin 2 ( π N m1) -1 2 -1 sin( π N m1) , Q3(N ) = √ 3 N N-1 m 1 =1 1 + 1 3 sin 2 ( π N m1) -1 2 α N m 1 (1) cos(πm1) sin( π N m1) 1 -α N m 1 (1) cos(πm1)
and then by calculating separately the asymptotic expansion of each sum as N → ∞.

C.1 Asymptotic expansion of Q1(N ) as N → ∞

Let f (x) be the function defined for all real numbers x between 0 and π as follows

f (x) =      1 sin(x) - 1 x - 1 π -x , x ∈]0, π[ - 1 π , x = 0, π.
We can show that f is indefinitely differentiable, in particular

f (1) (0) = 1 6 - 1 π 2 and f (1) (π) = - 1 6 + 1 π 2 •
Remark also that Q1(N ) can be expressed as

Q1(N ) = √ 3 2N N-1 m 1 =1 f ( π N m1) + √ 3 π N-1 m 1 =1 1 m1 • (22) 
Therefore, using the Euler-Maclaurin summation formula [START_REF] Graham | Concrete Mathematics: A Foundation for Computer Science[END_REF] 1

N N-1 m 1 =1 h( π N m1) = 1 π π 0 h(x) dx - 1 2N h(π) + h(0) + π 12N 2 h (1) (π) -h (1) (0) + O( 1 N 4 ) ( 23 
)
where h is an indefinitely differentiable function, and since

π 0 f (x) dx = 2 ln( 2 π ), we obtain 1 N N-1 m 1 =1 f ( π N m1) = 2 π ln( 2 π )+ 1 N π - π 6N 2 1 6 - 1 π 2 +O( 1 N 4 )•
(24) It remains now to expand the second sum involved in (22), which can be recognized as the Harmonic series, that is [START_REF] Graham | Concrete Mathematics: A Foundation for Computer Science[END_REF], HN has the following asymptotic expansion

HN = N-1 m 1 =1 1 m 1 • According to
HN = ln(N ) + γ - 1 2N - 1 12N 2 + O( 1 N 4 ), ( 25 
)
where γ is the Euler 's constant (γ = 0.5772156649). By plugging (24) and ( 25) into (22), we find

Q1(N ) = √ 3 π ln(N ) + √ 3 π γ + ln( 2 π ) - √ 3π 72N 2 + O( 1 N 4 )• (26) 
C.2 Asymptotic expansion of Q2(N ) as N → ∞

Let g(x) be the function defined for all real numbers x between 0 and π as follows

g(x) =      1 + 1 3 sin 2 (x) - 1 
2 -1 sin(x) , x ∈]0, π[ 0, x = 0, π.

We can show that g is indefinitely differentiable, in particular g (1) (0) = -1 6 and g (1) (π) = Before evaluating Q3(N ), note that the terms corresponding to the values of m1 near 1 or N -1 contributes to Q3(N ) more significantly than the ones corresponding to the values of m1 near ⌊ N 2 ⌋ when N is large. Indeed, from [START_REF] Lima | Random walks on sensor networks[END_REF] we see that when m1 ≃ 1 or N -1, sin( π N m1) is close to 0 and |αm 1 (1)| close to 1. In this range, the summand of Q3(N ) diverges as N → ∞. However, when m1 is close to ⌊ N 2 ⌋, sin( π N m1) is close to 1 and αm 1 (1) close to 0, and hence, α N m 1 (1) vanishes exponentially to zero as N → ∞. Therefore, the summand of Q3(N ) decreases to zero faster than any power of 1 N and consequently can be neglected.

We can see also that the summand of Q3(N ) is symmetric about the N 2 -axis, that is, the (N -m1)-term equals to the m1-term. Therefore, by neglecting the N 2 -term only when N is even, Q3(N ) can be rewritten as

Q3(N ) = 2 √ 3 N ⌊ N -1 2 ⌋ m 1 =1
1 + 1 3 sin 2 ( π N m1)

-1 2 α N m 1 (1) cos(πm1) sin( π N m1) 1 -α N m 1 (1) cos(πm1) • (28) In order to approximate Q3(N ) when N is very large, we use a method pioneered by Laplace and described in [START_REF] Graham | Concrete Mathematics: A Foundation for Computer Science[END_REF]. It consists in breaking the sum into two disjoint ranges DN and TN . The summation over DN should be the dominant part, in the sense that it includes enough terms to determine the significant digits of the sum when N is very large. The summation over the other range TN should be just the tail end, which contributes little to the overall total. As the big contributions to Q3(N ) occur when m1 is small, we can consider DN as the range of small values of m1, and TN the range of large values of m1. In the following we construct the asymptotic expansion of Q3(N ) by separating out the dominant and the tail ranges, and then bounding the tail range contributions.

Let am 1 (N ) denote the summand involved in (28). By separating out the dominant and the tail ranges, Q3(N ) can be then expressed as

Q3(N ) = m 1 ∈D N am 1 (N ) + m 1 ∈T N am 1 (N ). (29) 
As long as m1 is held in the dominant range, πm N goes to zero as N → ∞. Therefore, am 1 (N ) can be expanded as This asymptotic expansion is valid as long as m1 ∈ DN and thus, it is allowed to take the summation of both sides of (30). Hence
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 1 Figure 1: Topological equivalence between the hexagon lattice and the square lattice with additional diagonal bond inserted in each fundamental square.
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 2 F ( r, s | z) and P ( r, s | z) are related to each other according to the relation
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 3 Figure 3: Mean system data gathering delay E(DN ) vs. cell size N for IEEE 802.15.4 enabled network nodes, and with an average packet size of 10 bytes.
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 84 Figure 4: Spatial distribution of the energy consumption based on the mean number of visits over a unit cell of size 15 × 15.
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 5 Figure 5: Maximum mean number of visits vs. cell size N .
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