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Biased Random Walk Model to Estimate
Routing Performance in Sensor Networks
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RSM, ENST Bretagne - email: xavier.lagrange @enst-bretdgn

Les réseaux de capteurs sans fils sont constitués d'un grambre de nceuds assujettis a de sévéres contraintes en
terme d’énergie, de capacité de traitement et de commtioic Dans ce contexte, afin de réduire la complexité, un
des défis majeurs rencontrés dans ce type de réseau aktuedes routes et la mise en ceuvre de schémas de routage
efficaces tout en minimisant la quantité d’'informatiorliséie sur I'état du systeme. De nombreux travaux ondiétu

ce compromis de facon qualitative ou grace a des sinmmgtiNous proposons un modele basé sur la théorie de la
marche aléatoire pour estimer analytiquement ce comgremconsidérant plus particulierement I'influence duéeg

de connaissance de I'état du systeme que possede un smeledtemps moyen de collecte dans un réseau de capteurs
sans fils.
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1 Introduction

A wireless sensor network (WSN) is formed by a large numbeaeokor nodes deployed over an extended
region. Sensor nodes, usually battery-operated, are siar cheap, and cannot offer plentiful resource.
The routing problem is an important issue to be considereel hecause it is significantly sensitive to the
previous constraints for two reasons. First, searchinggelspace of possible routes —derived from having
a large number of nodes— may prove computationally pratéfor low complexity devices such as sen-
sor nodes. Second, performing explicit route discovepgitecomputations and maintaining explicit state
information about available routes at the nodes is costlgrims of complexity and energy. Thus, the selec-
tion of a routing scheme depends on kmowledgeavailable at the network nodes and the communication
overhead that can be tolerated. Such knowledge providessmith a picture of the network that can be ex-
ploited to make decisions. There exist different routingrapches in this respect. tentralizedapproach,
each node is provided wiffall topology information, then the shortest path algorithmisamapplied. Large
networks with reasonably stable nodes over time, wherenaatous nodes do not know the full network
graph €é.g, the Internet), require distributedrouting approach. However, this approach induces signif-
icant communication overhead, which is problematic fogéascale networks with high constrainésd,
WSN). A localizedapproach, where nodes make decisions solely basguhial information available
from neighbors is rather suitable. These approaches lggdhe intuitive idea that the more knowledge is
available at the network nodes, the more efficient is theémgutcheme but against the complexity and the
energy expenditure.

Many research works have addressed this tradeoff but ooy & qualitative view or by means of simu-
lations [SB0O2]. In this paper we use the random walk theomyuantitatively estimate the influence of the
requisite knowledge on the routing efficiency in WSN. Thimistivated by the fact that making appropriate
decisions to forward data depends readily on the amounat# giformation a node holds. Thus, without
any state information, nodes woubtindly forward data. This results in a packet wandering from node to
node until reaching its destination. As analyzed in [FMLQfE routing problem becomes then a problem
of anunbiasedrandom walk taking place on a graph. However, if some stdtarimation is available at
nodes, the induced random walk wouldtbiasedwith a favored direction to enhance performance.
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Figure 1. (a) Torus lattices is formed by connecting the opposite ends of the squaredattiops are represented by
red arrows. (b) Mean data gathering delay as a function gbdiséionr, for different values ot and forN = 15.

We consider in this paper the case of a periodic lattice nd&twbfinite square cells, each containing
two kind of nodes: sensor and sink nodes. We choose this sistpicture because it fits well the actual
properties of some WSN (e.g., mesh or grid networks) whiledheseful to incorporate theoretical elements
to modelize the impact of the requisite knowledge on theingufficiency.

2 The Model: Definitions and Notation

Let ¢ denote a finite square cell of sibéx N. The envisioned network is then induced by replicatihg
by rigid translations specified by vectd\en, wherem e Z2. With a large number of cells, we can assume
that the formed network is infinite and hence, it is equivetera torus latticeg formed by connecting the
opposite ends of cell. Every noder € ¥ is labeled with(r1,r2), wherer; andry are integers such that
0<r1,rp <N—1. Ata given nodd, let p(r,3S) be a nonnegative real such thgd.p(r,3) = 1. This
defines a transition probability distribution over the ne@dé< at fixedr. When a packet reaches nate
the next hop to nodg occurs with probability (¥,S). The random sequence of nodes selected this way is
arandom walkon ¥, andp(r,3) is called thetransition functionof the random walk [Hug95]. By making
different assumptions on the topology of the underlyinguwoek and on constraints imposed p(t,3), we
are able to explore a large space of possible routing schemgmrticular, let us considéd sink nodes
corresponding to the setof nodess; = (0, j) wherej =0,--- ,N—1. SetC is called the gathering border.
The other nodes are membersffthe set of sensor nodes. The data generated by all senses acel
collected by the sink nodes without any specific mapping betwsensor nodes and sink nodes. At a given
sensor nodg, we assume that the next hop occurs only to the 4-nearesthmigwith probability% (1—¢)
to the right neighbor% € to the left neighbor (& € < 1), and%1 to either top or bottom neighbor (Fig. 1(a)).

Key probabilities from which main results can be derived By, ) the probability of being at node
3 after n hops, given that a packet has been issued at ripdedF,(r,3) the probability of arriving at
nodes for thefirst time on thenth hop, given that the packet started at néd& hey are called theode
occupation probabilityand thefirst-passage probabilityespectively. We make use in this paper of the
generating functioformalism to deal with a sequende, }neny by capturing all these coefficients into a
formal infinite series defined &(z) = y,_y cn 2" where the complex variableis small enough to ensure
the convergence of this serie€(z) is called the generating function associated With}ney. Thus, we
denote the generating functions associated ®itfi, ) andF,(7,3) asP(7,3/z) andF(T,3|z) respectively.
P(7,3/2z) andF (7,9|2) are related to each other according to a classical relaktmsively used in random
walk theory

P(r,3|z) = &<+ F(7,3|2)P(3,3|2), r,8e%. Q)

The proof of this relation is based on the law of total probgband can be found in [Hug95].
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3 Requisite Knowledge vs. Routing Efficiency

Before estimating analytically the influence of the redeisinowledge on the routing efficiency, let us
give an interpretation of parameterlf Hg denotes thentropyassociated with the transition probabilities
at a given sensor node, we can then whke= % — %(a log,(e) + (1—¢€)log,(1—¢€)). However, from
information theoryH, describes how much uncertainty (or knowledge) is carriec Isyngle transition.
Therefore, paramet@rcan be considered as an estimator of the amount of requisiiwlkdge available
at a given sensor node. Note that for % He is maximal which corresponds to an equally likely hops.
Otherwise, the uncertainty is lower, which correspondsdaditions with eavoreddirection leading to
performance enhancement.

3.1 Mean Data Gathering Delay: a Routing Efficiency Indicator

Thedata gathering delapf a packet issued from sensor nadis the time or the number of hops it takes
to reachC where it is trapped. This time is a random variable denotedy). We propose in the
following to evaluateée (DE(F)) , themeandata gathering delay, as an indicator of the routing effayeRor
that, letGn(F) be the probability that a packet issued from sensor fodél be trapped atC on thenth
hop. Therefore, in terms of probability notation we h&mD(F) = n} = Gy (7). If G(r|z) denotes the
generating function associated with (r'), E(De(F)) can be then expressed as

E(De(F)) = Z)”Gm = 0G(F2) /02 p-1- @)
n=
Let us now make5(T|z) explicit. Using the law of total probability, it can be pdsig to decompose
the event that a packet issued from sensor nodell be trapped atC on thenth hop, which has the
probability Gy (T), into theN mutually exclusive events that the packet arrives at thie sodes; for the
first time on thenth hop, which has the probabilif(7,3}). Thus, we obtailGn(7) = -5 Fa(7,3}). The
n-dependence can be eliminated from this equation by myiitiglboth sides by" and summing over alll
n. Therefore, we obtaifs(F|z) = 30 F(7,3j|2). However, from (1)F(7,3j|2) = P(7,3j[2)/P(3;,3[2).
Since a packet starting from sink nodenever leaves, we havé(sj,s;) = 1 for all n, which leads to
P(3j,3j|z) = 1/(1—2z). Hence, we obtain

N-1
G2 = (1-2) 5 P(r:82) ®)

J:
Montroll et al. [MS73] evaluated the discrete Fourier transform of the saga{P(7,3;|2)}; at points

0 <k <N -1. Remarking that the sum involved in (3) is nothing but thigaf this discrete Fourier
Transform at the origink= 0), (3) can be then rewritten as

fn_ fi N—ry _ N—ry
where
{ pr(z) _1:VI-4AEBE { AR —2(1-5)/(2-2)
p2(2) 2A(2) B(2) = z¢/(2-2).
By plugging (4) into (2), the mean data gathering delay casitoplified as
E(De(7)) —(2872_1)01—’\'%), for a#%,l. (5)

By expanding (5) close to=1/2 ande = 1, it can be deduced thEt(Ds(?)) is continuousforall G< e < 1.
We retrieve thaE (D ,(F)) = 2r1 (N —r1) andE (D1 (F)) = 2r1 respectively. Moreover, note that the value
of G(F|z) at pointz= 1 equals to unit, which represents the probability that &giissued from sensor node
T is ever trapped by". This means that the data gathering ensured by the randokrpnadess icertain
Remark also thaf (D1 _¢(F)) = E(De(N€ —T)), which means that the plots Bf( D¢ (F)) andE (D1—¢(T))

as functions of; are symmetric about the ax¥s= N/2. It suffices then to assume that2l< e < 1.
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3.2 Analysis

Let us now give a physical interpretation of (5). Indeed, & denote the displacement of a packet issued
from sensor nod& after nhops byMn(F), thenMp(F) = 3, H;(F) where the random vectd; (F)
represents the displacememtthe jth hop. Since we have the same transition probability distion over

all sensor nodes, thmeandisplacement aftar hops is given by (I\7I n(?)) = nfiwherefi denotes thenean
displacement on a single hop. Vecforepresents also the bias of the random walk and can be iatedor
as themeanvelocity of propagation of a packet. We hgve- % (1—2¢)@. Therefore, we deduce that for
1/2 < £ < 1 the negative direction of th&-axis is favored by the walk. In other word, foy2<e <1
packets are attracted by the random walk towards the gathbdrder. A packet issued from sensor node
T travels then the distanae before being trapped by the gathering border with a spgde: %(28— 1),
hence, the time required by this packet before being trappsinply the distance divided by the speed,
thatis, Z1/(2e — 1). This result could be retrieved from the first term of (5).

The impact of the requisite knowledge via the bias on the ndleda gathering delay is illustrated in Fig.
1(b). We see that the higher are the values@dwer entropy), the lower is the delay. Moreover, it turng o
that an attractive bias.€., 1/2 < € < 1) towards the gathering border accelerates the data gaitprocess
whereas a repulsive biaseg, 0 < € < 1/2) backwards the gathering border decelerates the datargah
process. The case ef= 1/2 (maximum entropy) corresponds to anbiasedwalk where no direction is
favored. This represents the worst case for the performafrtbe walk. Note also that for fixeglsuch that
1/2 < € < 1, the mean data gathering delay increases yitintil it reaches a maximum value from which
it decreases ag increases. This observation can be explained by the faiohvitiathe periodicity property
of the torus lattice, the gathering bordet £ 0) is replicated to infinity by rigid translations specifieg b
vectorsmNeé; wherem is an integer. In particular, the ax}¥ = N corresponds to a line of sink nodes.
Hence, whemy increases, the attractive effect of the bias is compensgstéiuke farness from the gathering
borderX = 0 until the nearness from the axX{s= N takes away and therefore, the mean data gathering
delay goes down again.

4 Conclusion

In this paper we have related quantitatively the degree ofvkedge to the routing performance and we
have studied to what extend the state information availabteetwork nodes can be minimized to reduce
the complexity while ensuring an efficient routing schemigisparadigm arises especially in the design of
WSN where the localized approach is extensively embraceéth thé aid of random walk theory, we have
confirmed analytically the intuitive result that the largfee amount of state information, the more efficient
the routing scheme. All details of this model will appearhe full version of this paper.
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