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Abstract 
 

The scope of this paper is the guaranteed fitting of 

specified types of quadratic surfaces to scattered 3D point 

clouds. Since we chose quadrics to account for articular 

surfaces of various shapes in medical images, the models 

thus estimated usefully extract global symmetry-related 

intrinsic features in human joints: centers, axes, extremal 

curvatures. The unified type-enforcing method is based on 

a constrained weighted least-squares minimization of 

algebraic residuals which uses a robust and bias-

corrected metric. Provided that at most one quadratic 

constraint is involved, every step produces closed-form 

eigenvector solutions. In this framework, guaranteeing the 

occurrence of 3D primitives of certain types among this 

eigendecomposition is not a straightforward transcription 

of the priorly handled 2D case. To explore possibilities, 

we re-exploit a mapping to a 2D space called the Quadric 

Shape Map (QSM) where the influence of any constraint 

on shape and type can in fact be studied visually. As a 

result, we provide a new enforceable quadratic constraint 

that practically ensures types such as hyperboloids, which 

helps characterize saddle-like articular surfaces. Appli-

cation to a database shows how this guarantee is needed 

to coherently extract the center and axes of the ankle joint. 

 

1. Context of characterization with prior 

Previous works on the characterization of articular bone 

surfaces have focused mostly on local features. They have 

followed a piecewise patch approach, using various sorts 

of free-form surfaces, such as the popular approximation 

B-splines [1]. Along with Finite-Element Models, these 

continuous parametrical representations aim to accurately 

and finely reproduce bone surfaces, without restraining or 

modeling in terms of shape. In contrast, our purpose is to 

extract significant overall symmetries in 3D articular 

surfaces. Given that these surfaces first grew coherently 

during morphogenesis and get smoothed daily by a 

person’s repeated motions, the extracted intrinsic 

reference frame may give us additional meaningful insight 

into the functionality that is made possible in a joint. We 

therefore follow a model-driven approach. Our choice of 

quadrics as models is primarily motivated by their two 

important strengths. First, such algebraic surfaces meet 

our desire for global characterization. Secondly, the 

second-order information that they magnify provides us 

with prime symmetries. Such a model is deliberately 

reductive with respect to anatomical surfaces. 

Nevertheless, the generic implicit quadratic model is rich, 

since it subdivides into various types of primitives, which 

can be relevant to given articular surfaces. For instance, in 

the hip ball-and-socket joint, an ellipsoid –possibly a 

sphere– is used to support the analysis of a necrotic 

femoral head, as exemplified in [2], whereas in the elbow 

hinge joint, the humeral trochlea may be best 

characterized by a hyperboloid of one sheet. 

Besides, published works performing algebraic surface 

fitting mostly address applications in computer vision, 

pattern recognition or reverse engineering [3, 4, 5, 6, 7, 8, 

9, 10]. They deal with 3D manufactured industrial objects 

and the feature to be retrieved within the acquired data is 

in most cases their exact designed shape. When relying on 

2D images, it becomes appropriate to specifically extract 

ellipses and lines, for instance, since they are perspective 

projections of cylindrical, circular and straight parts of the 

objects [7, 8, 5, 6, and reviews therein]. If 3D samples are 

available, direct explicit registration with the known shape 

model will usually be preferred (pose estimation). In 

contrast, the objects we wish to characterize are bone 

surfaces involved in skeletal joints. They result from 

natural anatomical shaping, which fulfills adaptation in 

particular at the scale of species, which evolve in their 

environment, and individuals, who grow from embryos, 

work and practice sport in their surroundings, who get old 

and also recover from traumatisms or orthopedic surgery. 

Thus, there is no ground truth for a suitable quadric 

primitive, but only possible knowledge-based expectations 

about its relevant type. Though conceptually the context is 

different from usual applications, we share a common 

background of estimation methodology. As pointed out, a 

3D fitting scheme is in particular required in the field of 

application to natural shape characterization. An 

accumulator-based approach is then impracticable due to 

the parameter space dimension. Instead, minimizing an 
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objective function using robust techniques is appropriate. 

However, the current challenge is about moving on to 3D 

in regards to constraining a specified type. 

In this paper, we investigate possibilities to guarantee 

specified types, even when it may seem irrelevant, due to: 

a) the occurrence of pathological or degraded structures, 

while a repeatable characterization and comparable results 

are needed; or b) our desire to provide experts with an 

option that would incorporate their knowledge. 

Throughout the literature, we can delineate several 

approaches to obtain the expected type of quadratic curve 

or surface. Generic non-typologically constrained quadric 

fitting might be successful, provided the data shape is 

already close enough to a quadric of the expected type. 

Yet, in our case, the initial shape may not allow a good 

model match. Choosing among output eigen-solutions [4, 

2], taking advantage of the deformation bias induced by 

the normalization factor [5], or using curvature weights 

[6], may help. Nevertheless all of these techniques provide 

no guarantee about the type of quadric; neither do 

iterative methods with rejection testing following 

parameter nudging [11] or data point selection [5]. The 

tuning of a specialized parameterization for each particular 

type of quadric [9, 10] can provide some guarantee. 

However, this implies the loss of the closed-form linearity 

at each step; moreover, it lacks practical genericity. The 

only way to keep to direct resolution is to rely on algebraic 

constraints, through investigating extensions of the 

innovation that A.W. Fitzgibbon, M. Pilu and R.B. Fisher 

made in the mid-nineties to guarantee an ellipse at fitting 

conic curves to any input 2D data [7]. To our knowledge, 

so far only the ellipsoid type has been addressed in this 

way [12, 13]. 

Recently, we have revisited the ellipsoid-specific 

constraint lately provided by Q. Li and J.G. Griffiths [12] 

as a robustly enforceable ellipsoid-guarantee [13]. To this 

end, we have exploited the bi-dimensional diagram called 

the Quadric Shape Map (QSM) which we had previously 

introduced with the distinct purpose of analyzing and 

comparing the output primitives of a fitting procedure [2]. 

Here, we propose to re-exploit this meaningful repre-

sentation for a comprehensive exploration of all constraint 

possibilities, which justifies a new typological guarantee. 

Note that the model through the intermediary of which 

we extract features is simple. Consequently, the 

expectable local discrepancies, potentially exaggerated by 

the added constraining, must be handled during the fitting 

process by robust methods which possibly reject some 

outliers [2, 8, 13]. Furthermore, as regards data, usual 

errors are to occur while they are acquired, preprocessed 

and segmented. The input point cloud may be sparse and 

unevenly scattered. 

The outline of this paper is as follows. In section §2, we 

provide a synthetic description of the constrained robust 

fitting process, as our chosen methodological framework. 

In section §3, we provide helpful mathematical tools: 

geometric invariants and the Quadric Shape Map which 

we briefly present as a visualization tool from our new 

perspective. On this basis, we recall how to identify the 

type of a fitted quadric without ambiguity. And in section 

§4, the QSM lets us explore in detail how to practically 

guarantee that a specified type of quadric is output through 

a chosen quadratic constraint in the fitting process. This 

leads us to derive and study a new constraint which is 

specific to types of quadrics that have at least one hyper-

bolic section, such as hyperboloids. In section §5 we apply 

it to available anthropological ankle samples, not to lessen 

the full relevance of our method to medically involved 

saddle-like surfaces. Lastly we conclude with a discussion. 

2. Methodology for constrained robust 

quadric fitting 

We use a transcription to the case of quadric surfaces in 

3D, like in [13], of the unified constrained least-square 

framework earlier introduced for 2D conic fitting by [7, 8]. 

2.1. Minimization problem statement 

An exact quadric surface is defined implicitly in the 3D 

space as the zero-level set of a second-order polynomial: 

      
f : x(x, y, z)! f (a, x) = a

T
! ,       (1) 

with the parameter vector a and the basis vector 
 
! : 

a = [axx ayy azz ayz azx axy ax ay az a1]
T
 ;    (2) 
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For a given cloud of n data points pi = [xi yi zi]
T
 and the 

associated regression vectors !i, the estimate of a is sought 

for, that defines the most globally relevant quadric with 

derived axes, center and semi-axes, and a revealed type. 

In what follows, our methodological choices: a) of the 

metric considered, b) of the kind of constraint enforced 

and c) of the core estimation technique, are all related. 

They are driven by our main objectives: 1) simplicity 

(respect of the genericity of the model, no computational 

complexity); 2) option of typological guarantee to 

incorporate prior knowledge; 3) robustness to the expected 

local inadequacies, be they inherent of the global and 

constrained model or/and due to upstream errors in the 

analysis workflow; 4) semi-interactive scenario (few 

intuitive parameters, intuitive displayable outputs). 

To be able to use a closed-form linear method, we take 

the squares of the residuals f(a,pi) as straightforward 

measures of errors. Yet we use a robust redescending M-

estimator (Tukey’s biweight [8]) and correct the first order 

of the bias induced by not using the Euclidean distances  

[2]. The implied nonlinear minimization is carried out by a 

classical Iterative Reweighted Least-Square (IRLS) 

process, via successive linear steps. Each step minimizes 

the residual !
2
, where the weighted scatter matrix Sw with 
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2.2. Properties of enforceable constraints 

At each fitting step, even when no typological 

constraint is required on the output, it is necessary to scale 

the parameter vector by a normalization factor in order to 

avoid the trivial zero solution a=010. Provided at most one 

quadratic constraint is enforced, a linear direct closed-

form resolution is possible, as described next in §2.3. It is 

expressed via a non homogeneous equality with a symme-

tric constraint matrix C and a non-zero scalar constant c: 

a
T
Ca = c, with 

    

C =

C
q

0
6!4

0
4!6

0
4!4

"

#

$$$$$

%

&

''''''
.     (5) 

Profitably, such a constraint a) is invariant under 

orientation-preserving isometries of the data and 

proportional to coordinate scaling since it only involves 

the coefficients related to the quadric shape in f (see §3.1); 

b) can be given a typological meaning. In the generic case 

without prior knowledge, the normalizing constraint 

ideally bears no singularities among quadrics [3, 2]. In 

contrast, a specific constraint attempts to be discriminating 

among types of quadrics; how we choose the specific 

nonsingular 6!6 submatrix Cq and constant c is in §4.2. 

2.3. Eigenvector-based core estimation technique 

With a Lagrange multiplier ", the Lagrangian reads: 

L(a,") = a
T
Swa + "(c–a

T
Ca) .       (6) 

At each linear fitting step, the first-order optimality 

necessary condition on the Lagrangian (6) reads: 

Swa = "Ca .             (7) 

Thus a minimizer (",a) must be an eigenvalue–eigenvector 

solution of the generalized eigenvalue problem (7). In 

addition, we can simply derive the residual chi-square (4): 

!
2
 = a

T
Swa = "c .           (8) 

Using Sylvester’s Law of inertia, A.W. Fitzgibbon, 

M. Pilu and R.B. Fisher showed that the generalized 

eigenvalues of the problem (7) have exactly the same 

signs as the eigenvalues of the constraint matrix C, up to 

permutation [7]. Consequently, the weighted least-square 

solution minimizing (4) subject to the quadratic constraint 

(5) is the eigenvector a of the problem (7) associated with 

the eigenvalue " that is simultaneously: a) the sign of c (or 

equivalently such that a
T
Ca is the sign of c in (5) [8]); and 

b) closest to zero in absolute value to minimize the resi-

dual !
2
 (8). Yet, our bone shape characterization scheme 

allows the anatomy expert to discard that, and 

interactively choose the relevant primitive among the 6 

eigen outputs. 

3. Distinguishing types of quadrics 

3.1. Tools to build and understand constraints 

The functional (1) defining a quadric may be expressed 

as an affine quadratic form: 

      
f :x! f a, x( ) = x

T
!x + l

T
x + k ,     (9) 

where the symmetric block matrix !
h
 represents the 

corresponding homogeneous quadratic form: 
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It can be shown easily that both the homogeneous 
quadratic form and the quadratic form 

    
x! x

T
!x  will 

not be affected by orientation-preserving similarities on 
the quadric, namely rotations, translations, and scalings, 
unlike both the linear form    x! l

T
x  and the constant 

form    x! k . As a consequence, the former two quadratic 
forms are uniquely attached to the quadric considered, 
which can therefore be classified among different types 
according to their algebraic characteristics. 

The eigen decomposition of the symmetric matrix ! 

yields its –all real– eigenvalues #i that define the shape of 

the quadric, and its eigenvectors which are the three 

orthogonal axes of the quadric. The coefficients of the 

characteristic polynomial of ! are combinations of these 

eigenvalues and are therefore invariant under changes of 

direct orthonormal bases. With respect to !, they are 

namely its trace, the sum denoted "det
P

2(!) of its three 

principal second-order minors, and its determinant: 

#1 + #2 + #3 = tr(!) = axx + ayy + azz      
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#1 #2 #3 = det(!) .         (11) 

In summary, we have an invariant of every order with 

respect to the parameter vector a: the first is linear, the 

second is quadratic, and the third is cubic. They make up a 

generating basis for all symmetric polynomials of order up 

to three in the eigenvalues #i of !. Let us also consider the 

base-independent quartic determinant of the homogeneous 

quadratic form in (10): det(!
h
). As well as helping output 

type identification (§3.2), these invariants help us build 

specific input constraints (§4), since in this last case one 

cannot distinguish the role played by each eigenvalue of !. 
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Figure 1: Plots in the QSM (12, 13, Table 1) [2] of the oriented 

zero-level sets of the 3 basal invariants (11): i. the trace, ii. the 

sum of second-order minors, and iii. the determinant, of the ma-

trix ! representing the quadratic form attached to every quadric 
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In order to search for enforceable constraints based on 

such quantities and study their influence, we re-exploit the 

bi-dimensional diagram called the Quadric Shape Map 

(QSM) which was introduced originally for mensuration 

analysis of output primitives [2]. As reproduced in the 

background of Fig.1, this 2D layout locates characteristic 

zones for the useful types of quadrics, and also spots 

peculiar shapes such as ones of revolution (see Table 1). 

The QSM helpfully allows interpretation in terms of shape 

continuity and typological transitions, yet it is not to be 

read linearly. The two coordinate axes ($,%) express the 

relative ratios of two eigenvalues with respect to the 

numerically highest third one for every considered 3D 

quadric. The QSM is based on mere unrestrictive 

conventions with respect to the eigenvalues of !: 

#1 # #2 # #3  and  #1 > 0 .       (12) 

The ratios are further defined as follows: 

#2 = $ #1 and #3 = % #1 , with 1 # $ # % .   (13) 

For the purpose of constraint studying only, note that, 

contrary to [2], the quadric surface normal vectors are not 

outward-pointing by convention. The lower left quadrant 

is thus exceptionally not grayed out in Fig.1 (nor in Fig.2). 

Each point in the QSM carries the information of the 

type and anisotropy of the associated quadrics, which is 

now ideal for designing constraints regardless of pose and 

scale. It is actually both a quantitative and intuitive 

representation that is very analogous in significance to the 

1D continuous scale of eccentricity for 2D conics. Given 

any function of the eigenvalues of !, we can assess its 

specificity with respect to one or a few types of quadrics 

by plotting in the QSM its zero-level set or its sign map. 

For instance, Fig.1 displays the invariants listed in §3.1. It 

gets clear that the sign of tr(!) is not a reliable criterion 

when classifying types of quadrics (see §3.2), whereas the 

sign of det(!) does match the discriminating boundaries 

between groups of types. However, if each type needs to 

be identified, then !
h
 must further be taken into account. 

3.2. Identifying each type of quadric 

Out of the 17 types in the classification of quadrics [14], 

in Table 2 we focus only on the 9 types of quadrics that 

may be reliable primitives of extraction. This is useful for 

identifying the particular type of a quadric corresponding 

to any parameter vector a output by the fitting algorithm. 

Remark. As a notion, the inside of a quadric surface is 

naturally defined as lying within the convexity of each 

sheet. Now, mathematically, the normals of the surface are 

given by the gradient of the functional (9). These can thus 

be either outward-pointing (
out

) or inward-pointing (
in
). 

Parameter vector –a defines the same quadric in terms of 

implicit zero set as a does, yet with opposite surface 

orientation. The point is that, not only this changes the sign 

of tr(!), but also the sign of the cubic determinant: in 3D, 

det(–!) = –det(!). Thus to account for the quadric surface 

orientation, we define the flag $ as a unit root which equals 

–1 if the normals are inward-pointing and +1 otherwise. 

4. Enforcing specified types of quadrics 

Now we focus on guaranteeing the type of quadric at 

each closed-form fitting step of the iterated process. 

In the 2D case of conic sections, proper conic types can 

be discriminated according to the sign of det(!), which is 

a quadratic quantity. A. Fitzgibbon et al. had the idea of 

merging such an inequality constraint with the needed 

normalization factor [7]. By enforcing 4det(!)=+1, they 

made sure that an ellipse would be obtained [7]. Similarly, 

hyperbolas can be found in any data by enforcing 

4det(!)=–1. (Let us point out that this also allows pairs of 

Table 1: Abbreviations for the useful types of quadrics. In 

addition, rev advises a quadric is of revolution around some axis; 
out and in show whether normals are outward- or inward-pointing 

E Ellipsoid 

H1, H2, C Hyperboloid of 1 sheet, of 2 sheets, Cone 

EP, HP Elliptic, Hyperbolic Paraboloid 

EC, HC, PC Elliptic, Hyperbolic, Parabolic Cylinder 

 

 

 

Table 2: Classification of the real types of quadrics (Table 1) 
according to the determinants of affine and homogenous quadra-

tic forms (13, 10), and the normals-orientation flag & (see §3.2) 

 det(!
h
) < 0 det(!

h
) > 0 det(!

h
) = 0 

det(&!) > 0 E – (single point) 

det(&!) < 0 H2 H1 C 

det(!) = 0 EP HP 
EC, HC, PC 

(or degenerated) 

 



 

 

secant lines, which are likely to be found, unlike the zero-

radius ellipse.) Both cases are expressed by involving the 

same 3!3 constraint submatrix in the quadratic constraint 

(5) [7, 8]. That matrix has exactly one positive and two 

negative eigenvalues. As a result, according to the 

inference in §2.3, a single ellipse is selected by requesting 

c=1, while two hyperbolas are very likely to be selected by 

requesting c=–1. As for parabolas, they correspond to the 

singularities of such a scaling, and are thus avoided. As a 

side effect, the shape of the fitted ellipse and hyperbolas is 

biased towards lower and higher eccentricity, respectively. 

The extension of this previous approach to the 3D case 

of quadratic surfaces is not straightforward. The main 

issue is the third order of det(!): enforcing det(!)=+1 for 

instance falls outside the framework of closed-form least 

squares. In addition, in the 3D case the sign of det(!) gets 

changed according to the unknown orientation of the 

quadric normals (see §3.2). For instance, det(!) is positive 

both for an outward-pointing E and for an inward-pointing 

H1 (Fig.1). Moreover, if further discrimination is needed 

between types, for instance between H1 and H2, the 

quartic det(!
h
) must also become involved somehow, 

whereas this is not an issue for ellipsoid guaranteeing. 

First solving the problem subject to only one constraint 

and testing afterwards if the output meets the second 

constraint, as performed in [11] for ellipsoid fitting, cannot 

provide the user with a guarantee. To keep to the 

framework of robust closed-form eigenvalue resolution as 

in §2, we need to stick to a single type-guaranteeing 

quadratic constraint, like in [13] in the case of ellipsoid 

specificity. We now describe a way to follow such a track. 

4.1. Exploring enforceable constraints on quadrics 

In this work, we intentionally investigate all 

possibilities of enforceable quadratic constraints. To this 

end, we have logically devised a combination of the first 

two symmetric invariants (11), by introducing the two 

scalars # and ': 

c#,'(!) = # "det
P

2(!) + ' tr(!)
2
           

= #1
2
 (' $

2
 + ' %

2
 + (#–2)($%+%+$) + ') .   (14) 

Thus, for ' = –1, this turns into the quantity considered 
in [13]. In order to explore exhaustively the entire research 
space, one actually just needs to consider: –this non-zero 
case when ' = –1, while having the parameter # vary; –in 
addition, the zero case ' = 0 with for instance #=+1. For 
simplicity we shall further denote them c#(!) and c+%(!). 

We have observed that the sign of the quantity c#(!) 
(14) depends on the coordinates $ and % through an affine 
quadratic form of known coefficients. In particular, its 
zero-set Z# is a conic curve in the QSM, which we have 
geometrically characterized and plotted in Fig.2, according 
to the numerical value of parameter #. As can be noticed, 
every conic Z# is diagonally aligned. As for its 2D conic 
type, we report, as can be followed in Fig.2, that: 

& when #<0, Z# is an outward-pointing hyperbola; 

& for #=0, Z# is a pair of coincident lines (coincident 

with the kernel of the trace in Fig.1.i); 

& when #>0, Z# is inward-pointing. Moreover, as # goes 

on further increasing, its shape evolves in the QSM: 

' Z# is an imaginary ellipse when #<3 (since c2 is 

always negative, non-specific constraint c2(!) = –3 

can be used as the normalization factor [3, 6, 2]); 

' Z# appears in the QSM as single point (1,1) for #=3, 

' then grows as a real ellipse enclosing (1,1) when #>3, 

' which opens into a parabola for #=4; 

' then, when #>4, Z# becomes a hyperbola, which 

tends to be the rectangular Z+% as # further increases 

towards +% (getting close to the curve in Fig.1.ii). 

Now, in the QSM in Fig.2, we can determine whether a 

given quadric Q0 satisfies a constraint on the sign of c#(!0) 

by checking whether the associated point ($0,%0) is inside 

or outside the oriented curve Z#. One can now observe 

that, in this parameterized curve network, the only curves 

Z# that can enclose a region within a type-characteristic 

zone in the QSM are those for 3(#(4, which we have 

reported in [13] thus shedding a new light on the condition 

proposed in [12]. Best with #=4, this leads to a sufficient 

condition guaranteeing at least one output ellipsoid E, 

which is yet limited since flat-shaped ellipsoids are out of 

guarantee, and restrictive due to the singularities 

associated with the points along Z4 [13]. We have used 

this constraint to help characterize the complex wrist joint. 

4.2. A new constraint to study saddle-like shapes 

Now, at seeking specificity to other types, we have found 

that another similar constraint is enforceable. There is no 

other contour enclosing a single characteristic zone; 

Figure 2: The zero-set Z# of constrainable quadratic c#(!) (14), 

plotted for several significant values of parameter # (§4.1) in the 

QSM;  Z+% encloses the blue-dotted region, yielding a constraint 
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thus, one can try to enclose several characteristic zones. In 

Fig.1 and Fig.2, it can be noticed that the constraint 

c+%(!)<0, that is "det
P

2(!)<0, is a sufficient condition for 

the quadric to be of one of the types H1, H2, C, HP, and 

HC. These are exactly the types of quadrics that intersect 

at least one plane in a hyperbola (let us denote this 

character ‘H’). Again it is a sufficient condition for the 

quadric to be among this family, yet not with any shape. A 

subset of hyperboloids is then not included in the 

guarantee. These are associated with some point located on 

the non blue-dotted outside of the branches of Z+% in the 

QSM, e.g. in the right upper corner of the H1/C/H2-zone 

(then the absolute value of the two positive eigenvalues #1 

and #2 of ! is relatively high with respect to the one of the 

negative #3 associated with the red axis). As for shape, the 

hyperboloids in this latter particular case (Fig.2) are rather 

elongated ones (each semi-axis of a quadric is proportional 

to the square root of the absolute reciprocal of the resp. #i). 

Meanwhile, all HP and HC are included in the guarantee. 

Fig.2 also shows that, as soon as # is finite, the 

constraint c#(!)<0 no longer guarantees the H character 

since the curve Z# then encloses other types of quadrics in 

the QSM (namely PC, EC, EP, E). 

N.B. It can be noticed in Fig.2 that the {$=0, %<0} demi-

axis splits the lower half-plane of the QSM into the lower 

left and right quadrant associated with inward-pointing 

and outward-pointing quadric surfaces respectively. Given 

a point for instance ( $0
in
, %0

in
 ) in the lower left-hand 

quadrant, the coordinates of the dual point in the lower 

right-hand quadrant that is associated with the very same 

hyperboloid or cone having outward-pointing normals are: 

( $0
out

, %0
out

 ) = ( $0
in
/%0

in
, 1/%0

in
 ). This sort of coordinate-

dependent central dilation formula of center (0,–1) and 

negative factor 1/%0
in

 holds reciprocally. It can be checked 

that, when a H1/C/H2 meets the symmetric quadratic 

constraint, so does its oppositely oriented dual in the QSM. 
In the practical estimation, the chosen constraint 

"det
P

2(!)<0 is merged with the normalization constraint 
in the quadratic constraint (5) by setting c = –1 and 
enforcing the equality constraint: 

"det
P

2(!) = –1 .        (15) 

The 6!6 nonsingular constraint submatrix involved in the 

quadratic constraint (5) is then (I3 the 3!3 identity matrix): 

    

C
q

=

0 1

2

1

2
1

2
0 1

2
1

2

1

2
0

0
3!3

0
3!3

" 1

4
I

3

#

$

%%%%%%%%%%%%%

&

'

(((((((((((((((

.      (16) 

This matrix has 2 multiple negative and 1 simple positive 

eigenvalues. As can be inferred from Sylvester’s Law of 

inertia and Fig.2, the specificity-enforcing constraint is 

satisfied by the 5 eigenvectors associated with either 

negative eigenvalue of Cq (satisfying c#(!) = –1), and 

ensures that these yield solutions from among H1, H2, C, 

HP, HC. Meanwhile, no guarantee is given about the type 

of the quadric implied by the sixth output parameter eigen-

vector of (7) that meets the opposite constraint c#(!)=+1. 

Nearly any quadric might be output, save HP, HC and PC: 

say E, PE, CE or even elongated H1 / C / H2. As a matter 

of fact, this method thus yields at least five primitives with 

H character. If an elongated hyperboloid is to definitely 

suit the input data, then it is probable –yet not guaranteed– 

that it will be output, associated with a point on the outside 

of Z+%. In this case, it may still be interactively selected by 

the operator among the output eigendecomposition. 

In addition, the shape of the guaranteed H-type quadrics 

(and of all fitted primitives) tends to qualitatively keep 

away from the shape of all the repulsive singularities of the 

implied normalization equality constraint (|"det
P

2(!)|=1) 

Figure 4: Comparative superimposition of extracted global 
features with vs. without prior knowledge from an easy talus 

bone: main orientation and curvature centers actually coincide 
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Figure 3: Characterization of the trochlea groove of a proble-

matic talus bone (ankle), both in 3D space and in the QSM [2]: 

–Q) helpless output primitives of direct fitting without typo-

logical constraint, featuring a borderline E and an irrelevant H1; 

–H) relevant H1 fit from enforcing prior-knowledge, further 

refined through robust IRLS (converging tails in QSM), 

providing: articular symmetry axes (R/G/B) joining at symmetry 

center, extremal curvature radii and centers (green pins), final 
influence weight colorwash map (hue and value are proportional 

to the fitting goodness at inlying points, outliers are left white) 
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which are associated with points along the curve Z+%. For 

instance, the outputs avoid resembling parabolic cylinders 

PC (associated with the origin in the QSM), as well as all 

the rather elongated hyperboloids and cones that are 

associated with every point (1/m,–1/(m+1)) and its dual, 

where m is a positive integer, including the very ones of 

revolution associated with point (1,–)) in the QSM (or its 

dual (–2,–2) alike). Also, primitives associated with points 

in the vicinity of the former points are difficult to fit in 

practice. The output hyperboloids are to be finally less 

elongated than the point cloud data actually looks like. 

5. Application to an ankle database 

This new type-guaranteeing constraint (15) that we have 

introduced happens to be especially suitable to guide the 

characterization of articular surfaces that are convex along 

one direction and concave along another: for instance, 

trochleae involved in the three human hinge (gynglimus) 

joints –via expectable types H1 or C–, or surfaces 

involved in the three human saddle joints achieving a 

universal joint biomechanical liaison (via type PH). The 

trochlear articular surface of the talus bone is involved in 

the 1-degree-of-freedom flexion–extension motion of the 

ankle joint, which orients the foot in a nearly sagittal 

plane. It is highly convex in this plane, while being 

slightly concave transversally. We here characterize the 

‘V’ groove part of its usually smoothed ‘*’ profile. 

Features of interest to be extracted with respect to the 

trochlea are: –the plane of its groove and the 

corresponding rotation axis; –its angular extent and 

longitudinal curvature; –the re-questioned circularity and 

locations of extremal curvature. 

We have applied this type-enforceable scheme to an 

available database of anthropological talus bone samples: 

10 from Homo Neanderthalensis, 17 from medieval Homo 

Sapiens. Note the high variability of the talus, already 

among modern human beings, yet to be quantified. The 

dry bone samples were digitized with CT, segmented, 

scaled to a normalized volume, and initially aligned based 

on inertia axes. As a dual step upstream of our 

characterization, the groove surface of the talocrural 

trochlea was then selected semi-interactively within the 

talus surface, based on the local Gaussian curvature 

hierarchized information [15]. We have processed the 

resulting point cloud data only. 

Essentially because of the bad conservation of certain 

samples, prior knowledge has proved needed since generic 

fits fail to ensure a stable realistic axis extraction (Fig.3, Q 

vs. H). The a priori knowledge is about the morpho-

functional class as a hinge joint. In this case a reliable 

characterization is provided by a H1 fit, helped or not. Our 

target is the repeatability of a pertinent and comparable 

characterization from one sample to the next. Thus we 

coherently apply the same type-guaranteed fitting, even to 

easy the samples that could have been characterized 

without prior knowledge. As a consequence, for these 

cases we need to assess the bias implied by over-imposing 

the H-type prior compared with pure generic (Q) fitting, 
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Figure 5: Prior-knowledge-driven comparative characterization of the trochlea groove in the database of all 10 talus samples of Homo 

Neanderthalensis (N) and all 17 talus samples of Homo Sapiens (S): extracted intrinsic symmetry-axis 3D frames superimposed in 

superior and medial views (a & b); accumulated eigendecompositions in the QSM, providing consistent mensuration signatures (c) 



 

 

as exemplified in Fig. 4. So far, only a slight difference of 

orientation in coincident near-sagittal planes is observed, 

and the extremal curvature centers do coincide. The results 

of the homogeneous processing of the whole database 

offer a differentiation between the two species (Fig.5). It is 

remarkable to see: a) the pose consistency of the intrinsic 

frames; b) the coherent clusters appearing as true 

comparable signatures in the QSM. Besides, the absence 

of points near boundaries refutes the usually expected 

circularity in the longitudinal plane of the trochlea: e.g. 

curvature radii are shorter along anteroposterior axis than 

vertically (cf. Fig.4.c). In fact, as shown by the orientation 

of the blue and green axes, whereas for Homo 

Neanderthalensis the curvature level is balanced from 

back to front in the near-sagittal intrinsic global-symmetry 

plane (Fig.5.N.b), the anterior portion (ant.) of the groove 

of the Homo Sapiens talus trochlea is more curved than its 

posterior part (post. Fig.5.S.b). This confirms kinematical 

results of a recent biomechanical study which performed 

passive motion of half a dozen of specimen ankle from 

modern humans [16]. 

Aside from such an anthropologic challenge of inferring 

the gait motion and standing posture from the analysis of 

shape only –sometimes poorly conserved–, this method is 

also of high clinical relevance, especially providing centers 

and axes for prosthetics pose and design. The implemented 

tool is ready to be used without modification to carry out 

the study of some in vivo database, which promises to be 

interesting on healthy and pathological talus bones. This 

can be applied on point clouds stemming from noisy 

preprocessed volumetric images, but also from exposed 

joint palpation. Furthermore, if kinematic information is 

available in terms of helical axes, the extracted intrinsic 

frame here is to be a privileged viewpoint for its display. 

6. Discussion and perspectives 

In this feasibility study we have utilized the Quadric 

Shape Map as a convenient 2D diagram to explore, devise 

and study enforceable type-guaranteeing constraints when 

fitting quadrics to point data. As a result, we propose one 

new quadratic constraint that enforces outputs to be among 

the hyperbolic-section ‘H’ family, including hyperboloids. 

It comes in addition to the available ellipsoid-guaranteeing 

constraint. It is less exclusive, being specific to a group of 

types of quadrics, without more precision. However, in 

practice, a relevant primitive of the expected type has so 

far always occurred in the output eigendecomposition. The 

only ambiguity we have encountered is outputs of type H1 

instead of HP at the thumb, both being saddle-like types. 

This tool might be used for other applications to help 

retrieve H2 / HC types. A more critical issue is the limited-

ness or even restrictiveness of the guaranteeing constraints 

against certain mensurations, due to the set of singularities 

crossing through the QSM research space. This should be 

experimentally assessed on natural and corrupted data. 

Unified closed-form linearity is a methodological feature 

that we have valued so far and, as we have proved, the 

framework is then limiting as regards possibilities of 

typological constraints. Sharper enforcement of separate 

types (including cones and cylinders) remains in prospect. 

We also intend to focus on the refinement of the robust 

norm. In a way, as it is, some localized discriminating 

information is additionally conveyed via the point weights 

distributed by the M-estimator. Handling this information 

by patches of points instead of individually is likely to help 

significantly the eigenprimitive extraction within poorly 

segmented or pathological structures. It may further reveal 

shape as a print of function and as a footprint of evolution. 
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