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Classical contact detection algorithms for 3D DEM simulations: drawbacks and
solutions.
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Abstract

The present paper sheds new light on ongoing drawbacks of three classical algorithms dedicated to initial contact
detection between overlapping convex polyhedra, (i) Cundall’s common plane, (ii) Nezami’s fast common plane
and (iii) Gilbert-Johnson-Keerthi’s algorithm (GJK). Solutions to these drawbacks are suggested and implemented
into revised versions of those three algorithms, which are further benchmarked for accuracy and speed using nine
overlapping contact situations. The benchmarking results show that the revised version of GJK, called GJK − T D,
and Nezami (revised) return values of the contact normal components and overlap depth which are identical to machine
precision, whereas Cundall (revised) results differ beyond the ninth decimal place. Furthermore, for a given contact
situation, GJK-TD returns those values within a few tens of microseconds on average, whereas Nezami (revised) and
Cundall (revised) are respectively 6 and 65 times more computationally intense. It is believed that the robustness and
efficiency of GJK-TD will boost its use into DEM simulations, all the more that this versatile algorithm may easily be
customized to detect contact between convex polyhedra and spheroid particles.

1. Introduction

Discrete Element Methods (DEM) are widely used techniques to perform numerical simulations of granular as-
semblies aiming at investigating their flow behaviour [1, 2] or packing properties [3, 4] to mention just a few. Among
existing literature, most studies simulate granular assemblies of spherical particles [5, 6, 7, 1, 3], whereas non-
spherical particles have only recently began to be simulated using ellipsoids [8], spherocylinders [9], tetrahedra [10],
or other polyhedra [11, 12, 13, 14], despite their large presence in natural (e.g. ice debris, rocks) or manufactured state
(e.g. sugar grains, crushed sand particles).

A well-known limitation of DEM applied to polyhedra is the lengthy calculation time needed to simulate large
granular assemblies, say over a few tens of thousands particles, and still such assemblies only represent negligible
quantities of granular materials (e.g. a 5 ml teaspoon already contains about 50000 powder sugar grains of size 0.5
mm). A significant share of this calculation time is dedicated to contacts detection. Indeed, though simple between
two spheres - contact occurs when their centers are separated by a distance smaller than the sum of their radii -
contacts detection between non-spherical particles is generally much more complex, hence more time-consuming.
From the authors’ experience, the calculation CPU time required for contacts detection between convex polyhedra
generally lies in the range 10% to 20% of the total calculation CPU time. It may be lower for granular assemblies un-
dergoing quasi-static strains, since new contact situations can generally be deduced from known contact situations at
the previous time step. It may also reach higher values when simulating granular flows using highly faceted polyhedra.

The present paper focuses on initial contact detection between two overlapping convex polyhedra A and B having
respectively vA and vB vertices, eA and eB edges, and fA and fB faces. Otherwise stated, we assume that the contact
situation between these polyhedra has not previously been determined (e.g. during an earlier timestep). Initial contact
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detection is critical, since inappropriate detection may yield unacceptable overlap between the contacting particles
that will be hard to eliminate during the simulation. Nevertheless it should be stressed that a small overlap between
two contacting particles is often required by DEM methods in order to calculate repulsive contact forces (such a force
is generally proportional to the overlap depth, e.g. see [15]). To avoid the lengthy testing of all interaction possi-
bilities - vertex/vertex, vertex/edge, vertex/ f ace, edge/edge, edge/ f ace, f ace/ f ace -, a number of algorithms has
been designed and published, namely in the frameworks of rock engineering [16, 17, 18], robotics [19] and computer
graphics [20, 21]. Unfortunately, these algorithms have drawbacks which more or less strongly affect their use into
DEM simulations.

The objectives of the present paper are to address the ongoing drawbacks of three of the most widely used al-
gorithms dedicated to initial contact detection between overlapping convex polyhedra, and then to identify the most
accurate and efficient revised algorithm among them.

The paper is organized as follows: section 2 reviews initial contact detection algorithms and highlights their draw-
backs while suggesting solutions when possible. Then section 3 focuses on one of the most widely used algorithms
and introduces a revised version which addresses its drawbacks. Eventually, section 4 benchmarks this revised algo-
rithm against two other revised algorithms over a set of overlapping contact situations, in order to rank them in terms
of accuracy and calculation speed.

2. Review and discussion of contact detection algorithms

Pionneering work by Cundall [16] has introduced the idea of a common plane (CP) separating two contacting
polyhedra, which deflects to bisect the space between them. Basically, his idea is that the polyhedra are in contact
with each other provided that each of them is in contact with the CP. Starting from the perpendicular bisector plane
(PB) of the centroids of the particles (Fig 1), Cundall’s algorithm consists in identifying the closest vertex of each
particle to this plane, then translating the plane to the mid-point of the segment linking the identified closest vertices,
and finally perturbating step by step the orientation of the unit normal of this plane until the gap between the closest
vertex and the plane is maximum. Note that the gap may take negative values to account for situations in which
particles overlap the CP - hence particles overlap -, so that maximizing the gap means minimizing the overlap and
closest vertex means most deeply burried into the plane. Overall, Cundall’s algorithm detects contacts between two
particles and, in this case, yields the coordinates of contact point(s) and CP normal vector as well as gap width, all
this with a reported complexity of order O(niter.(vA + vB)), where niter denotes the number of perturbation steps.
In fact, a large perturbation step improves the algorithm complexity by decreasing the number of perturbation steps
required to maximize the gap, but this is done at the expenses of the CP orientation accuracy and may hence yield sig-
nificant unwanted interpenetration. More embarrassing, depending on the shape and relative location of the contacting
particles, initializing Cundall’s algorithm with the PB of the particle centroids may end up with an erroneous CP as
shown on Fig. 2, insofar as the common plane fails to minimize the overlap between the particles. This problem is
caused by the limited range of CP normal orientations explored when applying Cundall’s perturbations, thus leading
to a local maximum of the gap rather than the global one.
To overcome this problem, a simple solution consists in repeating Cundall’s algorithm three times, first upon initializ-
ing the algorithm with the PB of the centroids and then with two orthogonal planes which are perpendicular to the PB
and intersect at the centroids mid-point. Among the calculated CP candidates, the one which minimizes the overlap
should eventually be retained. Naturally, this solution triples the algorithm complexity from existing one. The revised
Cundall algorithm is summarized as algorithm 1.

Nezami and coworkers [17] have sped up Cundall’s algorithm by observing that the number of common plane
candidates is finite. Their algorithm begins similarly by (step 1) finding the perpendicular bisector plane of the cen-
troids of the particles and (step 2) identifying the closest vertex of each particle to this plane. In case several vertices
minimize the distance of a particle to the plane, the authors state that any of them may be chosen. Then (step 3), the
CP is sought among the PB of the closest vertices and the planes parallel to one of the edges or faces of each particle
which pass through its closest vertex, the latter planes being further translated to intersect at the midpoint of the closest
vertices (see Fig. 3). The set of closest vertices of the particles to each CP candidate is identified, and, among all these,
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Figure 1: 3D-contact detection using the common plane strategy [16]. The perpendicular bisector plane (PB) of the particle centroids C1 and C2
allows to identify the closest vertices V1 and V2. The PB is further translated to the mid-point of the [V1; V2] segment and rotated until maximisation
of the plane-particle gap (gap =

−−−−→V1V2.~n) to achieve the common plane (CP).

Figure 2: 3D-common plane candidates CP1 (Cundall) and CP2 (correct) between two parallelepiped interpenetrated by an edge. Interpenetration
distance d1 to CP1 is significantly larger than interpenetration distance d2 to the correct common plane (see inset). Note that corresponding normals
~n1 and ~n2 are also significantly different.

3



Algorithm 1 Revised Cundall algorithm
Require: Orthonormed frame (~n12, ~p12, ~q12) is known, with ~n12 and mid-point of particle centroids defining their PB,

CP-candidate initialized to PB, gapmax and orientation perturbation step range initialized
1: gapmax ← −1000.
2: [kmin; kmax]← [tan(10−7);tan(5◦)]
3: for ~n in {~n12, ~p12, ~q12} do
4: while closest vertices to CP-candidate change do
5: Find closest vertex of each particle to CP-candidate along ~n
6: Translate the CP-candidate to mid-point of these vertices
7: Initialize ~p1 and ~q1 so that (~n, ~p1, ~q1) is an orthonormed frame
8: for (~p,~q) in {(~p1,~q1);(rotπ/4(~p1),rotπ/4(~q1))} do
9: k ← kmax

10: while k ≥ kmin do
11: ~n1temp ← (~n + k~p)/(1 + k2)
12: ~n2temp ← (~n − k~p)/(1 + k2)
13: ~n3temp ← (~n + k~q)/(1 + k2)
14: ~n4temp ← (~n − k~q)/(1 + k2)
15: for i = 1 to 4 do
16: Find closest vertex of each particle to CP-candidate along ~nitemp

17: Calculate interparticle gapi along ~nitemp

18: end for
19: if max(gapi) > gapmax then
20: Update closest vertices
21: ~n← ~nitemp

22: gapmax ← max(gapi)
23: else
24: k← k/2
25: end if
26: end while
27: end for
28: end while
29: end for

4



Figure 3: Two polyhedra and some of their common plane candidates (CP) according to [17]. CP candidates are the perpendicular bissector plane
(PB) of the closest vertices V1 and V2 of the polyhedra identified during the previous iteration as well as planes which are parallel to at least one
edge (highlighted in bold red/dark color) of a polyhedron that contains either V1 or V2. Note that each CP candidate passes through point M, the
midpoint of V1 and V2. Here, the actual common plane (CP) coincides with the PB of vertices V1 and V2.

the CP candidate achieving the maximum distance between its set of closest vertices is retained. Finally (step 4), the
retained set of closest vertices is compared to the previous one. If the two sets of closest vertices are equal, then the
CP has been obtained, otherwise the algorithm iterates from step 3 using the last set of closest vertices and their CP
candidate. Note that unlike Cundall’s algorithm, Nezami’s algorithm requires that no particle is in contact with the
CP candidate prior to applying step 3. In case such a contact exists, the authors prescribe to translate both particles
perpendicular to this plane and away from it to achieve a positive and small gap. Obviously, the opposite translation is
applied to the particles once the CP has been identified. According to Nezami and coworkers, their algorithm yields
the coordinates of contact points and common plane normal vector as well as overlap distance with a complexity of
order smaller than O(vA + vB).
However, as shown in Fig. 4, the translation prescribed by Nezami in case of an existing contact between the CP
candidate and a particle prior to applying his algorithm may yield an erroneous CP. In fact, such an error occurs when
the most deeply penetrated vertex of a particle into the other particle changes with the translation direction. In Fig. 4,
V2 is the most deeply penetrated vertex into particle 1 along direction ~n1, hence it becomes the closest vertex to the
CP candidate once the translation along ~n1 is performed and CP1 is found to be the common plane. Nevertheless, V ′2
is the most deeply penetrated vertex into particle 1 along direction ~n2 and this latter direction minimizes the overlap,
hence CP2 is the correct common plane and it should be observed that both CP candidates differ significantly.
Steps 2, 3 and 4 of Nezami’s algorithm only require minor modifications to appropriately account for overlapping
particles without translating them. In case of a negative gap and as suggested by Cundall [16], the closest vertices
simply need to be redefined as the most deeply burried into the plane and the CP as the plane which minimizes the
overlap, hence maximizes the algebraic distance between the sets of most deeply burried vertices (or equivalently
minimize their absolute distance). The revised Nezami algorithm is summarized as algorithm 2.

Other algorithms are focused on finding the closest features (point, edge or face) between convex polyhedra A and
B. Among these, the GJK algorithm [20] was designed upon observing that finding the closest points between non-
contacting polyhedra A and B is equivalent to finding the point of another convex set, consisting of their Minkowski
difference A − B (A − B = {xA − xB, xA ∈ A, xA ∈ B}), which minimizes the distance to the coordinates origin O.
Interestingly, the coordinates origin always lies outside the outer boundary of the Minkowsky difference A−B of non-
contacting polyhedra, so that the point minimizing the distance of A − B to the coordinates origin may be redefined
as the point V of the outer boundary of A − B located closest to the coordinates origin and || ~OV || is the interparticle
distance. When the polyhedra are in contact or overlap, the coordinates origin is located respectively on or inside
the outer boundary of the Minkowski difference A − B, so that the point V of the outer boundary of A − B located
closest to the coordinates origin defines both the overlap depth −|| ~OV || (negative distance) and contact normal ~OV of
the overlapping polyhedra (pointing from polyhedron A to polyhedron B).

To find the point V whilst avoiding the lengthy calculation of the entire Minkowski difference, the algorithm builds
a sequence of simplices whose distance to the coordinates origin decreases monotonically to achieve the intended
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Figure 4: Common plane according to ref. [17] (CP1, normal ~n1) and correct common plane (CP2, normal ~n2) between two interpenetrated
polyhedra. ~n2 is the direction of minimum relative translation to remove any interpenetration between the particles. V1 and V2 denote the closest
vertices of particles 1 and 2 respectively to CP1, while V1 and V′2 denote the closest vertices of these particles to the correct common plane (CP2).

Algorithm 2 Revised Nezami algorithm
Require: Normal ~n12 is known, with ~n12 and mid-point of particle centroids defining their PB, CP-candidate initial-

ized to PB
1: Find vertices V1 and V2 of particles located closest to CP-candidate along ~n12
2: Calculate corresponding gap
3: gapmax ← gap
4: Initialize ~n12save so as to enter the loop
5: while ~n12 , ~n12save do
6: ~n12save ← ~n12
7: Determine mid-point MP of vertices V1 and V2

8: ~n12 ←
−−−→V1V2/‖

−−−→V1V2‖

9: Find all faces F1 and edges E1 of particle 1 comprising vertex V1
10: Find all faces F2 and edges E2 of particle 2 comprising vertex V2
11: for all couples of edges E1 and E2 do
12: if E1 non-parallel to E2 then
13: Determine plane P12 passing through PM and defined by E1 and E2
14: end if
15: end for
16: for all edges E1 do
17: Determine plane P1 passing through MP and parallel to both E1 and cross product (E1;~n12)
18: end for
19: for all edges E2 do
20: Determine plane P2 passing through MP and parallel to both E2 and cross product (E2;~n12)
21: end for
22: for all planes PB, F1, F2, P12, P1, P2 do
23: Find vertices V1 and V2 of particles located closest to plane along its normal ~nplane

24: Calculate interparticle gap along ~nplane

25: if gap > gapmax then
26: Update closest vertices
27: ~n12 ← ~nplane

28: gapmax ← gap
29: end if
30: end for
31: end while
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minimum. Here, a simplex is a convex feature, e.g. a vertex, segment, triangle or tetrahedron, at most comprising
r + 1 affinely independent vertices of the outer boundary of the Minkowski difference in a r-dimensional space. Given
a simplex τk at the end of the k-th iteration, the subsequent simplex τk+1 is obtained by addition of a new vertex
wk+1 so that τk+1 is located closer to the coordinates origin than τk, thus building iteration after iteration the closest
simplex to the coordinates origin. Note that if τk already contains r + 1 affinely independent vertices, then the vertex
not belonging to the segment or the triangular face located closest to the coordinates origin respectively for r = 2 and
r = 3 is deleted. Practically, wk+1 is calculated as the difference between the outermost vertex of A in the oriented
direction ~vk, which minimizes the distance from previous simplex τk to the origin and points towards the origin, and
the outermost vertex of B in the opposite direction (Fig. 5). The GJK algorithm stops either when the origin lies inside
the new simplex τk+1 or in the absence of a new vertex wk+1 generating a closer simplex to the coordinates origin.
Last, the coordinates of the point Vk+1 of the final simplex τk+1 located closest to the coordinates origin are calculated
using the Johnson algorithm [22]. This algorithm recurses on the subsets of the final simplex, starting with those
having the smallest number of vertices (e.g. vertices, then segments, then triangular faces, then tetrahedron) until one
contains the point Vk+1. Upon calling S 1 to S p the p vertices of this subset, Vk+1 is uniquely defined as the barycentre
of vertices S 1 to S p which verifies the following equations:

p∑
i=1

λi = 1 and ∀ i ∈ {1, ...p} λi > 0, (1)

p∑
i=1

λi ~OS i.( ~OS j − ~OS 1) = 0 for j ∈ {2, ..., p}, (2)

with ~OVk+1 =
∑p

i=1 λi ~OS i.

Observe that equations (1) and (2) provide a small system of the form Mλ=~L with p equations (p ≤ 4) and p unknowns
λi, which may be inverted to determine the λi values and calculate both the distance || ~OVk+1|| of Vk+1 to the origin and
the orientation of ~OVk+1. Furthermore, note that if the particles are not in contact, Vk+1 is also the closest point of the
Minkowsky difference A − B to the origin and || ~OVk+1|| the distance between the two polyhedra. Conversely, when
the polyhedra are in contact or overlap, || ~OVk+1|| denotes the overlap depth and ~OVk+1 defines the contact normal.
According to Gilbert and coworkers [20], their algorithm has a complexity of order O(vA + vB).

Despite its widespread use due to its low computational costs and high versatility, the GJK algorithm was reported
to suffer numerical unstabilities resulting from rounding errors [24, 23]. These rounding errors would either cause the
simplex generation algorithm to loop forever [24] or the Johnson algorithm to be numerically unstable as the com-
bination of dot products and differences may yield ill-conditionned system of equations (1) and (2). As an example,
ill-conditioning would occur when the simplex generation algorithm converges towards a degenerate simplex, in other
words a simplex comprising vertices which are nearly affinely dependent such as an elongated triangular face having
two vertices lying very close to each other. This situation may be encountered when a large flat face of a polyhedron
interacts with another polyhedron smaller by several orders of magnitude [24], a situation that may be somewhat
frequent in DEM simulations of convex polyhedra assemblies.

Solutions to circumvent GJK issues have been suggested and tested with reasonable success by several au-
thors [24, 25, 26, 23], starting with Gilbert et al themselves [20] who designed a backup procedure to cache the
above-mentioned dot products which would otherwise be calculated several times by the Johnson algorithm with the
risk of rounding errors being introduced. This backup procedure was further improved by Van den Bergen [24] who
suggested a caching algorithm which minimizes the caching overhead. This author also sped up the GJK algorithm
by designing an early termination procedure to detect non-contacting particles, focused on detecting the existence of
a separating axis between them. More recently, Montanari et al [23] have suggested the signed volume method to
circumvent the numerical instabilities of the Johnson algorithm. The authors’ idea is to disembed the determination
of the simplex closest to the coordinates origin from the calculation of the closest point coordinates. Once the GJK
algorithm has converged to the simplex located closest to the coordinates origin, their method consists in (step 1) iden-
tifying the smallest set of vertices of this simplex which contains the closest point to the coordinates origin and (step

7



(a) (b)

(c) (d)

(e) (f)

Figure 5: Principle of the GJK algorithm [20] demonstrated using (a) Overlapping parallelepiped and prism generalized from 2D Fig. 7a of ref. [23]
(resp. particle A with centroid C1 and eight cross-marked vertices A1 to I1, and particle B with centroid C2 and six cross-marked vertices A2 to
G2), with A1 the outermost vertex of particle A in the oriented direction ~v1 and D2 the outermost vertex of particle B along −~v1. (b) The difference
of preceeding vertices A1 − D2 belongs to the convex hull of the Minkowsky difference of particles A and B and defines initial simplex τ1 as well
as new oriented direction ~v2 pointing from A1 − D2 to coordinates origin O, along which outermost points of particles A and B define new point
D1 − A2 of the convex hull (fully represented here in light-grey together with crosses representing its vertices). (c) ~v3 is the oriented direction
minimizing the distance between new simplex τ2 containing two points A1 −D2 and D1 − A2 and coordinates origin, along which outermost points
of particles A and B define new point E1 − B2 of the convex hull. (d) Following the same principle, ~v4 is the oriented direction minimizing the
distance between new simplex τ3 containing three points A1 − D2, D1 − A2 and E1 − B2, and coordinates origin, and B1 − G2 is the new point
identified on the convex hull of the Minkowski difference. (e) Following the same principle, the gjk algorithm has converged to the tetrahedra
(D1 −A2, E1 −B2,H1 −B2,D1 −F2) which encloses the coordinates origin and Vk+1 = VA −VB the closest point of the Minkowsky difference A−B
to the origin. (f) Overlapping polyhedra and corresponding common plane (CP) and normal ~n calculated using the GJK algorithm, with VA and VB
the closest points identified between particles A and B ( ~VBVA and ~n are parallel).
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2) determining the barycentric coordinates of this closest point by solving a small system of equations comprising
equation (1) and a revised form of equation (2) which writes:

p∑
i=1

λi ~OS i = ~P0, (3)

where ~P0 contains the coordinates of the projection of O on the affine-hull of the vertices S i followed by 1. Again,
equations (1) and (3) provide a small system of the form Mλ=~P0, though this time the i-th column of M no more com-
prises scalar products likely to cause numerical instabilities when their values tend to zero but simply the coordinates
of vector ~OS i followed by 1. When the coordinates origin is inside the simplex, meaning that the particles overlap,
the authors state that λi values may be determined by the following equation:

λi = C4,i/det(M), (4)

where det denotes the determinant of M and C4,i its i-th cofactor. Observe that equation (4) is erroneous since, in
accordance with Cramer’s rules, C4,i cannot be the minor of M in absolute value but should comprise the coordinates
of vector ~P0 as its i-th column to read:

λi = det[ ~M1... ~Mi−1 ~P0 ~Mi+1... ~Mp]/det(M), (5)

where ~M j denotes the j-th column of matrix M.

The Lin-Canny algorithm [19] uses another strategy to find the closest features, which may be summarized as
follows: define criteria (step 1) to partition the space surrounding each convex polyhedron into regions, each region
being closer from a given feature than from any other feature making up the surface of the polyhedron. Then (step
2), select two features, one on each polyhedron, and determine their closest points. Next (step 3), check whether the
closest point on one feature belongs to the region of the other feature and conversely. If either check fails, then (step 4)
by identifying which criteria failed, select a new set of features on the polyhedra which more likely yields successful
checks and iterate from step 3. According to the authors, this algorithm terminates in order O(vA + vB) iterations and
yields the distance and closest features between two polyhedra. Unfortunately, this algorithm gets stuck in a loop
when the two polyhedra are in contact and forcing its termination relies on arbitrary iteration threshold value yet does
not allow determining an interpenetration depth if any.

More recently, algorithms based on convex optimization have been designed [18, 27]. Basically, such an algorithm
consists in (step 1) writing linear inequalities which define the interior of each polyhedron, then (step 2) establishing
whether there exists at least one point verifying simultaneously all the previous inequalities. Next (step 3), in case
such a point exists, meaning that both polyhedra intersect, the contact point - where the interparticle contact forces
apply - is determined as the analytical center of the intersection area using an adapted version of the log − barrier
method [28]. This method expresses the burrial depth - with reference to each plane defining the intersection area - of
any point located into this area and returns the point maximizing the sum of burrial depth log-function. Last (step 4),
the contact normal is calculated as the weighed average of the gradients of two polynomial inner potentiels, one for
each polyhedron, each potential being defined inside one of the particles as a positive and decreasing function of the
distance to the particle surface.

Since GJK appears to be the most versatile contact detection algorithms - unlike others, it may easily handle
polyhedron/spheroid contact situations -, the next section sheds a new light on its numerical instabilities and introduces
a more robust GJK algorithm which fixes them.

3. New light on GJK drawbacks and revised algorithm

3.1. New light on GJK drawbacks
The contact situation depicted in Fig. 5 is of particular interest to shed a new light on the numerical instabilities

of GJK algorithm. In this case, the GJK algorithm converges to a simplex whose face located closest to the coordi-
nates origin belongs to the convex hull of the Minkowsky difference of particles A and B (see Fig. 5e). However, if
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Particle B is slightly translated along the −X and −Z axes with reference to Particle A as shown on Fig. 6a, then
the GJK algorithm will converge to the simplex depicted in Fig. 6b. Observe that this tetraedral-shaped simplex has
two interesting particularities: first, unlike its vertices, none of its triangular faces is located on the convex hull of the
Minkowsky difference; second, the coordinates origin is located strictly inside this tetrahedron. As a consequence,
applying the Johnson algorithm to determine the closest point of this simplex to the coordinates origin would lead to
point VA − VB (Johnson) (see zoomed Fig. 6c). Unfortunately, this point is burried into the Minkowsky difference
of particles A and B and not located on its convex hull, hence the vector linking the coordinates origin to this point
cannot be representative of the overlap direction or distance between the two particles. The true closest point VA − VB

(correct) of the Minkowsky difference of particles A and B to the coordinates origin, also depicted in Fig. 6b and c,
differs significantly from the previous one. Fig. 7 reflects this difference in terms of common plane orientation and
overlap distance between particles A and B.

(a) (b)

(c)

Figure 6: Particles shift (a) and new simplex resulting from the GJK algorithm (b). (c) is a magnified view of (b). The shift applied is a simple
translation of particle B along the −X and −Z axes. (b) and (c) display the closest point VA −VB (Johnson) of the tetrahedral-shaped simplex to the
coordinates origin as calculated by the Johnson algorithm, the true closest point of the Minkowsky difference of particles A and B to the coordinates
origin VA − VB (correct), as well as the corresponding overlap distances d1 and d2 respectively.

In fact, it is not unusual that the GJK algorithm converges to a simplex such as the one depicted in Fig. 6b, with no
face located on the convex hull of the Minkowsky difference of the two particles. Furthermore, the response returned
by the GJK algorithm may be even more unsatisfactory. Indeed, upon slightly translating particle B of Fig. 5a along
−X as depicted in Fig. 8a, the GJK algorithm will converge to the new tetrahedral-shaped simplex depicted in Fig. 8b.
Further to having none of its triangular faces located on the convex hull of the Minkowsky difference of the particles,
the particularity of this simplex is that the coordinates origin lays on one of its faces. As a consequence, the closest
point of this simplex to the coordinates origin as determined by the Johnson algorithm will be the origin itself, hence
the distance between the particles will erroneously be found equal to zero and no overlap will be detected.

10



Figure 7: Common plane orientations (CP), closest points Vβ
α and overlap distances dβ between particles A and B, superscript J refers to Johnson’s

algorithm and c to true values.

(a) (b)

Figure 8: Shift of Particle B with reference to Particle A, VA and VB being their true closest points (a). New simplex resulting from the GJK
algorithm (b). In (b), observe that points O and VA − VB (Johnson) coincide, so that Johnson’s algorithm finds no overlap. The true closest point
of the Minkowsky difference of particle A and particle B (shi f ted) to the coordinates origin is VA − VB (correct), and the corresponding overlap
distance is dc.

3.2. A more robust algorithm: GJK-TD
Observe that, whether polyhedra A and B overlap or not, the point V located closest to the coordinates origin

always lies on the outer boundary of their Minkowsky difference A − B (see section 2). Furthermore, for overlapping
polyhedra, GJK always converges to a tetrahedral-shaped simplex and the point of this simplex located closest to the
coordinates origin always lies on one of its triangular faces (e.g. see points VA − VB (Johnson) in Fig. 5e, 6c and 8b).
A straightforward consequence is that, in order to circumvent the drawbacks of the GJK algorithm evidenced in sec-
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tion 3.1, additional steps are needed to ensure that, at the end of the GJK algorithm, the simplex triangular face located
closest to the coordinates origin lies on the outer boundary of the Minkowsky difference A−B of the polyhedra. These
steps are depicted in the next paragraph using the notations of section 3.1.

Consider the contact situation depicted in Fig. 8a between Particle A and Particle B (shi f ted), for which apply-
ing the GJK algorithm yields the tetrahedral-shaped simplex of Fig. 8b. The basic idea of the steps taken to relocate
the closest triangular face to the coordinates origin on the outer boundary of the Minkowsky difference A − B of the
polyhedra may be summarized as follows : 1) determine the distance of each triangular face of the tetrahedral-shaped
simplex to the coordinates origin, then 2) expand the face located closest to the coordinates origin along its normal
towards the outer boundary of the Minkowsky difference A−B of the polyhedra, and 3) repeat this expansion with the
subsequent closest triangular face among the resulting set of triangular faces until the condition that the current closest
triangular face is located on the outer boundary of the Minkowsky difference A − B of the polyhedra is fulfilled. Both
the expansion principle and face location condition may simply be explained using the contact situation depicted in
Fig. 8.

To describe the expansion principle, consider the tetrahedral-shaped simplex (A1, B1,C1,D1) of Fig. 9a, which is
the same simplex as in Fig. 8b but observed from another perspective. Once the triangular face (A1, B1,C1) minimiz-
ing the distance d1 to the coordinates origin has been identified, its normal ~n1 pointing outside the initial simplex (or,
equivalently, in the direction opposite to the coordinates origin) is calculated. Next, vertex E1 is determined as the
Minkowsky difference between the outermost vertex of particle A in the oriented direction ~n1 and the outermost vertex
of particle B in the opposite direction (see Fig. 9b). Last, triangular faces (A1, B1, E1), (B1,C1, E1) and (A1,C1, E1)
are substituted for triangular face (A1, B1,C1) in the set of faces in which the closest face to the coordinates origin
is sought. Fig. 9c to e depict the application of the expansion principle to the subsequent face located closest to the
coordinates origin and so on. It should be emphasized that, until the closest triangular face to the coordinates origin is
found on the Minkowsky outer boundary of the polyhedra (see triangular face (B1, E4, E3) in Fig. 9e), each triangular
face is deleted right after being visited (e.g. face (A1, B1,C1)). Furthermore, records are kept to ensure that, during the
subsequent iterations of the expansion process, deleted faces are never rebuilt, thus ensuring that the algorithm will
not get trapped in a non-ending loop.

The face location condition used to ensure that the current triangular face is located on the outer boundary of the
Minkowsky difference A − B of the polyhedra simply consists in 1) determining the outermost vertex of particle A in
the oriented direction ~n normal to the current face (see Fig. 9e) and the outermost vertex of particle B in the opposite
direction, and 2) checking that the resulting point E4, which is a vertex of the outer boundary of the Minkowsky
difference A − B of the polyhedra, belongs to the current triangular face.

Once the triangular face located closest to the coordinates origin (B1, E4, E3) has been determined on the Minkowsky
outer boundary of the polyhedra (see Fig. 9e), the closest point V of this face to the coordinates origin O is calculated
as the barycentre of vertices (B1, E4, E3) for which vector ~OV is normal to the face:

3∑
i=1

λi = 1 and ∀ i ∈ {1, ..., 3} λi ≥ 0, (6)

3∑
i=1

λi ~OS i = ~0V , (7)

with S i in {B1, E4, E3} and ~0V = ( ~OS 1.~n)~n.

Equations (6) and (7) provide a small system of the form Mλ= ~OV , whose unknowns λi are easily determined by the
following equations:

λ1 = det[ ~OV ~OS 2 ~OS 3]/det[ ~OS 1 ~OS 2 ~OS 3], (8)
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(a) (b)

(c) (d)

(e)

Figure 9: Tetrahedron expansion principle. Starting from tetrahedral-shaped simplex (A1, B1,C1,D1) (a), the closest triangular face (A1, B1,C1)
to the coordinates origin is identified and its outward normal ~n1 (oriented opposite to the coordinates origin) is calculated. Then, the outermost
vertex E1 along ~n1 is identified (b), triangular face (A1, B1,C1) is deleted and replaced by triangular faces (A1, B1, E1), (B1,C1, E1), (A1,C1, E1)
so that the former tetrahedral-shaped simplex becomes the new polyhedron (A1,D1, B1,C1, E1). Similarly, the closest triangular face (D1, B1,C1)
to the coordinates origin of the new polyhedron is identified (c) and its outward normal ~n2 is calculated, in order to determine vertex E2 and
substitute triangular faces (B1,C1, E2), (C1,D1, E2) and (D1, B1, E2) for triangular face (B1,C1,D1) to achieve a new polyhedron. Following the
same principle, the closest triangular face (E1, B1,C1) to the coordinates origin of the new polyhedron is identified (d) and its outward normal ~n3 is
calculated, in order to determine vertex E3 and substitute triangular faces (B1,C1, E3), (C1, E1, E3) and (E1, B1, E3) for triangular face (B1,C1, E1).
Similarly, the last step (e) identifies (B1,C1, E3) as the closest triangular face to the coordinates origin, with ~n4 its outward normal allowing to
identify outermost vertex E4 = E2. This new vertex yields triangular face (B1, E4, E3) which is both located closest to the coordinates origin and
on the convex hull of the Minkowsky difference (represented in light-grey), hence the expansion is stopped.
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λ2 = det[ ~OS 1 ~OV ~OS 3]/det[ ~OS 1 ~OS 2 ~OS 3], (9)

λ3 = det[ ~OS 1 ~OS 2 ~OV]/det[ ~OS 1 ~OS 2 ~OS 3]. (10)

Last, these barycentric coordinates λi are used to determine the closest points Vc
A and Vc

B of polyhedra A and B
as the barycentres of the particle vertices forming the Minkowski vertices {B1, E4, E3} (see Fig. 8a). As already men-
tioned, −|| ~OV || (negative distance) defines the overlap depth of the overlapping particles and ~OV their contact normal
(pointing from particle A to particle B).

The new algorithm that has just been presented is summarized as Algorithm 3. It was called GJK − T D to em-
phasize the face expansion steps (T D stand for Tetrahedron Distortion) performed at the end of a basic application
of the GJK algorithm. Several comments shall be made about this new algorithm when applied to two overlapping
convex polyhedra made of triangular faces.
First, like the Signed Volumes method [23], the matrix M of the small system defined by equations (6) and (7) involves
no scalar product likely to cause ill-conditioning of the system. Hence, λi values defined by equations (8), (9), (10)
may always be calculated.
Second, the expansion algorithm always converges to a triangular face located on the outer boundary of the Minkowsky
difference between the polyhedra, and the convergence occurs in less than 3(vA + vB) − 8 steps. Indeed, the algorithm

Algorithm 3 GJK-TD algorithm
Require: GJK applied to convex polyhedra A and B has converged to a tetrahedral-shaped simplex

1:
∑

= ∅

2: for face p in simplex do
3: Calculate dp, ~np

4:
∑
← ~np, dp, face connectivity

5: end for
6: q = 0
7:
∑

visited = ∅

8: loop
9: Search

∑
for triangular face (S i, S j, S k) with smallest dp

10: if Triangular face location condition = TRUE then
11: Calculate ~OV = ( ~OS i.~np)~np

12: Calculate λi, λ j and λk

13: Calculate Vc
A and Vc

B using λx

14: Exit loop
15: else
16: q← q + 1
17: Calculate outermost vertex of polyhedron A along ~np

18: Calculate outermost vertex of polyhedron B along −~np

19: Calculate corresponding Minkowsky vertex Eq

20: for each new triangle made of Eq and two vertices (S r1, S r2) among (S i, S j, S k) do
21: if Triangular face (S r1, S r2, Eq) not in (

∑
visited U

∑
) then

22: Calculate normal ~nq+4 and distance dq+4
23:

∑
← ~nq+4, dq+4 and face connectivity

24: q← q + 1
25: end if
26: end for
27:

∑
visited ← ~np, dp and face p connectivity

28: Discard ~np, dp and face p connectivity from
∑

29: end if
30: end loop
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consists in finding a sequence of triangular faces whose distance to the coordinates origin is strictly increasing. Fur-
thermore, the vertices of these triangular faces belong to the Minkowsky difference of the polyhedra. Hence, the
distances to the coordinates origin of the sequence of triangular faces are bounded by that of the closest triangu-
lar face of the outer boundary of the Minkowsky difference. As a consequence, like for any strictly increasing and
bounded mathematical sequence in a convex set, the convergence is always achieved. Next, each convex polyhedron
consisting of triangular faces, the outer boundary of their Minkowsky difference is also made of triangular faces. Be-
sides, the triangular face to which the expansion algorithm converges is always located on the outer boundary of the
Minkowsky difference of the polyhedra as a consequence of the face location condition. Finally, the complexity of
the algorithm may be assessed as follows:

• According to the Descartes-Euler theorem, the total number of faces f , edges e and vertices v of any convex
polyhedron relate by the formula f − e + v = 2;

• Now, the outer boundary of the Minkowsky difference of the polyhedra is made exclusively of triangular faces,
each comprised of three edges shared by exactly two faces, hence the total number of edges and faces relate
according to e =

3 f
2 ;

• The two preceeding relations yield f = 2v − 4;

• Besides, the expansion algorithm may visit internal triangular faces, that is faces embedded into the Minkowsky
difference of the polyhedra and not located on its outer boundary (the latter being external faces), whose total
number is f − 4 (this may easily be shown by recurrence);

• Last, the outer boundary of the Minkowsky difference between two polyhedra made of vA and vB vertices
respectively contains exactly vA + vB vertices. As a consequence, the expansion algorithm will visit at most all
2(vA + vB) − 4 external and vA + vB − 4 internal triangular faces, and these faces will be visited at most once
since any visited face is deleted and never restored until convergence.

4. Efficiency of the GJK-TD algorithm

In order to examine the efficiency of the GJK-TD algorithm, one shall address both its calculation accuracy and
speed. This is achieved upon considering nine contact situations with various overlap, which are used as a benchmark
to compare GJK-TD with the revised versions of Cundall’s and Nezami’s algorithms as depicted in section 2. Given
that these three algorithms implement significantly different strategies to determine a contact situation, it seems rea-
sonable to consider that the level of agreement between the results returned by these methods reflects their accuracy.
Furthermore, upon selecting more or less overlapped contact situations, which are representative of all common con-
tact types, namely vertex-face, edge-face, edge-edge, or face-face contacts, comparing the calculation speed between
these three algorithms should yield representative orders of magnitude. The nine contact situations used are depicted
in Fig. 2, 4, 5f, 7, 8a, 10a, 10b, 10c, 10d respectively.

All calculations are performed on a double precision Ubuntu 16.04 − LTS machine equipped with an intel R©

CoreTMi7 − 6700HQ CPU@2.60GHz processor having 8 GB RAM. The calculation routines, GJK-TD as well as the
revised versions of Cundall’s and Nezami’s algorithms, are written in Fortran90 and compiled using GNU Fortran
5.4.0.

4.1. Computing accuracy

For each of the nine contact situations, both the normal components and overlap depth are calculated to the highest
possible precision level. All calculation routines use double precision values, hence results are returned with 15
significant digits (machine precision). For each contact situation, Table 1 summarizes the results returned by the GJK-
TD algorithm and Fig. 11 displays the accuracy with which the revised versions of Cundall’s and Nezami’s algorithms
agree with the results returned by GJK-TD. Note that two separate charts are displayed, Fig. 11a depicting accuracy
in terms of mean absolute difference between the normal components calculated by any of the revised algorithm and
GJK-TD, and Fig. 11b depicting accuracy in terms of overlap depths absolute difference with reference to GJK-TD.
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(a) (b)

(c) (d)

Figure 10: Various 3D contact situations used to benchmark GJK-TD with the revised versions of Cundall’s and Nezami’s algorithms, (a) vertex-
edge contact, (b) edge-edge contact, (c) edge-face contact and (d) face-face contact. ~n is the normal vector of the common plane (CP), pointing
from Particle A to Particle B.
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Table 1: Normal components and overlap calculated to machine precision (10−15) by GJK-TD for nine contact situations.

Test-case nx ny nz overlap
Fig. 2 0.000000000000000 1.000000000000000 0.000000000000000 −0.250000000000000
Fig. 4 0.992277876713668 −0.124034734589208 0.000000000000000 −4.026012719933860
Fig. 5f 0.894427190999916 −0.447213595499958 0.000000000000000 −0.223606797749979
Fig. 7 0.894427190999916 −0.447213595499958 0.000000000000000 −1.118033988749900
Fig. 8a 0.894427190999916 −0.447213595499958 0.000000000000000 −1.118033988749900
Fig. 10a 0.000000000000000 0.000000000000000 −1.000000000000000 −0.100000024000000
Fig. 10b −0.168309951548722 0.950616325200044 −0.260768791217108 −0.572082006256242
Fig. 10c 0.832050294337844 −0.554700196225229 0.000000000000000 −0.554700196225229
Fig. 10d 0.970142500145332 0.000000000000000 −0.242535625036333 −0.485071250072666

(a) (b)

Figure 11: Comparison of calculation accuracy against GJK-TD for algorithms Cundall (revised) and Nezami (revised), for nine contact situations,
(a) normal mean components, (b) overlap, (c) edge-face contact and (d) face-face contact.

Observe that, whatever the contact situation, GJK-TD and the revised version of Nezami’s algorithm return results
which agree with eachother to machine precision. This is consistent with the finite and limited number of possible
common plane candidates when two convex polyhedra overlap. By contrast, the revised version of Cundall’s algo-
rithm returns results which agree with those of the other two algorithms at best to 10−10. Note that a better agreement
could be achieved upon setting the Cundall’s minimum orientational perturbation step to a value below the requested
10−7π/180 radians, but this would strongly affect the calculation speed.

Next, the level of accuracy of these results is compared with that of the results reported by Montanari et al. [23]
on gear teeth with various number of vertices (see their figure 15). Montanari’s results appear to be at least one order
of magnitude less accurate than the results reported in the present paper.

4.2. Computing speed

For each of the nine contact situations depicted in Fig. 2, 4, 5f, 7, 8a, 10a, 10b, 10c, 10d, Table 2 summarizes the
calculation speed of all three contact detection algorithms both in terms of absolute and relative to GJK-TD values.
These calculation speed figures are obtained using the S YS T EM CLOCK Fortran function, which allows a level of
precision up to 1 nanosecond, and the reported values are averaged over one million repetitions of each algorithm.
According to this table, GJK-TD is able to return the contact normal and overlap depth within 6 to 95 microseconds,
depending on the contact situation, whereas the revised versions of Cundall’s and Nezami’s algorithms are respectively
6 and 65 times more computationally intense on average, and up to 12 and 135 times slower respectively. Furthermore,
it should be pointed out that, due to the extra loop encompassing lines 4 to 28 of Algorithm 1, the revised Cundall
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Table 2: Comparison of calculation speed between algorithms Cundall (revised), Nezami (revised) and GJK-TD, for nine contact situations.

Test case GJK-TD Nezami (revised) Nezami (revised)/ Cundall (revised) Cundall (revised)/
(x10−6 s) (x10−6 s) GJK-TD (x10−6 s) GJK-TD

Fig. 2 10.896 83.920 7.7 540.656 49.6
Fig. 4 94.688 121.456 1.3 1225.261 12.9
Fig. 5f 6.425 77.768 12.1 870.992 135.6
Fig. 7 19.095 91.640 4.8 938.476 49.1
Fig. 8a 18.975 77.156 4.1 671.476 35.4
Fig. 10a 10.697 67.356 6.3 1288.066 120.4
Fig. 10b 27.189 85.672 3.2 2582.582 95.0
Fig. 10c 22.239 161.700 7.3 1056.096 47.5
Fig. 10d 19.208 85.068 4.4 719.848 37.5
mean 25.490 94.637 5.7 1099.273 64.8

algorithm has a complexity which is three times that of the classical Cundall algorithm. In other words, the compu-
tational cost of the former is three times that of the latter. Yet, as mentioned in section 2, in some configurations, the
classical Cundall algorithm fails to return correct results for the contact plane.

A first attempt was made to confront these figures with those reported by Montanari et al. [23] on overlapping
polygonal spheres with various number of vertices tested over one million cycles (see their figure 17c). Their fig-
ure 17c suggests that the speed of the tested algorithms does not significantly vary with the number of vertices, hence
confronting their results in terms of algorithm velocity to those of the present paper obtained with different polyhedral-
shaped particles makes sense. However, their figure raises questions about the CPU time unit (ns): indeed, repteating
a simple assignment to 1 of a unique integer variable for one million cycles already takes 6.153152 10−3 s with the
machine used in the present paper, hence about 6 ns per assignement, and about 2.5 ns per assignment on an Intel R©

Xeon R© CPU E5 − 2630 v4 2.20GHz processor having 28 GB RAM. As a consequence, it seems doubtfull that the
run of a full algorithm such as JB, BK or S V as reported by Montanari et al. only takes a few nanoseconds. Then we
confronted our contact detection speed figures to those reported by Wachs et al. [15] on overlapping cubes or tetrahe-
dra. These authors have implemented a tailored version of the GJK algorithm in which overlapping particles are first
reduced through a homothety, so that they are no more in contact, prior to determining the set of closest points. The
contact detection speed reported by these authors on an Intel4 R© Pentium CPU 3GHz processor is 74 µs and 106 µs
for overlapping cubes and tetrahedra respectively. These figures are consistent with those of the present paper.

5. Conclusion

Algorithms dedicated to initial contact detection between overlapping convex polyhedra have been reviewed, fo-
cusing on three of the most prominent ones [16, 17, 20]. Drawbacks affecting the use of these three algorithms into
DEM simulations have been evidenced and solutions to these drawbacks have been suggested. In particular, new light
was shed on GJK drawbacks and a new algorithm supplementing the original one was introduced. Finally, revised
versions of these three algorithms implementing the suggested solutions have been benchmarked over nine contact
situations. These contact situations involve two overlapping polyhedra which are representative of all common contact
types, namely vertex-face, edge-face, edge-edge and face-face contacts. The benchmarking results show that GJK-TD
and Nezami (revised) return identical results to machine precision, whereas Cundall (revised) returns identical results
to the tenth decimal place. Furthermore, these results show the GJK-TD returns both the normal components and
overlap depth within a few tens of microseconds, whereas Nezami (revised) and Cundall (revised) are respectively 6
and 65 times more computationally intense on average. It is believed that the robustness and efficiency of GJK-TD
will boost its use into DEM simulations, all the more that this versatile algorithm may easily be customized to detect
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contact between convex polyhedra and spheroid particles.
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