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I. Introduction

HE joints allow for the transfer of loads between the structural components. Consequently, the structural integrity of the joined structure depends on the ability of joints to sustain the load transferred. However, the joints often lead to a reduction of static and fatigue strength [START_REF] Hart-Smith | Design methodology for bonded-bolted composite joints[END_REF] leading to a structural mass increase. The proper choice of joining technology is then decisive for the strength-to-mass ratio of the manufactured structure. Mechanical fastening or bolting, such as riveting or screwing, is a tailored joining technology, so that it is extensively applied for primary structural components. Since the end of the Second World War, adhesive bonding has been employed by civilian aircraft manufacturers for primary structures under the condition to be associated with a redundant load transfer path to be compliant with damage tolerance certification requirements. Adhesive bonding is not the dominant design solution [START_REF] Higgins | Adhesive bonding of aircraft structures[END_REF], even though, compared to bolting, adhesive bonding may offer higher static and fatigue strength at lower embedded mass [START_REF] Hart-Smith | Adhesive bonding of aircraft primary structures[END_REF]. Adhesive bonding can be used in combination with bolting leading hybrid (bolted/bonded) joiningtermed HBB. The HBB joint associates a discrete load transfer mode through the fasteners with a continuous one through the adhesive layer, each having its own stiffness. By sharing the load to be transferred between the fasteners and the adhesive layer, it is then expected to improve the strength of corresponding pure bolted joints or pure bonded joints. Besides, a thin adhesive sealant layer is commonly applied between the aircraft structural components to be bolted, in order to ensure sealing and prevent corrosion [START_REF] Dechwayukul | Analysis of the effects of thin sealant layers in aircraft structural joints[END_REF].

The HBB joining technology was presented as a relevant concept of fail-safe structures by Hart-Smith in 1982 [START_REF] Hart-Smith | Bonded-bolted composite joints[END_REF]. According to this study, HBB joints with aerospace configurations and material systems do not offer any significant increase in strength compared to bonded joints, which could be explained by the low fraction of load transferred by the fasteners. However, Hartman experimentally tested under fatigue loading single-lap bolted/sealed and HBB joints with three lines of fasteners; it was shown that the fatigue strength of HBB joints was significantly higher than the one of bolted/sealed joints [START_REF] Hartman | Fatigue tests on single-lap joints in clad 2024-T3 aluminium alloy manufactured by a combination of riveting and adhesive bonding[END_REF]. Paroissien experimentally showed that the fatigue strength of doublelap bolted/sealed joints with three lines of fasteners can be increased by replacing the sealant by an adhesive, while removing one third of fastener pitches [START_REF] Paroissien | Contribution aux Assemblages Hybrides (Boulonnés/Collés) -Application aux Jonctions Aéronautiques[END_REF]. The adhesive employed was a flexible polyurethane adhesive. It was one T of adhesives used by Kelly to experimentally show that the judicious choice of the adhesive leads to a higher static and fatigue strength of HBB joints [START_REF] Kelly | Quasi-static strength and fatigue life of hybrid (bonded/bolted) composite single-lap joints[END_REF]. Similar conclusions can be found in [START_REF] Paroissien | Contribution aux Assemblages Hybrides (Boulonnés/Collés) -Application aux Jonctions Aéronautiques[END_REF][START_REF] Kweon | Failure of carbon composite-to-aluminium joints with combined fastening and adhesive bonding[END_REF][START_REF] Choi | Experimental study on failure mechanism of hybrid composite joints with different adhesives[END_REF], while numerous published papers showed higher mechanical performances can be obtained with HBB joints such as in [START_REF] Imanaka | Fatigue Strength of Adhesive/Rivet Combined Lap Joints[END_REF][START_REF] Stewart | An experimental investigation of composite bonded and/or bolted repairs using single lap joint designs[END_REF][START_REF] Fu | Fatigue of hybrid (adhesive/bolted) joints in SRIM composites[END_REF][START_REF] Hoang-Ngoc | Simulation of Single-Lap Bonded and Hybrid (Bolted/Bonded) Joints with Flexible Adhesive[END_REF][START_REF] Sadowski | Damage and failure processes of hybrid joints: adhesive bonded aluminium plates reinforced by rivets[END_REF][START_REF] Moroni | Experimental analysis and comparison of the strength of simple and hybrid structural joints[END_REF][START_REF] Esmaeili | Investigation of bolt clamping force on the fatigue life of double lap simple bolted and hybrid (bolted/bonded) joints via experimental and numerical analysis[END_REF][START_REF] Bodjona | Load sharing in single-lap bonded/bolted composite joints. Part I: Model development and validation[END_REF][START_REF] Bodjona | Hybrid Bonded-fastened Joints and their Application in Composite Structures: A general review[END_REF][START_REF] Lopez-Cruz | Investigation of bolted/bonded composite joint behaviour using design of experiments[END_REF][START_REF] Lim | Evolution of mechanical properties of flexible epoxy adhesives under cyclic loading and its effects on composite hybrid bolted/bonded joint design[END_REF][START_REF] Paroissien | Simplified stress analysis of hybrid (bolted/bonded) joints[END_REF] for example.

The interest in functionally graded adhesive (FGA) joints has been increasing in recent years [START_REF] Lim | Evolution of mechanical properties of flexible epoxy adhesives under cyclic loading and its effects on composite hybrid bolted/bonded joint design[END_REF][START_REF] Paroissien | Simplified stress analysis of hybrid (bolted/bonded) joints[END_REF][START_REF] Kawasaki | Functionally Graded Adhesive Joints Bonded by Honeymoon Adhesion Using Two Types of Second Generation Acrylic Adhesives of Two Components[END_REF][START_REF] Durodola | Functionally graded adhesive joints -A review and prospects[END_REF]. FGAs offer the opportunity to optimize the strength of multi-material bonded joints by locally tailoring the adhesive properties and without modifying the design of the adherends to be joined. FGA joints involve a continuous variation of the adhesive properties along the overlap allowing for the homogenization of the stress distribution and load transfer. Manufacturing methods of FGA joints can be found in [START_REF] Durodola | Functionally graded adhesive joints -A review and prospects[END_REF][START_REF] Carbas | Adhesively bonded functionally graded joints by induction heating[END_REF][START_REF] Carbas | Functionally graded adhesive joints by graded mixing of nanoparticles[END_REF]. The objective of the present paper is then to assess the effect of adhesive graduation on the mechanical behaviour and static strength of HBB joints. The assessment is performed through a simplified 1D-bar stress model, able to quickly provide mechanical trends. It is exemplified on a balanced single-lap HBB joint made of thin aluminium plates and in-plane tensile loaded (Fig. 1), with two lines of identical fasteners and various types of adhesive graduation are employed. The present study could be regarded as an approach allowing for a simple and fast assessment of potential benefit in terms static strength only. The 1D-bar model for HBB joint with FGA is based on the macro-element technique [START_REF] Paroissien | Contribution aux Assemblages Hybrides (Boulonnés/Collés) -Application aux Jonctions Aéronautiques[END_REF][START_REF] Paroissien | Simplified stress analysis of hybrid (bolted/bonded) joints[END_REF][START_REF] Paroissien | Hybrid (bolted/bonded) joints applied to aeronautic parts: Analytical onedimensional models of a single-lap joint[END_REF][START_REF] Paroissien | Analytical two-dimensional model of a hybrid (bolted/bonded) singlelap joint[END_REF][START_REF] Paroissien | Simplified stress analysis of functionally graded single-lap joints subjected to combined thermal and mechanical loads[END_REF]. The macro-element (ME) technique has been initially developed by the authors and co-workers for the simplified stress analysis of HBB joints with homogeneous adhesives (HA) [START_REF] Paroissien | Contribution aux Assemblages Hybrides (Boulonnés/Collés) -Application aux Jonctions Aéronautiques[END_REF][START_REF] Paroissien | Simplified stress analysis of hybrid (bolted/bonded) joints[END_REF][START_REF] Paroissien | Hybrid (bolted/bonded) joints applied to aeronautic parts: Analytical onedimensional models of a single-lap joint[END_REF][START_REF] Paroissien | Analytical two-dimensional model of a hybrid (bolted/bonded) singlelap joint[END_REF] and successfully applied to the simplified stress analysis of FGA joints [START_REF] Paroissien | Simplified stress analysis of functionally graded single-lap joints subjected to combined thermal and mechanical loads[END_REF]. 

II. Description of the 1D-bar model A. Hypotheses

The following hypotheses are taken (i) the adherends are linear elastic materials simulated as bars, (ii) the adhesive layer is modelled by an infinite number of linear elastic shear springs linking both adherends, (iii) the adhesive layer thickness remains constant along the overlap, and (iv) the fasteners are modelled by linear elastic shear springs linking both adherends. It results then that (i) only longitudinal displacements and normal forces are considered in the adherends, (ii) all the adhesive stress components vanish except the in-plane shear which is constant in through the thickness and (iii) the fasteners transfer the loading by in-plane shearing deformation only.

The graduation of the adhesive properties is represented by a variation of the shear adhesive modulus, termed G a , as function of its abscissa x along the overlap. It is then indicated that the induced rotation of the overlap as well as of fasteners, due the eccentricity of the load paths are not taken into account in this paper. 1D-beam simplified stress analyses of HBB joints with HA or of bonded joints with FGA can be found in [START_REF] Paroissien | Simplified stress analysis of hybrid (bolted/bonded) joints[END_REF] and [START_REF] Paroissien | Simplified stress analysis of functionally graded single-lap joints subjected to combined thermal and mechanical loads[END_REF] respectively.

B. Modelling with the Macro-Element Technique

The ME technique is inspired by the Finite Element method and differs in the sense that the interpolation functions of MEs are not assumed. Indeed, they take the shape of solutions of the governing ordinary differential equations (ODEs) system, coming from the constitutive equations of materials and from the local equilibrium equations, related to the simplifying hypotheses. A direct consequence is only one ME is needed to simulate a full bonded overlap with a HA. Dedicated 4-nodes bonded-bars (BBa) and bonded-beams have been formulated. The main work consists in the formulation of the ME elementary stiffness matrix. The adherend located outside the overlap are modelled by bar elements, while the fasteners are modelled by shear spring elements. To take into account for the adhesive graduation, the overlap is regularly meshed with n_ME BBa elements, the length of which is then L/n_ME. A constant value of the adhesive shear modulus is assigned to each ME. It is taken equal to the actual value of the modulus graduation at the abscissa located at the middle of the ME. The actual graduation of the adhesive properties is then approximated by a stepped function. In this paper, a mesh density of 10 MEs per mm is chosen, which is sufficient to obtain accurate results as shown in [START_REF] Paroissien | Simplified stress analysis of functionally graded single-lap joints subjected to combined thermal and mechanical loads[END_REF]. Once the stiffness matrix of the complete structure is assembled from the elementary stiffness matrices and the boundary conditions are applied, the minimization of the potential energy provides the solution (Fig. 2). The distribution along the overlap of the adherend displacements and internal forces as well as the adhesive shear stress and the bolt load transfer rate are the output of the analysis. A computer program is needed to obtain the solution. The scientific computing software SCILAB is used [START_REF]beta-2[END_REF]. The SCILAB code is attached to this paper as supplement materials.

Fig. 2 Modelling of the single-lap HBB joint with FGA by using the macro-element technique C. Elementary Stiffness Matrix Formulation

Even if the ME elementary stiffness matrix has already been described in details in [START_REF] Paroissien | Contribution aux Assemblages Hybrides (Boulonnés/Collés) -Application aux Jonctions Aéronautiques[END_REF][START_REF] Paroissien | Simplified stress analysis of hybrid (bolted/bonded) joints[END_REF][START_REF] Paroissien | Hybrid (bolted/bonded) joints applied to aeronautic parts: Analytical onedimensional models of a single-lap joint[END_REF][START_REF] Paroissien | Analytical two-dimensional model of a hybrid (bolted/bonded) singlelap joint[END_REF], the main steps are provided for the comfort of the reader. The length of the ME is quoted . The local equilibrium of both adherends (Fig. 3a) provides the following equations:

𝑑𝑁 𝑗 𝑏𝑑𝑥 = (-1) 𝑗 𝑇(𝑥), 𝑗 = 1,2 (1) 
where b is the overlap width, N j the normal force in the adherend j and T the adhesive shear stress. It refers to the local equilibrium employed by Volkersen [START_REF] Volkersen | Die Nietkraftverteilung in Zugbeanspruchten Nietverbindungen mit konstanten Laschenquerschnitten[END_REF]. The constitutive equations for the adherends are such as:

𝑑𝑢 𝑗 𝑑𝑥 = 𝑁 𝑗 𝐴 𝑗 , 𝑗 = 1,2 (2) 
where u j is the longitudinal displacement of the adherend j and A j is the membrane stiffness of adherend j equal to e j bE j with e j the thickness of adherend j and E j the Young's modulus of the adherend j. The constitutive equation for the adhesive layer is given by:

𝑇 = 𝐺 𝑎 𝑒 𝑎 (𝑢 2 -𝑢 1 ) (3) 
The elementary stiffness matrix of the BBa element, termed K BBa , represents for the linear relationships between the nodal forces and the displacements (Fig. 3b): 

( -𝑁 1 (0) -𝑁 2 (0) 𝑁 1 (Δ) 𝑁 2 (Δ) ) = 𝐾 𝐵𝐵𝑎 ( 𝑢 1 (0) 𝑢 2 (0) 𝑢 1 (Δ) 𝑢 2 (Δ)) (4) 
From Eqs (1-3) a system of coupled of ODEs in u 1 and u 2 can be written and solved. The four integration constants are identified using the four nodal displacements. The normal forces N 1 and N 2 are then deduced from u 1 and u 2 with the constitutive equation in Eq. ( 2) as function of the nodal displacements. The nodal forces are finally then expressed as functions of the nodal displacements, leading to the closed-form expressions for the K BBa components, such as:

𝐾 𝐵𝐵𝑎 = 1 1+𝜒 𝐴 𝐴 2 Δ ( 𝜂Δ tanh 𝜂Δ + 1 𝜒 𝐴 1 - 𝜂Δ tanh 𝜂Δ - 𝜂Δ sinh 𝜂Δ - 1 𝜒 𝐴 𝜂Δ sinh 𝜂Δ -1 1 - 𝜂Δ tanh 𝜂Δ 𝜂Δ tanh 𝜂Δ + 𝜒 𝐴 𝜂Δ sinh 𝜂Δ -1 - 𝜂Δ sinh 𝜂Δ -𝜒 𝐴 - 𝜂Δ sinh 𝜂Δ - 1 𝜒 𝐴 𝜂Δ sinh 𝜂Δ -1 𝜂Δ tanh 𝜂Δ + 1 𝜒 𝐴 1 - 𝜂Δ tanh 𝜂Δ 𝜂Δ sinh 𝜂Δ -1 - 𝜂Δ sinh 𝜂Δ -𝜒 𝐴 1 - 𝜂Δ tanh 𝜂Δ 𝜂Δ tanh 𝜂Δ + 𝜒 𝐴 ) (5) 
where:

𝜒 𝐴 = 𝐴 2 𝐴 1 (6) 
𝜂 = √ 𝐺 𝑎 𝑒 𝑎 𝑏 𝐴 2 (𝜒 𝐴 + 1) (7) 
The stiffness matrices of the bar elements and of the shear spring element are given by:

𝐾 𝑏𝑎𝑟,𝑗 = 𝐴 𝑗 𝑙 𝑗 ( 1 -1 -1 1 ) (8) 
𝐾 𝑠𝑝𝑟𝑖𝑛𝑔 = 𝐶 ( 1 -1 -1 1 ) (9) 
where l j is the adherend length outside the overlap and C the fastener stiffness. In the case of balanced HBB joints with two lines of fastener with HA, it is possible to derive closed-form expressions for the bolt load transfer rate as well as the maximal adhesive shear stress. The presence of two lines of fasteners implies that there are three bonded bays (Fig. 1). On each bay i, an ODE in N 2,i can be written from the governing equations Eqs. (1-3) and from the global equilibrium N 1,i +N 2,i =f in any abscissa x:

b) a)

u 1 () u 2 () u 1 (0) u 2 (0) -N 1 (0) -N 2 (0) N 1 () N 2 () N 1 (x+dx) N 1 (x) T.bdx N 2 (x+dx) N 2 (x)
𝑑 2 𝑁 2,𝑖 𝑑𝑥 2 -𝜂 2 𝑁 2,𝑖 = -𝜂 2 𝜒 𝐴 1+𝜒 𝐴 𝑓, 𝑖 = 1. .3 (10) 
The solution of this previous ODE takes the following shape:

𝑁 2,𝑖 = 𝑐 𝑖 𝑒 -𝜂𝑥 + 𝑘 𝑖 𝑒 𝜂𝑥 + 𝜒 𝐴 1+𝜒 𝐴 𝑓, , 𝑖 = 1. .3 (11) 
where c i and k i are integration constants. From the local equilibrium equation Eq. ( 1), the expression for the shear stress on each bay i is deduced:

𝑇 𝑖 = 𝜂 𝑏 (𝑘 𝑖 𝑒 𝜂𝑥 -𝑐 𝑖 𝑒 -𝜂𝑥 ), 𝑖 = 1. .3 (12) 
Six boundary constants have to be written to determine the six integration constants. -d)+ 2 f. The bolt load transfer rates  i are written as functions of the relative displacements of adherends and then of the adhesive shear stress at fastener location:

𝜏 1 𝑓 = 𝐶(𝑢 2 (𝑑) -𝑢 1 (𝑑)) = 𝐶 𝑒 𝑎 𝐺 𝑎 𝑇 1 (𝑑) (13) 
𝜏 2 𝑓 = 𝐶(𝑢 2 (𝐿 -𝑑) -𝑢 1 (𝐿 -𝑑)) = 𝐶 𝑒 𝑎 𝐺 𝑎 𝑇 2 (𝐿 -𝑑) (14) 
The following linear system is then found:

(

1 1 0 0 0 0 𝑒 -𝜂𝑑 -𝑒 𝜂𝑑 -𝑒 -𝜂𝑑 𝑒 𝜂𝑑 0 0 𝑞𝑒 -𝜂𝑑 𝑟𝑒 𝜂𝑑
-𝑒 -𝜂𝑑 -𝑒 𝜂𝑑 0 0 0 0 𝑒 -𝜂(𝐿-𝑑) -𝑒 𝜂(𝐿-𝑑) -𝑒 -𝜂(𝐿-𝑑) 𝑒 𝜂(𝐿-𝑑) 0 0 𝑞𝑒 -𝜂(𝐿-𝑑) 𝑟𝑒 𝜂(𝐿-𝑑) -𝑒 -𝜂(𝐿-𝑑) -𝑒 𝜂(𝐿-𝑑) 0 0 0 0 𝑒 -𝜂𝐿 𝑒 𝜂𝐿 ) (

𝑐 1 𝑘 1 𝑐 2 𝑘 2 𝑐 3 𝑘 3 ) = ( - 𝜒 𝐴 1+𝜒 𝐴 𝑓 0 0 0 0 1 1+𝜒 𝐴 𝑓 ) (15) 
where:

𝑞 = 1 -𝐶 𝑒 𝑎 𝐺 𝑎 𝜂 𝑏 (16 
)

𝑟 = 1 + 𝐶 𝑒 𝑎 𝐺 𝑎 𝜂 𝑏 (17) 
Since the joint is assumed to be balanced,  A =1 and both fasteners carry the same load. From Eqs. [START_REF] Fu | Fatigue of hybrid (adhesive/bolted) joints in SRIM composites[END_REF][START_REF] Hoang-Ngoc | Simulation of Single-Lap Bonded and Hybrid (Bolted/Bonded) Joints with Flexible Adhesive[END_REF] and from the continuity of adhesive shear stress, it comes then

T 1 (d)=T 2 (d)=T 2 (L-d)=T 3 (L-d)
, so that the linear system is reduced to the following one:

(

1 1 0 0 𝑒 -𝜂𝑑 -𝑒 𝜂𝑑 -𝑒 -𝜂𝑑 𝑒 𝜂𝑑 𝑞𝑒 -𝜂𝑑 𝑟𝑒 𝜂𝑑 -𝑒 -𝜂𝑑 𝑒 𝜂𝑑 𝑒 -𝜂𝑑 -𝑒 𝜂𝑑 𝑒 -𝜂(𝐿-𝑑) 𝑒 𝜂(𝐿-𝑑) ) ( 𝑐 1 𝑘 1 𝑐 2 𝑘 2 ) = ( - 𝑓 2 0 0 0 ) (18) 
After linear combinations, the system can be reduced to:

( 1 1 𝑞 ̅𝑒 -𝜂𝑑 𝑟̅ 𝑒 𝜂𝑑 ) ( 𝑐 1 𝑘 1 ) = ( - 𝑓 2 0 ) ⇒ ( 𝑐 1 𝑘 1 ) = 1 𝑟̅ 𝑒 𝜂𝑑 -𝑞 ̅𝑒 -𝜂𝑑 ( 𝑟̅ 𝑒 𝜂𝑑 -1 -𝑞 ̅𝑒 -𝜂𝑑 1 ) ( - 𝑓 2 0 ) (19) 
where:

𝑞 ̅ = 1 -cosh 𝜂(𝐿 -2𝑑) + 𝑞 sinh 𝜂(𝐿 -2𝑑) (20) 
𝑟̅ = -1 + cosh 𝜂(𝐿 -2𝑑) -𝑟 sinh 𝜂(𝐿 -2𝑑) (21) 
The closed-form expressions for the bolt transfer rates are then deduced from Eq. ( 13) and Eqs. (20-21) such as:

𝜏 1 = 𝐶 𝑒 𝑎 𝐺 𝑎 𝜂 𝑏 (𝑘 1 𝑒 𝜂𝑑 -𝑐 1 𝑒 -𝜂𝑑 ) 1 𝑓 = 1 2 𝐶 𝑒 𝑎 𝐺 𝑎 𝜂 𝑏 𝑟̅ +𝑞 ̅ 𝑟̅ 𝑒 𝜂𝑑 -𝑞 ̅𝑒 -𝜂𝑑 = 𝜏 2 (22) 
As the maximal shear stress is located at both overlap ends in the case of HA [START_REF] Paroissien | Contribution aux Assemblages Hybrides (Boulonnés/Collés) -Application aux Jonctions Aéronautiques[END_REF][START_REF] Paroissien | Simplified stress analysis of hybrid (bolted/bonded) joints[END_REF][START_REF] Paroissien | Hybrid (bolted/bonded) joints applied to aeronautic parts: Analytical onedimensional models of a single-lap joint[END_REF][START_REF] Paroissien | Analytical two-dimensional model of a hybrid (bolted/bonded) singlelap joint[END_REF][START_REF] Paroissien | Simplified stress analysis of functionally graded single-lap joints subjected to combined thermal and mechanical loads[END_REF], the closed-form solution for the maximal stress T max is:

𝑇 𝑚𝑎𝑥 = 𝑇 1 (𝑥 = 0) = 𝜂 𝑏 (𝑘 1 -𝑐 1 ) = 1 2 𝑟̅ 𝑒 𝜂𝑑 +𝑞 ̅𝑒 -𝜂𝑑 𝑟̅ 𝑒 𝜂𝑑 -𝑞 ̅𝑒 -𝜂𝑑 𝜂 𝑓 𝑏 (23) 

III. Numerical Testing

A. Definition of the Test Case

The example of a balanced single-lap HBB joint made of thin aluminium and two identical fasteners is chosen. It is indicated that, in terms of modelling, the fasteners could be different from each other. The geometry is then built from the diameter of the fastener shank equal to 4.8 mm. The geometrical and mechanical parameters are provided in Table 1. The fastener stiffness C chosen has the same order of magnitude obtained using the Tate and Rosenfeld [START_REF] Tate | Preliminary investigation of the loads carried by individual bolts in bolted joints[END_REF] formula for a titanium fastener. In this paper, the adhesive shear modulus is assumed to follow three different graduation laws: (i) a bilinear law (Eq. ( 26)), (ii) a power law at p=1 (Eq. ( 25)) and (iii) a power law at p=2 (Eq. ( 25)):

𝐺 𝑎 (𝑥) = 𝐺 𝑎,𝑚𝑎𝑥 (𝑥) -(𝐺 𝑎,𝑚𝑎𝑥 (𝑥) -𝐺 𝑎,𝑚𝑖𝑛 (𝑥)) | 𝑥 𝑐 -1| (24) 
𝐺 𝑎 (𝑥) = 𝐺 𝑎,𝑚𝑎𝑥 (𝑥) -(𝐺 𝑎,𝑚𝑎𝑥 (𝑥) -𝐺 𝑎,𝑚𝑖𝑛 (𝑥)) ( 𝑥 𝑐 -1) 2𝑝

These graduation laws are symmetrical with respect to the middle of the overlap, where the maximal adhesive shear modulus G a,max is reached. The minimal adhesive shear modulus G a,min is obtained at both overlap ends. Both power laws show a horizontal slope at the middle of the overlap. These graduation laws are then fully defined from G a,max and G a,min , and from a parameter p modifying the shape. In this paper, the minimal adhesive shear modulus is fixed at G a_min =1 MPa. An illustration of these graduation laws along the overlap can be found in Fig. 4 for the particular case where G a,min =1 MPa and G a,max =10 MPa.

Fig. 4 Adhesive shear modulus graduation for the particular case of G a,min =1 MPa and G a,max =10 MPa

B. Load Sharing

Firstly, the load sharing between the fasteners and the adhesive layer is investigated. The bolt load transfer rate at each fastener is then computed as a function of the adhesive shear modulus G a,max for HA and FGAs (Fig. 5). For HA, it means that G a =G a,max . The selected range of variation G a,max is 1 MPa to 300 MPa. For HA, the results come from the formulae in Eq. ( 22) whereas for FGAs the ME model is used. It is shown that a similar evolution of the bolt load transfer as function of G a,max is obtained for HA and FGAs. The more the adhesive shear modulus is elevated, the less the fasteners transfer load. As for the HBB joint with HA, the HBB joint with the considered FGAs tends to behave like a pure bonded joint for higher G a,max and like a pure bolted joint for lower G a,max . Compared to the HBB joint with HA at a given G a,max , the HBB joint with FGAs at that G a,max are characterized by a higher transfer load by the fasteners. The range of G a,max for which the load is shared between the adhesive layer and the fasteners is restricted. In other words, the adhesive layer can be regarded as a third load path in addition to both load paths at fastener location is confined to low values of G a,max and the FGAs tend to enlarge the range of G a,max . For the remainder of the paper G a,max is fixed at 10 MPa, or ten times G a,min , which is an assumed level of maximal reinforcement. The concept of effective modulus presented by Adams and Mallick [START_REF] Adams | The effect of temperature on the strength of adhesively-bonded composite-aluminium joints[END_REF] allows for the use of linear structural sealants [START_REF] Hoang-Ngoc | Simulation of Single-Lap Bonded and Hybrid (Bolted/Bonded) Joints with Flexible Adhesive[END_REF][START_REF] Ramière | Jonctions hybrides boulonnées-collées. Application aux cas des structures d'avions[END_REF].

Fig. 5 Bolt load transfer rate as function of G a,max

C. Adhesive Behavior Under Loading

The adhesive shear stress distribution along the overlap for HA and FGAs are provided in Fig. 6. For HA, the results comes from the formulae in Eq. ( 23) is used whereas for FGAs the ME model is used. If both overlap ends are the location for the maximal adhesive shear stress for the HBB joint with HA, they are the location of the minimal adhesive shear stress for the HBB joint with FGA. The maximal adhesive shear stress is located at the middle of the overlap for the bilinear law and power law at p=1. It is located around the fastener location for the power law at p=2. The use of FGAs allow for this atypical shear stress distribution along the overlap [START_REF] Stein | Analytical models for functionally graded adhesive joints: A comparative study[END_REF][START_REF] Paroissien | Simplified stress analysis of functionally graded single-lap joints subjected to combined thermal and mechanical loads[END_REF].

Moreover, the fastener location (x=12 mm and x=36 mm) are points of discontinuity of the first derivative of the adhesive shear stress distribution for the HBB joint with HA and FGAs, due to the discrete load transfer mode at fasteners [START_REF] Paroissien | Contribution aux Assemblages Hybrides (Boulonnés/Collés) -Application aux Jonctions Aéronautiques[END_REF][START_REF] Carbas | Adhesively bonded functionally graded joints by induction heating[END_REF][START_REF] Carbas | Functionally graded adhesive joints by graded mixing of nanoparticles[END_REF]. For the geometrical and mechanical parameters selected in this paper, the HBB joint with FGAs exhibit maximal adhesive shear stress in a region of the overlap where the horizontal relative difference of longitudinal adherendthen related to the adhesive shear strainis minimal as shown in Fig. 7. It is noticed that the adhesive stresses and strains at both overlap ends in the FGA configurations appears as more or less independent on the considered graduation. The effects of the adhesive shear modulus graduation appears on the slope of the adhesive shear stress and strain distributions along the overlap as well as on the value and the position on the overlap of the maximal adhesive stresses. This behavior has already been observed by Stein et al. [START_REF] Stein | Analytical models for functionally graded adhesive joints: A comparative study[END_REF] for the case of pure bonded joints.

Besides, for ductile adhesives, it is well established that the adhesive stress is not the suitable strength criteria [START_REF] Adams | The effect of temperature on the strength of adhesively-bonded composite-aluminium joints[END_REF][START_REF] Stein | Analytical models for functionally graded adhesive joints: A comparative study[END_REF][START_REF] Hart-Smith | Adhesive-Bonded Double-Lap Joints[END_REF][START_REF] Niu | Airframe stress analysis and sizing[END_REF]. The adhesive shear strain and strain energy density distributions along the overlap for HA is then provided in Fig. 8. The adhesive shear strain energy density is defined from the adhesive shear strain and stress as it follows: In order to assess the potential benefit in static strength of the HBB joint with HA and FGAs compared to the pure bonded joint with HAtermed B s (HBB/A)it is assumed that the fastener behaviour is not affected during the loading. The potential benefit B s (HBB/A) is computed from the square root of the ratio between the maximal adhesive shear strain energy density of the pure bonded joint with HA to the maximal adhesive shear strain energy density of the pure bonded joint with HA or FGAs at fixed G a,max . The potential benefit B s (HBB/A) as function of G a,max , varying between 1 MPa and 10 MPa, is provided in Fig. 9. It is shown that, for the HBB joint with HA and FGA, the potential benefit increases with decreasing G a,maxrelated to an increase of the load transferred by the bolts. The use of FGAs instead of HA leads to a significant increase in the benefit of around 20% depending on G a,max and the graduation law. The potential benefit B s (HBB/A) does not seem to significantly vary with the graduation law, even if power law with p=1 and p=2 leads to higher benefit at higher G a,max than the bilinear graduation law. It is related to the fact that at fixed G a,max , the load carried by the fastener is higher with HA than with FGAs. Nevertheless, it has been shown that for the HBB joint with FGAs the adhesive shear strain energy density could vary the overlap abscissa and then with the actual value of G a , so that a potential benefit based on the maximal strain energy density could not be suitable. The adhesive shear strain energy density of the HBB joint with FGAs at G a,max =10 MPa is then drawn as function of the actual value of the adhesive shear modulus along the overlap and compared to the maximal adhesive shear strain energy density of the HBB joint with HA in Fig. 10, which is taken as reference. It is shown that the three graduation laws lead to adhesive shear strain energy density significantly lower than the one of the HBB joint with the HA at any G a . As a result, compared to the HBB joint with HA, the HBB joint with FGAs have a potential benefit higher than one, the value of which depends on G a,max and the graduation law. In order to assess the potential benefit in static strength of the HBB joint with HA and FGAs compared to the pure bolted jointtermed B s (HBB/F)it is assumed that the adhesive layer behaviour is not affected during the loading. The three main failure static modes of metallic bolted joints are (i) the net section failure, (ii) the bearing failure and the fastener shearing failure [START_REF] Niu | Airframe stress analysis and sizing[END_REF]. The net section failure depends on the passing load in the plate at the fastener location and the bearing and fastener shearing failure depends on the load carried by the fastener. As a result, the bolt transfer rate is a suitable parameter for the basis of a potential benefit assessment. The potential benefit B s (HBB/F) is then computed as the ratio between 0.5 and the actual bolt load transfer and is given as function of G a,max in Fig. 11. As expected from Fig. 4, the HBB joint with HA provides the maximal potential benefit B s (HBB/F). As for the HBB joint with HA, the potential benefit B s (HBB/F) for the HBB joint with FGAs tends to linearly increase with increasing G a,max . Among the three graduation law the power law at p=2 leads to higher B s (HBB/F). Besides, the potential benefit B s (HBB/F+) in static strength of the HBB joint with two lines of fasteners and with HA and FGAs compared to a pure bolted joints with three lines of fasteners is assessed. The objective is to 12. It is shown that for G a,max lightly higher than 4 MPa, a HBB joint with HA and two lines of fasteners has potentially has the same static strength as the pure bolted joint with three lines of fasteners. For HBB with FGAs, G a,max has to be taken equal from 5 MPa to 7 MPa, depending on the graduation law. Besides, following the Niu uni-axial analysis [START_REF] Niu | Airframe stress analysis and sizing[END_REF], the fatigue strength of bolted joints is related to the stress concentration factor, computed as the ratio of the peak stress at fastener hole with the remote applied stress. The peak stress is computed from the by-passed load and the transferred load so that the stress concentration factor appears a linearly increasing function of the bolt load transfer rate. As a result, assuming that the adhesive behaviour is not degraded under fatigue loaded, it could be possible, with the previous simple analysis, to simply assess the potential benefit in terms of fatigue strength of HBB joints with HA or FGA. It is indicated that Lim et al.

𝑈(𝑥) = 1 2 𝑒 𝑎 [ 𝑢 2 (𝑥) -𝑢 1 (𝑥) 𝑒 𝑎 ] 𝐺 𝑎 (𝑥) [ 𝑢 2 (𝑥) -𝑢 1 (𝑥) 𝑒 𝑎 ] = 1 2 𝐺 𝑎 (𝑥) 𝑒 𝑎 [𝑢 2 (𝑥) -𝑢 1 (𝑥)] 2 (26) 
[21] has recently shown that, in the case of HBB joint with a flexible epoxy adhesive, the load carried by the fastening system increases under cyclic loading up to a constant value, allowing for a load with the adhesive layer. 

C. Remarks and Limits

From the previous analysis, it is possible to represent for the potential benefit B s (HBB/F) as a function of B s (HBB/A) for HBBA with HA and FGAs such as G a,min =1 MPa and G a,max varying between 1 MPa and 10 MPa (Fig. 13). It allows for a simple representation of the potential design choices as functions of prescribed strength objectives expressed in terms of pure bonded or pure bolted joint solutions. For the HBB joint under consideration, the power graduation law at p=2 seems to be the most efficient among the graduation laws tested.

The single-lap configuration leads to the existence of adhesive peel stress due to the eccentricity of the load path.

That peel stress is mainly driven the failure of adhesive layer at both overlap ends, before reaching its maximal adhesive shear strain energy [START_REF] Hart-Smith | Adhesive bonded single lap joints[END_REF]. Several design solutions have been published to reduce the adhesive peel stress [START_REF] Da Silva | Handbook of Adhesion Technology (2 volumes)[END_REF]. The tapering of adherends at overlap ends, which allows for a progressive increase of the neutral line lag, is one solution for example [START_REF] Hart-Smith | Adhesive-bonded scarf and stepped-lap joints[END_REF][START_REF] Oterkus | Nonlinear analysis of bonded composite joints[END_REF]. When applicable to the design requirements, these solutions could promote the failure of the adhesive layer used in the HBB joints by shearing instead of peeling. Besides, the presented analysis of potential does not take into account for the progressive degradation of adhesive properties. The potential increase of the maximal applied tensile load sustainable, compared to the pure bonded configuration, cannot be captured [START_REF] Kelly | Quasi-static strength and fatigue life of hybrid (bonded/bolted) composite single-lap joints[END_REF][START_REF] Paroissien | Simplified stress analysis of hybrid (bolted/bonded) joints[END_REF].

This paper presents only a potential strength benefit which remains to be confirmed in terms of strength benefit, as function of the actual adhesive material behaviour laws and associated relevant strength criteria. 

V. Conclusion

In this paper, the potential static strength benefit of HBB joints with functionally graded adhesives (FGAs) is assessed, through a shear lag type simplified stress analysis applied to a particular single-lap joint, made of two thin identical aluminum plates and with two lines of fasteners. Three particular symmetrical graduation laws, defined by the minimum adhesive shear modulus G a,min chosen equal to 1 MPa and by the maximal one G a,max , are tested. The following conclusions could be made. Firstly, compared to a homogeneous adhesive (HA) at a maximal shear modulus G a,max , the FGAs allows for a better load sharing between the adhesive layer and the fasteners on a large range of adhesive modulus. Secondly, the HBB joint with HA offers then a higher potential strength benefit for the fastening part and lower potential strength benefit for the adhesive layer than FGAs. Thirdly, for the mechanical and geometrical configuration tested, the most attractive graduation law is the power law at p=2. In a similar way, this analysis could be performed in the 1D-beam framework instead of 1D-bar analysis, possibly involving adhesive and/or fastener nonlinear material law under various loading, using the ME technique. The models presented can be potentially used to optimize the adhesive graduation law as function of the geometrical and mechanical parameters of the joints to reach fixed potential strength benefits. This work focuses only on the potential mechanical strength and does not take into account for the certification and manufacturing requirements. Finally, an interesting application HBB joining of metallic sheets with HA and FGAs could be the reduction of the load transferred by the fasteners to improve the fatigue life compared to the pure bolted joint, while ensuring the static strength under extreme loads, if the adhesive is able to sustain the applied load over the time.

  AbbreviationsBBa = bonded-bars FE = finite element FGA = functionally graded adhesive
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 1 Fig. 1 Geometrical parametrization of the single-lap joint, boundary conditions and applied loads

Fig. 3 a

 3 Fig. 3 a) Free body diagram of infinitesimal pieces included between x and x+dx of both adherends in the overlap region. Subscript 1 (2) refers to the upper (lower) adherend, b) Nodal forces and nodal displacements on a BBa element

  elastic analyses to take into account nonlinear behaviour. It is based on an equivalency of adhesive shear strain energy. The range 1 to 10 MPa corresponds then to highly ductile adhesives in the previous framework or to
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 8 Fig. 7 Adhesive shear strain distribution along the overlap
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 910 Fig. 9 Potential benefit B s (HBB/A) in static strength of the HBB joint with HA and FGAs compared to the pure bonded joint with HA.

Fig. 11 Fig. 12

 1112 Fig. 11 Potential benefit B s (HBB/F) in static strength of the HBB joint with HA and FGAs compared to the pure bolted joint

Fig. 13

 13 Fig. 13 Potential benefit B s (HBB/F) as function of the potential benefit B s (HBB/A) for HBB with HA andFGAs such as G a,min =1 MPa and G a,max varying between 1 MPa and 10 MPa

Table 1 Numerical and geometical parameters

 1 

	b (mm)	C (N.mm -1 )	d (mm)	E 1 =E 2 (MPa)	e a (mm)	e j (mm)	f (kN)	L (mm)	l 1 =l 2 (mm)
	24	30000	12	70000	0.2	1.6	5	48	48

Ga in MPa adhesive shear strain energy density in N.mm -1 bilinear (Ga,min;Ga,max)=(1;10)MPa² power_p=1 (Ga,min;Ga,max)=(1;10)MPa² power_p=2 (Ga,min;Ga,max)=(1;10)MPa² homogeneous [maximal] maximal values reached with HBB with HA at corresponding G a evaluate

  the level of G a,max allowing for the removal of one third of fastener pitches. The maximal bolt load transfer rate is located at external fastener lines and is equal to 34.70%, by using the ME model with G a =1E-8 MPa. To compute B s (HBB/F+), this last bolt load transfer rate is taken as the reference bolt load transfer rate instead of 0.5 in B s (HBB/F). It is given as a function of G a,max in Fig.
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Appendix

This appendix aims at providing elements of validation of the simplified stress analysis presented in this paper.

Firstly, the 1D-bar simplified stress analysis is based on two well-known models: (i) the electrical analogy model for the bolted part by [START_REF] Ross | An electrical computer for the solution of shear-lag and bolted joints problems[END_REF] [START_REF] Ross | An electrical computer for the solution of shear-lag and bolted joints problems[END_REF] and (ii) the shear-lag model for the bonded part with HA by [START_REF] Volkersen | Die Nietkraftverteilung in Zugbeanspruchten Nietverbindungen mit konstanten Laschenquerschnitten[END_REF] [START_REF] Volkersen | Die Nietkraftverteilung in Zugbeanspruchten Nietverbindungen mit konstanten Laschenquerschnitten[END_REF]. In other words, the 1D-bar model for HBB joints with HA is founded on the same hypotheses as those used by Ross and by Volkersen, so that it consists in adding the punctual shear springs by Ross simulating the fasteners within the shear lag model by Volkersen. The ME technique allows for the resolution of the system of ODE's involved. The resolution by the ME technique hase already been compared with a more classical resolution scheme based on the direct integration of ODEs [START_REF] Paroissien | Contribution aux Assemblages Hybrides (Boulonnés/Collés) -Application aux Jonctions Aéronautiques[END_REF][START_REF] Paroissien | Hybrid (bolted/bonded) joints applied to aeronautic parts: Analytical onedimensional models of a single-lap joint[END_REF]. It was shown that both resolution schemes provide the same results for the same set of modelling hypotheses. In order to fit the experimental results as well as the FE predictions, the fastener stiffnesses are tuned as shown in [START_REF] Paroissien | Contribution aux Assemblages Hybrides (Boulonnés/Collés) -Application aux Jonctions Aéronautiques[END_REF]. Moreover, the 1D-bar model for HBB joints was enriched to take in to account for elasto-plastic adhesive material behavior [START_REF] Paroissien | Contribution aux Assemblages Hybrides (Boulonnés/Collés) -Application aux Jonctions Aéronautiques[END_REF][START_REF] Paroissien | Hybrid (bolted/bonded) joints applied to aeronautic parts: Analytical onedimensional models of a single-lap joint[END_REF]. This enriched model was retaken by Bois et al. [START_REF] Bois | An analytical model for the strength prediction of hybrid (bolted/bonded) composite joints[END_REF] and assessed with success against predictions from finite element (FE) models. The same conclusions on the configuration of pure bonded joints with HA can be found in a paper published by the authors of the present paper and co-workers [START_REF] Paroissien | Elasto-Plastic Analysis of Bonded Joints with Macro-Elements[END_REF]. When dealing with the FGA, the 1D-bar HBB model remains founded on both previous well-known models for pure bonded joints and pure bolted joints. In order to take into account for the graduation of adhesive properties, the ME technique is applied involving a mesh strategy. As a result, the 1D-bar model for HBB joints with FGA consists again in adding the punctual shear springs by Ross simulating the fasteners within the shear lag model by Volkersen. In [START_REF] Paroissien | Simplified stress analysis of functionally graded single-lap joints subjected to combined thermal and mechanical loads[END_REF], it is shown that, for the 1D-model for bonded joints with FGA, the resolution scheme using the ME technique provides the same results as the resolution scheme based on Taylor expansion power series by Stein et al. [START_REF] Stein | Analytical models for functionally graded adhesive joints: A comparative study[END_REF], who made available their code as a supplementary materials. A comparison of predictions in terms of the adhesive shear stress distributions along the overlap by the Stein et al. 1D-bar code and the present 1D-bar code is provided in Fig. 14. The material and geometrical parameters described in Table 1 are chosen as well as a power law graduation with p=1 and G a,min =1 MPa and G a,max =10 MPa. Moreover the 1D-ME HBB code is forced to work without any fasteners by setting the fastener stiffnesses C equal to 0 N.mm -1 . The predictions are in very close agreement.

Fig. 14 Comparison of predictions in terms of adhesive shear stress distributions by Stein et al. code and the present 1D-bar ME HBB code with a fastener stiffness C=0 N.mm -1

The authors of the present paper and co-workers have published a recent and detailed paper dedicated to the validation of 1D-bar and 1D-beam simplified stress analyses involving the ME technique as the resolution scheme for the single-lap bonded joints with FGA under combined thermal and mechanical loadings [START_REF] Paroissien | A comparison between macro-element and finite element solutions for the stress analysis of functionally graded single-lap joints[END_REF]. The validation was performed against 1D-bar or 1D-beam FE models and 3D FE models for which the adhesive layer is modelled