

Kinetics of heat-induced denaturation of whey proteins and characterization of protein aggregates in model infant formulas

8th ISFRS 18th June 2019 ETH Zurich

amira.halabi@inra.fr

Infant milk formulas (IMFs)

Way of feeding of world infants 0-5 months of age in 2018

Benefits of breastfeeding

Goal for the IMF formulation:

to mimic the human milk composition, in particular the protein profile

Milk proteins

The CN:WP ratio and the WP composition have to be modified for the IMF formulation

Heat treatments of IMFs

Adapted from Human Milk Biochemistry and Infant Formula Manufacturing Technology, 2014

Lack of knowledge of the heat treatment impact on the IMF proteins

Objectives and strategy

Heat treatment impact on the protein fraction of IMFs mimicking

the human milk protein profile

Prediction of the **WP denaturation rate and the protein structure** in heated IMFs, based on their WP composition and the heat treatment parameters

Part 1: Kinetics of heat-induced denaturation of WP

Part 1: Kinetics of heat-induced denaturation of WP Strategy

Part 1: Kinetics of heat-induced denaturation of WP

Kinetics of thermal denaturation of WP in IMFs at 75°C

Part 2: Characterization of heat-induced protein aggregates

Part 2: Characterization of heat-induced protein aggregates

Part 2: Characterization of heat-induced protein aggregates Protein aggregate morphology of the IMFs heated at 80°C by transmission electron microscopy

Variation of the nature and morphology of protein aggregates according to the IMF and the heat treatment parameters

Objectives

Study of the heat treatment impact on the protein fraction of IMFs mimicking the human milk protein profile

Strategy

- Kinetics of heat-induced denaturation of WP
- Characterization of heat-induced protein aggregates

Results

- Kinetics of heat-induced denaturation of WP
 - No modification of the heat denaturation rate of LF by the presence of the other WP
 - Decrease of the heat denaturation rate of α -LA with the β -LG content reduction
 - Increase of the heat denaturation rate of β -LG in the presence of LF
- Characterization of heat-induced protein aggregates
 - Composition and morphology of protein aggregates depend on the WP composition of IMFs and the heat treatment parameters

Acknowledgements

PhD funding

Research supports

Pascaline Hamon Arlette Leduc Marie-Bernadette Maillard

Ecole d'ingénieurs

Marie Hennetier Frédéric Violleau

Agnès Burel Aurélien Dupont

Thank you for your attention

amira.halabi@inra.fr

Please visit http://www.rennes.inra.fr/stlo_eng

Supplemented data

Part 1: Kinetics of heat-induced denaturation of WP

Fraction of residual native WP in IMFs after pasteurization treatments

High pasteurization treatment: *M* native WP for IMFs without β-LG

Part 2: Characterization of heat-induced protein aggregates Contents of residual native WP in IMFs at 65% of WP denaturation rate

Variation of the residual native WP contents according to the IMF and the heat treatment parameters

💋 α-LA

β-LG

LF

Part 2: Characterization of heat-induced protein aggregates AF_4 – MALLS data for the CN micelle population of the unheated and heated IMFs at 67.5°C and 80°C

		Elution range (min)	$\overline{M_w}$ (10 ⁸ g.mol ⁻¹)	$\overline{R_g}$ (nm)	R _g /R _h ratio	df _{app}
Control	Unheated	20-28	6.4	140	1.1	3.0
	67.5°C	22-28	5.8	116	1.1	2.9
	80°C	22-28	6.8	123	1.2	2.9
LF ⁺	Unheated	20-28	4.7	142	1.1	3.1
	67.5°C	20-28	6.0	138	1.2	3.3
	80°C	20-28	7.3	167	1.5	2.6
LF ⁺ α-LA ⁺	Unheated	20-28	4.7	148	1.1	2.7
	67.5°C	20-28	6.0	152	1.1	2.9
	80°C	20-28	6.2	124	1.1	2.6

