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Improving data identification and tagging for more effective decision making in agriculture 

Pascal Neveu and Romain David, INRA, France and Clement Jonquet, LIRMM, France 

Abstract 

Data integration, data analytics and decision support methods can help increase agriculture 

challenges such as climate change adaptation or food security. In this context, smart data 

acquisition systems, interoperable information systems and frameworks for data structuring are 

required. In this chapter we describe methods for data identification and provide some 

recommendations. We also describe how to enrich data with semantics and a way to tag data with 

the relevant ontology. We illustrate the proposed approach in a case of high-throughput plant 

phenotyping. 
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1 Introduction 

Global demand for food products is increasing sharply, and the current growth rates in agriculture 

are clearly inadequate and ill-adapted. Today, an urgent and profound redesign of agriculture is 

crucial to increase production and reduce the environmental impact. In this context, a major 

challenge is the shift to digitization – entering the Big Data era – to enable a better understanding 

of the complex mechanisms underlying the sustainable improvement in crop yields and adaptation. 

This requires studying not only the genotype, phenotype and environment relationships but also 

the social or health aspects. This highly interdisciplinary challenge (agronomy, genetics, biology, 

sociology, etc.) requires intensive data integration. In this context, we shall develop and promote 

new methods and tools for decision makers, researchers and other agricultural actors, especially in 

relation to: 

● the development of the use of sensors with a smart data acquisition system suitable for the 

areas such as precision farming, 



● the advances in the design of interoperable information systems for agricultural (Big) data, 

and 

● providing data structuring frameworks for visualization, data analytics, knowledge 

discovery and decision support. 

However, agriculture researchers face multiple data challenges such as (i) the change of scale in 

the production and exploitation of data (Big Data), (ii) the need to share and reuse these data with 

others in an open approach (Open Data) and, finally, (iii) interoperability and the transformation 

of data into knowledge (Linked Data). Structuring the data is a prerequisite for more effective data 

exploitation, analysis and decision making. By ‘structured’, we mean data that are organized into 

different parts following a specific data model, for example, data contained in databases or 

spreadsheets or stored in a specific standard format. In Section 2, we discuss two specific aspects 

related to structuring the data: 

● Identification: objects, concepts and data must be clearly identified. 

● Semantics and tagging: the meaning of objects and concepts and the relation between them 

must be clearly formalized. 

Additionally, data describing contexts, often from outside producers, are key to interpreting 

antropic and natural phenomena and effects on agrosystems. Parameters concerning the weather, 

pedology, hydrology and social environment are produced and banked by different organizations. 

For instance, social and biodiversity data, which can be essential for developing agro-ecological 

approaches, are produced and hosted by a multitude of actors (institutes, associations, 

environmental agencies, etc.). For efficient decision support, these heterogeneous contextual data 

must enrich and complement agricultural data. In the meantime, both agricultural data and context 

data are now provided by thousands of various data sources (data repositories, registries and 

knowledge bases), requiring scientists and stakeholders to develop international recommendations 

and standards to improve interoperability while ensuring data traceability and ownership. Better 

semantically described data have proved a source for better decision support systems, including in 

agriculture (Lousteau-Cazalet et al., 2016; Guillard et al., 2015). Stakeholders are now embracing 

the FAIR data principles (Findable, Accessible, Interoperable, and Reusable) to allow the 

implementation of integrative analyses and multisource decision support systems, based on better 

data structuring, analysis and curation (Wilkinson et al., 2016). 



High-throughput phenotyping (phenomics), the plant selection process that aims to identify the 

most adapted genotypes, is a good illustration of the data challenges faced by the agricultural 

research community. For example, in plant sciences, phenomics platforms produce huge complex 

datasets (images, spectrum, human readings, soil analysis) from different scales (molecular to plant 

population) in various contexts of strongly instrumented installations (field, greenhouse). 

Phenomics datasets must be accessible to the scientific communities (genetician, bioinformatician, 

ecophysiologist, agronomist, statistician, sociologist, etc.) who have intensive data integration 

needs in order to help them in their selection. This case study will be further detailed in Section 3. 

2 Structuring the data 

In agriculture, observation and management systems, developed and used in many settings, 

produce a large volume of heterogeneous data, which are difficult to aggregate since they focus on 

specific issues. There are various data sources in agriculture that require miscellaneous knowledge 

and skills to be used together accordingly. For instance, agricultural data sources can be related to 

agricultural production, farm practices, transformation, distribution and so on. Since a few years, 

another important sources of data are not only connected objects in agriculture (Tzounis et al., 

2017) – weather stations, insect traps, soil moisture sensors and water meters connected to 

irrigation – but also various sensors installed on animals to evaluate their conditions (health 

measures, temperature, movement), milking robots (quantity and quality of milk) or feeding 

automata. Agro-equipment is increasingly enriched with sensors, for precision farming (e.g., 

provide the plant exactly what it needs) and predictive maintenance. Satellite images are another 

example: the Sentinel constellation delivers free images at a very high temporal frequency (every 

5 days), which opens up new research and business opportunities. Agricultural production 

traceability requirements are now supported, in part, by automated reading systems, with radio 

frequency identification (RFID) and NFC chips, or by the manual input of agricultural 

interventions from smartphones with direct transmission to the applications software. The 

challenge is to automate data acquisition so that it has virtually no cost and is not an additional 

charge for farmers or scientists (Wolfert et al., 2017). Finally, high-throughput phenotyping 

methods, essential for shortening the production cycle of new seeds, are also sources of massive 

data (e.g., phenotype-monitoring platforms produce thousands of images per day) to link with 

genotypic data (Halewood et al., 2018). 



Organized and structured access to primary agricultural data is a sine qua non condition for 

building efficient decision support systems to achieve the conservation of biodiversity and 

sustainable development. Organizing, managing and storing of various data require new 

approaches. Proper data structuring enables to organize data to suit a specific purpose so that they 

can be accessed and worked with in appropriate ways. The better the data structure, the better we 

will be able to group them with other data and learn from them. 

2.1 Identification 

An identifier is a sort of name that identifies a specific object (digital or not) in a set of objects. In 

an ideal world, identifier should be unique for each object (bijection); in practice this is rarely the 

case. In most cases a resource (object) can have several (not all unambiguous) identifiers 

depending on the context. An identifier is unambiguous if it makes it possible to identify an 

individual in a specific context in a safe way (McMurry et al., 2017). An unambiguous identifier, 

which cannot refer two different objects, is called GUID (globally unique identifier) or UUID 

(universally unique identifier); irrespective of whatever the database or source, all disciplines taken 

together, no other object will be designated identically, for example, ISBN for books. For software 

objects, GUIDs are typically randomly generated 128-bit codes. There are several specifications 

for identifiers, for example, UUID, LSID, ARK, DOI, URI, RFID, XRI. The relevance of these 

different mechanisms depends on the context and, of course, of the characteristics of objects to 

identify. Data identification also depends on the range of the use of the resource. If the resource 

shall be referenced only within a limited range or system, it could be assigned a local identifier. 

But if it shall move to another system (e.g., for the purposes of expert measures such as chemistry 

of soil and water quality) or if it shall be reused and aggregated with data of different provenances 

or contexts, a ‘reliable’ global and long-term identification mechanism is necessary. 

Long-term structuring of data requires to reliably identify all the concepts, objects and their 

properties described in the information systems. A persistent identifier is an identifier that is 

permanently assigned to an object (ideally usable in several decades). For example, once an ISBN 

is assigned to a particular book, that number is always associated with that book and no other book 

will ever receive the same number. Likewise, identifiers must be persistent and shall not change. 

The problem is that during periods of decades, many changes can occur not only within databases 

but also in institutions or organizations in charge of the data. It is thus necessary to preserve and 



recover dependencies between these elements, in time and in localization. Persistent identifiers 

play a key role in adopting Open Science (Dappert et al., 2017). The reliability of this identification 

depends on some essential qualities described, for instance, in W3C Recommendations 

(https://www.w3.org/TR/cooluris/) and must assure persistent security, traceability and reusability 

of data. The key to rich integration is a commitment to deploy and reuse globally unique, shared 

identifiers and to implement services that link those identifiers (Page, 2008). The major persistent 

identification system appears in chronological order: Handle (1994), Persistent URL (1995), 

Uniform Resource Name (URN; 1997), Archival Resource Keys (ARKs; 2001) and eXtensible 

Resource Identifier (XRI; 2005). 

For instance, persistent GUIDs are usually generated as groups of dash-separated hexadecimal 

characters, for example, 120a-e29f-a861-12f5-5a52. Their three main qualities are: 1) to be 

generated in a non-centralized way, 2) to make extremely improbable the random generation of 

two identical identifiers and 3) to be completely opaque and not sensitive to the changes of 

authorities or names of authorities. These automatically generated GUIDs can be used as a basis 

for the construction of other identifiers, for example, by adding a prefix (URI, URL, domain name, 

authority name). A GUID, when it is integrated in an URI, can be dereferenceable as explained 

hereafter. 

Uniform resource identifier (URI) is defined by the RFC 3986 standard1 provided by the W3C, 

which specifies: ‘An URI is a compact sequence of characters that identifies an abstract or 

physical resource. This specification defines the generic URI syntax and a process for resolving 

URI references that might be in relative form, along with guidelines and security considerations 

for the use of URIs on the Internet. The URI syntax defines a grammar that is a superset of all 

valid URIs, allowing an implementation to parse the common components of a URI reference 

without knowing the scheme-specific requirements of every possible identifier. This specification 

does not define a generative grammar for URIs; that task is performed by the individual 

specifications of each URI scheme’. All Web hyperlinks (URLs) are expressed as URIs. 

Dereferencing is also an important aspect: an URI is said to be dereferenceable if it is possible to 

obtain all the digital contents describing the referenced resource (e.g., URL). The act of retrieving 

 
1 https://tools.ietf.org/html/rfc3986  



an information of a resource identified by a URI is known as dereferencing that URI. To 

summarize on URI/URL one can say that:2 

● URL identifies what exists on the Web; 

● URI identifies, on the Web, what exists; and 

● IRI identifies, on the Web, in any language, what exists. 

Life science identifiers (LSIDs) are represented as an URN with the following format: 

urn:lsid:<Authority>:<Namespace>:<ObjectID>[:<Version>]. But LSIDs are not strictly URIs, 

and so are not always dereferenceable. Bioinformatics and biodiversity communities use them as 

a way of identifying species in global catalogs. LSIDs have been criticized as violating the Web 

architecture’s good practice of reusing existing URI schemes. 

Digital Object Identifier (DOI), initially used in bibliographic databases, allows the identification 

of digital resources, such as a report, scientific articles or any other type of digital object objects. 

The purpose of the DOI is to associate metadata describing the object, for example, in 

bibliography, to produce more reliable, unambiguous and longer-lasting citations. DOIs are issued 

by DOI agencies, part of the DataCite consortium. A DOI is a special case of Handle ID3 with the 

following format: doi:10.<Naming Authority>:<Registry_Number>, and it contains a link to the 

metadata (restrictions of use or copyright and naming authority among others), described by a data 

model common to all DOIs, the indecs Data Dictionary, an address or physical location for the 

digital object (usually a URL) that the DOI translator will use to redirect. For instance, prefixing 

a DOI with https://doi.org/ allows to dereference the identifier into a landing page storing or 

describing the object identified. DOI provides a good frame for a persistent identification of 

agricultural datasets. 

ARK is a perennial identifier system based on the URI standard. ARK is designed to ensure long 

term identification of a resource, scalability and independence. An ARK contains a portion 

impervious to changes and a flexible portion, which designates a shape of the object or a mode of 

access thereto. An ARK URL is subdivided into two URLs: the first, optional, gives the addressing 

authority NMA (Name Mapping Authority), while the second is the ARK URL, fixed and proper, 

which includes a NAAN (Name Assigning Authority Number) and the name given to the object. 

 
2 Credit to Fabien Gandon’s (INRIA). 

3 The Handle System is a technical specification for assigning, managing and resolving persistent identifiers assigned 

to digital objects and other internet resources. 



An XRI is a schema and resolution protocol for abstract identifiers compatible with URIs. The 

goal of XRI is to provide a universal format for abstracts, structured identifiers that are independent 

of domains, locations and transport applications, so that they can be shared across a large number 

of domains, directory and protocols. 

Identifying samples and real objects with a persistent identifier is possible with several 

standardized methods that can be linked with previous persistent identifiers (e.g., bar code that is 

a visual, machine-readable representation that describes something about the object that carries the 

barcode). It can have one or two dimensions and represents a numerical identifier. For instance, 

Universal Product Code from industrial sector is a worldwide retail, GS1-approved international 

standard (ISO/IEC 15420). 

The identification of real objects has been increasing since the appearance of the internet of things 

(IoT). Between RFID chips, naming solutions and middlewares, the IoT is composed of many 

complementary elements, each having its own specificities. 

For real objects, RFIDs are based on radio tags that can be pasted or embedded in objects or 

products and even implanted into living organisms (animals, human body). This identification 

method can be used to identify objects, such as those with a barcode (electronic label), people 

(being integrated in passports, transport card, payment card or domestic carnivores by implantation 

under the skin), cats, dogs and so on. The RFID identification of pets is mandatory in many 

countries. For traceability purposes, this is often the case for farm animals. The International Geo 

Sample Number (IGSN) retains the identity of a sample even if it is transferred from one laboratory 

to another, and the data appear in different publications, thus eliminating any ambiguity from 

similar names of other terrestrial samples. It allows researchers to reconstruct the analytical history 

of a sample. The IGSN, developed as part of SESAR (System for Earth Sample Registration), is a 

nine-character identifier. It is designed to ensure backward compatibility with previously collected 

data as new techniques are developed. The IGSN network allows to link data generated by 

researchers and published in different scientific articles. Research Resource Identifier (RRID) aims 

to authenticate the key resources: antibodies, model organisms and tools (software, databases, 

services). But it is dedicated to the medical domain, and it could be relevant to extend it to 

agriculture. 

The persistence of an identifier relies on the durability of the system to provide the identifier and 

its capacity to dereference. It is clear that this sustainability is not always a strong priority of 



institutions. Durability also depends on the durability of the organizations themselves. The 

missions and perimeters of national and international identifying organizations are regularly re-

evaluated and modified. Several global database organizations were created, to catalog and 

monitor research organizations worldwide, such as GRID (Global Research Identifier Database), 

Ringgold IDs, ISNIs (International Standard Name Identifiers) or the Research Organization 

Registry. For instance, most URIs, regardless of their type, include the name of the institute that 

generates or host them. These changes needed to be tracked so that identifiers stay valid; this is 

the role of so-called data authorities and a prerequisite to the consensual adoption of a truly 

perennial and shared global identification system. Today, many self-established or defecto 

reference identifier generators, some of them proprietary, co-exist (e.g., Pensoft, Zenodo, PubMed, 

ResearchGate, ResearcherID, HAL-ID). However, the existence of systems established and 

promoted by economic actors is questionable, either for ethical or economical reasons, for 

example, what if Google-Bing-Yahoo-launched Schema.org reference system was stopped 

because it is unprofitable? Therefore, identifier governance and management should be based on 

a system equivalent to the management of domain names and supported by a standard Web 

organization like W3C.4 

We clearly established identifiers that are used in schemas or standard vocabularies and ontologies 

(cf. Section 2.2) to provide information (properties, relations) about the object (e.g., responsible 

organization, type of object, definition, labels). As ontologies are changing with digital objects, 

the persistent identification method must support different versions of an object. Versioning 

becomes then an important aspect when building identifiers, for example, predefined period and 

important update releases (curation of data, campaign of collection). On the other hand, some 

versioning processes must trace all the transformations made on the data for history management. 

Services such as B2HANDLE can allow to support this. 

Today, the URI system is a standard used in a large variety of domains: genetic, chemistry, IoT, 

life sciences and so on. As an identifier, the URI must have some properties: non-ambiguousness, 

unicity, persistence, stability and resolvability. 

 
4 The World Wide Web Consortium is led by three organizations: the MIT Computer Science and Artificial Intelligence 

Laboratory (the United States), Keio University (Japan), the National Institute of Research in Computer Science and 
Automation (France). Its role is only advisory. 

 



Here is an example of an URI: http://www.phenome-fppn.fr/m3p/arch/2017/c17000915 (which is 

not dereferenceable). It uses the following pattern: 

http://subdomain.yourdomain.topdomain/path/identifier 

Properties of URIs are: 

● Non-ambiguousness: the URI must be associated with only one resource. 

● Unicity: only one URI for one resource. 

● Persistence: once a resource is given an URI, one should not replace or delete the URI. 

● Stability: URI has to remain the longer possible (at least 20 years) and should not be 

reassigned to another resource. The definition is close to the persistence; stability is 

persistence over a long time. 

● Resolvability: URI should be used through internet browser to find information about the 

resource or the resource itself (also called dereferenceable). 

When these principles are not respected, one may encounter several issues. Usually non-

ambiguousness and unicity are usually not a problem as everyone understands their importances. 

However, stability and persistence are much more difficult to get: typical case is when part of this 

URI is changing. For example, the domain name www.phenome-fppn.fr later becomes 

phenotyping.fr. Thus, the unicity of phenotyping.fr/m3p/arch/2017/c17000915 is not guaranteed; 

there could be two different resources identified with the same URI, the phenotyping.fr ID and 

another with the phenome.fppn.fr ID. 

In summary, few rules must be followed to create good URIs in agriculture: i) use minimal 

information and do not use everything that may change, ii) use persistent URL, iii) provide 

multiple output format – content negotiation – and link them together, iv) request on the external 

identifier (identifiers.org, n2t.net, w3id.org, ePIC5), v) integrate and reuse already-existing 

identifiers. Things to avoid include: i) avoid file extension in the URI, ii) avoid query-specific 

characters (e.g., ‘?’ or ‘&’), iii) use auto-incrementation carefully (not for versioning purpose). To 

conclude, identification is a first step to go further in order to improve decision support. Once the 

objects have been identified, it is necessary to specify how they are used and the role of each in 

relation to the others, in other words, to allow the implementation of methods related to semantics 

and tagging. 

 
5 https://www.pidconsortium.eu/ 



2.2 Semantics and tagging 

2.2.1 Interoperability with ontologies and the Semantic Web 

Data structuring and understanding need metadata for their description and use. Several categories 

of metadata must be provided such as descriptive, administrative, technical and provenance. Too 

often, metadata are poor and incomplete, hampering effective data reuse. In some virtuous 

situations, these data and associated contexts can be informed, very precisely, but not in a machine-

readable format. Metadata are often simple (wording, date of creation, contact point, cartographic 

projection, size, etc.) or very detailed (data quality measurements for each data element, 

provenance, versioning or historical maintenance service of the measurement instruments, 

constraints of use, etc.). Structuring the data and providing metadata are essential for the 

understanding and good use of data in decision processes. It is therefore important to pay special 

attention to the semantics of the data. Earlier we get metadata better they are. 

Semantic interoperability enables data integration and fosters new scientific discoveries by 

exploiting various data acquired from different perspectives (e.g., agricultural and context data). 

For instance, a scientist experimentally measures the sensitivity of a plant to a disease (agronomy 

vision), whereas a farmer concretely observes the leaves of the plant turning brown (agriculture 

vision). Both are phenotypes, or traits, information, but they come from two different worlds that 

must yet be more connected. This shall be possible only through lifting the data into meaningful 

knowledge for humans, yet exploitable by machines. 

A researcher studying a certain plant trait (e.g., resistance to a disease) is interested in the gene 

that controls this phenotype, the expression of this trait in different crop varieties observed in 

different environments and, of course, its effect on the crop yield or for associated needs such as 

the use of pesticides. The information we need to answer such questions is available in multiple 

datasets expressed using various ontologies (crop ontology, plant ontology, trait ontology, etc.) 

and at various levels (e.g., population, individual, organ); the issue is finding that information and 

combining it in a meaningful way for researchers, breeders and ultimately farmers, consumers or 

any stakeholders of the value chain. 

Ontology engineering is a sub-domain of knowledge engineering that deals with knowledge 

representation and reasoning. An ontology is described as a ‘formal specification of 

conceptualization’ (Gruber, 1993); it ‘defines the terms to describe and represent an area of 



knowledge’. Ontologies are composed of concepts, relations and instances. For example, if you 

want to define a car, you should say: ‘a car is a transportation object, with four wheels, and one 

needs a licence to drive it. My blue Ford Mustang is a car’. ‘Car’ is a concept, ‘is a’ is a relation 

and ‘My blue Ford Mustang’ is an instance. 

The Semantic Web is the area in which ontologies are used to structure data into formal knowledge. 

The Semantic Web provides the necessary techniques and technologies to build a Web of data (or 

Linked Open Data (LOD)) as well as reasoning on ontology concepts and mapping between 

ontologies. The Semantic Web relies on a set of core technologies such as RDF, RDF-S, OWL, 

SPARQL and SKOS; all of them are built on top of the notion of URIs, which are employed to 

formally identify objects and remove ambiguity. The Resource Description Framework (RDF) is 

the W3C language to describe data. It is the backbone of the Semantic Web. SPARQL is the 

corresponding query language. Complementary, RDF Schema (RDF-S), the Web Ontology 

Language (OWL) and the Simple Knowledge Organization System (SKOS) are languages to build 

schemas, ontologies and vocabularies/thesaurus. Figure X (credit to http://lod-cloud.net) 

illustrates, as of the beginning of 2017 and previously, part of the amount available as LOD and 

the importance of ontologies/vocabularies (most of the life sciences section in pink are ontologies 

listed in the NCBO BioPortal; Noy et al., 2009).6,7 

The Semantic Web offers the methods and technologies to extract/transform Big Data into 

actionable knowledge (Grigoris and Van Harmelen, 2004).8 It relies on standard vocabularies and 

ontologies to formally capture the knowledge of a domain into semantic resources that computers 

use to index, search or reason on the data. 

Tim Berners-Lee, the inventor of the Web and initiator of the Linked Data project, suggested a 

five-star deployment scheme for Linked Data. The five-star Linked Data system is cumulative. 

Each additional star presumes the data meet the criteria of the previous step(s).9 

☆Available on the Web, in whatever format 

☆☆ Available as machine-readable structured data (i.e., not a scanned image) 

☆☆☆ Available in a non-proprietary format (i.e., CSV, not Microsoft Excel) 

 
6 Linking Open Data cloud diagram 2017-08-22, CC-BY-SA by Andrejs Abele, John P. McCrae, Paul 

Buitelaar, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/ 

7 https://commons.wikimedia.org/wiki/File:Graphe_Web_des_donn%C3%A9es_depuis_4_ans.png 

8 See the MOOC Web of Data for a quick introduction: https://www.coursera.org/learn/web-data 

9 https://www.w3.org/2011/gld/wiki/5_Star_Linked_Data 



☆☆☆☆ Published using open standards from the W3C (RDF and SPARQL) 

☆☆☆☆☆ All of the above and links to other LOD 

The purpose of the Web of data is not to create another Web, since it is based on its current 

architecture (the URI system and the HTTP protocol), but to create an extension. RDF is to 

structured data what HTML is to documents, an interoperability framework that ensures 

consistency in the handling and processing of these data by machines. 

2.2.2 Ontologies and semantic tagging in agriculture 

In recent years, we have seen an explosion in the number of semantic resources (thesauri, 

terminologies, vocabularies and ontologies) being developed in agronomy and agriculture, for 

instance, the plant ontology, environment ontology, crop ontology or agronomy ontology, which 

opened the space from various types of semantic applications to data integration or decision 

support. Ontologies in agriculture are spread out around the Web (or even unshared), in many 

different formats and artifact types, and with different structures. Agronomy (and its related 

domains such as food, plant sciences and biodiversity) needs a one-stop shop, allowing users to 

identify and select ontologies for specific tasks, as well as offering generic services to exploit them 

in search, annotation or other scientific data management processes. The need is also for a 

community-oriented platform that will enable ontology developers and users to meet and discuss 

their respective opinions and wishes. And, with such a number of ontologies, new problems have 

raised such as describing, selecting, evaluating, trusting and interconnecting ontologies. For this 

reason, ontology repositories, such as AgroPortal (Jonquet et al., 2018), are offering a reference 

point of entry for interconnected vocabularies and ontologies in agronomy and agriculture. 

AgroPortal offers a robust and reliable service to the community that provides ontology hosting, 

search, versioning, visualization, comment and recommendation; enables semantic annotation; 

stores and exploits ontology alignments; and enables interoperation with the Semantic Web. 

One important use of ontologies is for annotating and indexing text data. Indeed, ontologies allow 

representing data with clear semantics that can be leveraged by computing algorithms to search, 

query or reason on the data. One way of using ontologies is by means of creating semantic 

annotations or semantic tags. An annotation is a link from an ontology term to a data element, 

indicating that the data element (e.g., article, experiment, observation, medical record) refers to 

the term. When doing ontology-based indexing, we use these annotations to ‘bring together’ the 



data elements from these resources. However, explicitly annotating data is still not a common 

practice for several reasons (Jonquet et al., 2009): 

• Annotation often needs to be done either manually by expert curators or directly by the 

authors of the data. 

• The number and format of ontologies available for use are large, and ontologies change 

often and frequently overlap. 

• Users do not always know the structure of an ontology’s content or how to use the ontology 

to do the annotation themselves. 

• Annotation is often a boring additional task without immediate reward for the author. 

Semantic annotation is an important research topic in the Semantic Web community. Tools vary 

along with the types of documents that they annotate (e.g., image annotation). For an overview 

and comparison of semantic annotation tools, the reader may refer to the study by Uren et al. 

(2006). 

Previous work has encouraged and exalted the use of ontologies for annotation at various levels 

(Rhee et al., 2008). For a while, the prevalent paradigm in the use of ontologies was that of manual 

annotation and curation. However, several researchers have shown that such manual annotation, 

though highly desirable, will not scale to the large amounts of data being generated (e.g., in the 

life sciences; Baumgartner et al., 2007). If one examines the reasons for the low adoption of 

ontology-based annotation methods among database providers, the high cost of manual data 

curation remains the main obstacle. In light of this situation, researchers have called for the need 

of automated annotation methods (Dowell et al., 2009) and for leveraging natural language 

processing tools in the curation process (Altman et al., 2008). 

An example of such service for agronomic/agricultural data is the AgroPortal Annotator 

(http://agroportal.lirmm.fr/annotator), a Web service that provides a mechanism to employ 

ontology-based annotation in curation, data integration and indexing workflows, using any of the 

ontologies in the AgroPortal repository.10 The Annotator tags raw text descriptions with relevant 

ontology concepts and returns the annotations to end users. Those annotations are mainly made of 

an URI identifying the annotating concept. Services like the AgroPortal Annotator can be used to 

 
10 This service is AgroPortal’s version of the NCBO Annotator described in (Jonquet et al., 2009). 



structure data into unambiguous and semantically identified parts, hence contributing to the 

process of transformation/extraction of data into knowledge. 

● x 

 

 

3 Case study: plant phenotyping 

In this section, we provide an example of the use of some of the technologies and methods 

presented in Section 2 in a case study of plant phenotyping and agriculture (Neveu et al., 2019). 

Plant-derived products are at the center of challenges posed by increasing requirements for food, 

feed and raw materials. Integrating approaches across all scales from molecular to field 

applications is necessary to develop sustainable plant production with a higher yield and using 

limited resources. While significant progress has been made in molecular and genetic approaches 

in recent years, the quantitative analysis of plant phenotypes – the structure and function of the 

plant – has become the major bottleneck. Plant phenomics is an interdisciplinary science that links 

genomics with plant ecophysiology and agronomy. The functional plant body (phenotype) is 

formed during plant growth and development from the dynamic interaction between the genetic 

background (genotype) and the physical world in which plants develop (environment). These 

interactions determine plant performance and productivity, measured as accumulated biomass and 

commercial yield and resource use efficiency. 

Phenomics platforms produce huge complex datasets (images, spectrum, human readings) from 

different scales (genetic to plant population). Phenomics datasets need to be accessible to the large 

scientific community (genetician, bioinformatician, ecophysiologist, agronomist, etc.). Their 

reanalysis requires tracing relevant information on thousands of plants, sensors and events. The 

open-source Phenotyping Hybrid Information System (PHIS – http://www.phis.inra.fr) is 

proposed for plant phenotyping experiments in various categories of installations (field, 

glasshouse). 

3.1 Identification in PHIS 

Tracking all objects involved in a phenotyping experiment (e.g., plants, pots, sensors) and 

representing relationships between them are essential in a high-throughput context where 

http://www.phis.inra.fr/


thousands of plots, plants or sensors are involved. This requires a proper strategy that allows to 

individually identify each specific object as well as semantic properties for creating relationships 

between such objects. 

For instance, the replacement of a sensor at a given position (e.g., meteorological sensor or soil 

tensiometer) is not obvious in the outputs of an environmental database. In greenhouse 

experiments, a plant can be replaced by another plant at the same position and vector (e.g., pot, 

cart) during an experiment, potentially generating confusion. All objects therefore need to be 

identified in order to keep the necessary information associated to them (e.g., positions over time, 

successive calibration for sensors, origin for plants). 

In the following text, we illustrate PHIS’s identification system. PHIS object identification is based 

on URIs. This ensures traceability in space and time, while a typical identification by numbers 

(e.g., ‘plant 736’) refers to different plants in different experiments and installations. URIs are 

generated automatically for each object via the user interface and implemented by QR codes, 

creating a set of connected objects that can be accessed, along with all their properties, from any 

terminal (e.g., mobile device, barcode reader). 

What are the things to identify? Ideally, we want to identify everything, but we have very different 

resources – do we identify them the same way? Are URIs the best option to identify every 

resource? Those are questions one should ask before designing an URI scheme. For example, 

measures collected by a sensor can be gathered in a dataset and require only one URI for the 

dataset, or even be aggregated in a database. Then, the measures per day are identified with a 

primary key or an incremental ID. 

3.1.1 How to make non-ambiguous URI 

PHIS’s non-ambiguous identifiers use an incremental number (the number of plants), prefixed 

with a letter that helps human manipulate the URI and real objects. 

In PHIS, the semantic implementation is realized by a set of standardized ontologies written in 

OWL2. Based on these ontologies, the first step is to organize objects and concepts with a 

specialization hierarchy (sort of). For instance, corncob is a sort of a plant organ, that is, corncob 

is subClassOf plantOrgan. The description of this object (metadata) is formalized as properties. 

These properties can be values (dataProperty) or objects (objectProperty). Semantic links between 

objects, between events and between traits used in PHIS are realized through the annotation 



ontology and some specific application ontologies (such as Ontology of Experimental Events 

(OEEV)).11 

In order to integrate data, the relations between objects need to be represented adequately in a 

high‐throughput context. For instance, if thousands of sample tissues have been collected on 

different leaves of different plants, the information ‘sample 884 belongs to the leaf 7 of plant 736’ 

may be lost if kept in a spreadsheet. The links between objects are based on two OWL application 

ontologies. The Ontology for Experimental Phenotypic Objects (OEPO)12 describes objects 

involved in phenotyping experiments (e.g., infrastructure, devices, germplasm, scientific objects) 

and defines specialization hierarchy between them according to the specificities of the installations 

and experiments. OEEV characterizes events that occur during an experiment, for example, 

moving of plants, dates of sowing, application of a given treatment, harvesting, measurements or 

sampling for ‐omics measurements or any category of technical problems. For instance, the 

Trouble concept distinguishes Breakdown (sensor or conveyor), Dysfunction (sensor fault, 

irrigation trouble) and Incident (a pot falls down, a leaf is blocked in an imaging cabin, lodging of 

a plot, human error, etc.). As described in the associated semantic graph, an event can be associated 

with objects (e.g., plant, plot, sensor) and with the user who has annotated the event, and the 

occurrence data can be tracked along with every relevant detail. 

The use of ontologies allows to deal with the complexity of phenotyping data in order to link a 

large number of different data sources. Data integration process can be done automatically: 

● Concept mapping is one of the approaches for data integration from different sources. 

Ontologies will help for concept mapping. For instance, the ‘field’ is equivalent to 

‘cultivated land’. 

● Data-linking approach is based on the use of common standardized RDF properties in 

several data sources. It allows to identify common individuals in different sources. For 

instance, GPS coordinate values and the plant species name allow to know common plots 

of different datasets. 

Ontology-driven approach for data management allows to deal with the same system data from 

greenhouse or fields, thanks to a precise formalization of agricultural objects. This approach makes 

 
11 http://agroportal.lirmm.fr/ontologies/OEEV  

12 http://agroportal.lirmm.fr/ontologies/OEPO  



easier the data integration process. In other words, by connecting greenhouse and field 

experiments, the decision-making process is strongly improved. 

Other uses are made. Indeed, this approach based on ontology-driven information systems can 

facilitate decision making for many agricultural applications such as agroecological system design, 

precision agriculture and breeding. For instance, in agroecology we formalized bioagressors, 

lifecycles and impacts. All these applications require interdisciplinary work and intensive data 

integration. The formalization of concepts, the links between concepts and tagging are 

fundamental and constitute a crucial step. This information system generation encourages the 

production of FAIR data that can be used across disciplines. 

4 Conclusion and future trends 

As we have seen earlier, the structuring of data in order to make them reusable is based on their 

identification in the long term (beyond the decade) and on the reuse of ontologies and 

interdisciplinary standards. In practice, organization evolutions and staff turnover have important 

effects for the long-term data management. In too many cases, data are often produced and 

designed for ‘immediate consumption’. Reusing ontologies is the way that we must choose, but 

efficient tools for improving reuse are needed. Data come from various devices; simulation, 

observation or crowdsourcing and too often data repeatability/reproducibility is not well known or 

impossible. Structuring data will be a significant advance. For projects, institutions and companies, 

Data Management Plans (DMPs) are a sine qua non condition for the evaluation of produced data 

in agriculture. DMPs will allow the development and improvements of methods for the 

identification of agricultural objects and the associated data semantics. An interesting example is 

the world of software where many developers do not hesitate and are very active to share their 

production. Data papers improve the process of data sharing and data indexing.14 A citation 

mechanism is designed to reward the efforts of people and institutes that collect and manage data. 

But recognizing data sharing is still in its infancy, and the generalization of persistent identifiers, 

data papers and the Web of data could help change things. Part of the answer is also in the 

availability of integrative data tools for visualization, analysis, prediction and decision support. 

 
14 https://freshwaterblog.net/2012/06/29/what-does-a-data-paper-look-like/ 



Access to a new generation of tools can motivate communities of agriculture. It will support 

agriculture to raise challenges. 

The Web of data – built out of LOD – is the concrete and most salient outcome of 20 years of 

Semantic Web research. Ontologies and vocabularies are its backbone as they are used to 

semantically annotate and interlink datasets. Methods and techniques have recently been 

developed, allowing the massive publication of structured data on the Web. Yet, that vision has 

not been fully applied to agronomy and agriculture for which data have some specificities that 

require new models (e.g., spatio/temporal dimension, complex and multi-scale data (from gene to 

environment), data streaming from IoT devices in precision agriculture). And agronomy and 

agriculture mix data from different disciplinary fields and scientific perspectives, making the 

integration even more challenging. Despite recent initiatives like the Agronomic Linked Data RDF 

knowledge base (AgroLD – www.agrold.org) (Venkatesan et al., 2018), we have not seen 

integrated semantic resources that have had a major impact in agronomy and agriculture such as 

the ones that have been developed in biomedical and health sciences (e.g., Bio2RDF.org, EBI 

RDF). Indeed, despite the large adoption of some semantic resources, like AGROVOC – the most 

widely adopted vocabulary to index, retrieve and organize agricultural system data – we cannot 

yet measure their impact in terms of LOD produced and made available to the rest of the world. 

Some may ask: where are agronomy and agriculture in the famous LOD cloud diagram previously 

illustrated? This question is at the center of a the D2KAB project (hereafter referenced). 

Data curation needs to be developed and to go further than ‘cleaning’ its imperfections. The 

curation of data, from Latin curare, which means ‘to take care’, is essential before any process of 

analysis or decision. It consists of improving the capacity of the data to describe a system in an 

unambiguous and explicit way. It is essential to prepare a dataset for a large set of analysis 

methods, given the opportunity to aggregate different datasets of different provenances, structures 

and semantics. 

To meet the agricultural challenges, well-structured and described data are essential, but how to 

use them better? Ideally, we shall have powerful tools to automatically select and integrate huge 

datasets from various sources (agriculture, environment, social, health, etc.). A first stage is more 

reasonably to use semi-automatic tools, in order to produce the most complete knowledge that 

constitutes the decision support material. 



The structuring of data must be accompanied and allow the construction of different kinds of 

decision support tools. The main goal is to promote the adoption of increasingly decision-making 

and ‘smart’ decision support tools in the agricultural domain. These systems will use not only more 

data but also better data, updated, cheaper to produce, more standardized and more efficient for 

decision making. 

Produced data should meet FAIR principles; if widely adopted, the connections they enable will 

result in improved access to information, opportunities for collaboration, reduced administrative 

overhead and, ultimately, increased trust in studies and research (Meadows et al., 2019). 

However, ensuring long-term persistence of identification is a challenge: it is theoretically easy to 

install and practically very difficult to maintain. Reuse, obsolescence and updating standards 

(semantic resources, formats, access protocols, etc.) are another main challenge to the sustainable 

interoperability of information systems, especially in areas handling heterogeneous data such as 

agriculture. For these reasons, interoperability level is strongly linked to the quantity of work 

insured at a long-term scale and to the capacity of different data authorities to build together 

community-approved ontologies and data schemes. Interoperability at a human level as well as a 

machine level is a key to integratively analyzing environmental data and building decision support 

systems that are relevant to address the future challenges of agriculture. 

5 Where to look for further information 

Further reading and references on identification: 

● ARK: https://tools.ietf.org/html/draft-kunze-ark-18 

● B2HANDLE: https://eudat.eu/catalogue/B2HANDLE 

● DOI: https://www.doi.org/ 

● Datacite: https://datacite.org/ 

● ePIC: https://www.pidconsortium.eu/ 

● GRID: https://www.grid.ac/ 

● Handle System Namespace and Service Definition: http://www.ietf.org/rfc/rfc3651.txt 

● Handle System Protocol: http://www.ietf.org/rfc/rfc3652.txt 

● IGSN | SESARSystem for Earth Sample Registration: www.geosamples.org/igsnabout 

● IRI: https://www.ietf.org/rfc/rfc3987.txt 

● ISNI: http://www.isni.org/ 

● LSID: http://www.lsid.info/ 



● ORCID: https://orcid.org/ 

● RINGGOLD: https://www.ringgold.com/ringgold-identifier/ 

● RRID: https://scicrunch.org/resources 

● UUID: https://www.w3.org/wiki/UriSchemes/uuid 

● XRI (OASIS): https://www.oasis-open.org/committees/xri/x 

 

Research data organizations such as Research Data Alliance17 (RDA) or Force11 are developing. 

They coordinate actions, research or communication focusing on the structuring of the data for the 

next tens. Force1118 is a community of scholars, librarians, archivists, publishers and research 

funders that has arisen organically to help facilitate the change toward improved knowledge 

creation and sharing. The RDA was started in 2013 by the European Commission and several 

governments with the goal of building the social and technical infrastructure to enable open sharing 

and reuse of research data. RDA supports interest groups and working groups all along the range 

of research data issues from DMPs to data repository, identification, standardization and more. 

Agriculture is especially well represented at the RDA with the Interest Group on Agricultural Data 

(IGAD). This group gathers several working-groups such as on wheat data interoperability 

(https://ist.blogs.inra.fr/wdi/), rice data interoperability, and Agrisemantics 

(https://agrisemantics.org/) which is focus on data management and interoperability with adopting 

semantic resources and tools. 

Additionally, there are a number of current research projects designed to support data management 

issues in agronomy or agriculture such as:  

- French ANR project (Data to Knowledge in Agronomy and Biodiversity – 

www.d2kab.org), which goals is to create a framework to turn agronomy and biodiversity 

data into knowledge –semantically described, interoperable, actionable, open– and 

investigate scientific methods and tools to exploit this knowledge for applications in 

science & agriculture.  

- Big Data Grapes H2020 project (Big Data to Enable Global Disruption of the Grapevine-

powered industries – http://www.bigdatagrapes.eu) which aims to help European 

companies in the wine and natural cosmetics industries become more competitive in the 

 
17 https://rd-alliance.org/ 

18 https://www.force11.org/ 

https://ist.blogs.inra.fr/wdi/
https://agrisemantics.org/
http://www.d2kab.org/
http://www.bigdatagrapes.eu/


international markets. This project helps companies across the grapevine-powered value 

chain ride the big data wave, supporting business decisions with real time and cross-stream 

analysis of very large, diverse and multimodal data sources. 

- EMPHASIS ESFRI and the EPPN H2020 (European Plant Phenotyping Network – 

https://www.plant-phenotyping-network.eu ) research infrastructure projects aims to 

address the technological and organizational limits of European plant phenotyping to make 

the most of genetic and genomic resources available and essential for crop improvement in 

times of a changing climate.  
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