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A semantic-based approach for landscape
identification

Anne Toulet and Emmanuel Roux and Anne–Élisabeth Laques and Éric Delaı̂tre
and Laurent Demagistri and Isabelle Mougenot

Abstract Here we present an original method for the automation of landscape iden-
tification in a satellite image. There are two major challenges in this process. The
first lies in the ability to take all expert knowledge into account for the full time it
takes to analyze the image. The second is successfully structuring and persisting this
knowledge so that it becomes interoperable and usable in the Semantic Web con-
text. In this paper, we explain how the combination of several strategies associating
image processing, the calculation of specific characteristics and inductive logic pro-
gramming (ILP) can feed into the automation process, and how the integration of
knowledge via the construction of dedicated ontologies can meet these challenges.

1 Introduction

Particular emphasis is placed upon successful landscape identification in satellite
images, since the study of landscapes and their evolution over time is one approach
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of addressing major social, economic and environmental challenges [11]. To iden-
tify landscapes, the geographer can use a variety of techniques: field missions, aerial
photographs, mapping tools and satellite imagery. A geography expert will use all
of these approaches to characterize different types of landscape and draw up a map.
It is, however, a very time-consuming task. Satellite imagery is currently used as a
faster and more focused way of obtaining much of this information. Access to im-
ages is facilitated by the exponential growth in their production and much wider
availability. It is actually very difficult to extract knowledge automatically from
satellite images. Indeed, satellite image analysis techniques remain limited and this
work cannot be done without human input. One of our goals is therefore to facilitate
the geographers task by automating landscape extraction from satellite images. This
goal is a very big challenge: it is very complex to reproduce the different stages
carried out by the geographer. To achieve this, it is necessary to implement several
strategies that use knowledge from the subject area (landscape geography), satellite
imaging and inductive logic programming. In this article, we present our approach
and implement it to automatically extract landscapes on an area of the Brazilian
Amazon. The second goal is to structure and persist all this knowledge via dedi-
cated ontological modules so that it is interoperable and reusable in the context of
the Semantic Web. Thus, the use of ontologies makes it possible to initiate an ap-
proach towards the production of FAIR data: Findable, Accessible, Interoperable
and Reusable [33]. Satellite images have been subject to different studies involving
ontologies e.g. [6,8,13]. These ontologies actually play a wide variety of roles. The
high volume of data and the exclusively digital nature of the data extracted from
the image means that ontologies have to be constructed and regularly used to sup-
plement other approaches, for example with supervised classification or clustering.
This point will be detailed in the section 2. In our study, ILP is used instead of the
conventional classification techniques. By opting for ILP, we are able to apply an
approach that combines statistical learning and logic programming and thus formu-
late hypotheses that involve several variables simultaneously to describe objects in
our image. Another reason for our choice is that we can work - at ILP level and with
the ontologies - with formalisms that are all underpinned by predicate logic, even
though the calculating processes differ. The paper proceeds as follows. In section 2,
we first present related works and explain the similarities and the differences with
our work. In section 3, we present the approach we applied to achieve our objectives:
we first set out the geographical context and the preliminary processing for satellite
images; then we explain how landscapes are extracted using ILP; and finally, we
describe how these different stages feed knowledge into the integration process via
specific ontologies: one dedicated to geography (landscape ontology) and the other
to data taken from the image (image ontology). In section 4, we describe a practi-
cal application to present our approach. For a given satellite image, we explain the
preliminary processing and calculations required before describing how classifica-
tion rules are obtained to categorize the landscapes in the image. We will also show
how we use this processing to populate the image ontology. In section 5, we will
go over the results obtained for landscape prediction and for the role played by the
ontologies. In our conclusion, we discuss the perspectives for this type of work.
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2 Review of related works

2.1 Satellite imagery domain

Making sense of data that take the form of raster images requires well-structured
thinking that may be aided by logic-based approaches. Because of key goals to dis-
cover new associations between data and to learn reasoning patterns, some existing
works [5] adequately exploit ILP techniques due to the natural representation of re-
lation and the use of background theories. Some other works [1,2,7] take benefit of
ontologies and associated reasoning capabilities to extract meaning from the content
of images. Acquiring new knowledge is very demanding especially within the con-
text of satellite images and can be partially automated by applying a combination
of machine learning techniques with ontology to improve the performances of these
techniques. We aim to use an inductive and deductive approach that will lead to
a mixed knowledge-based strategy to automate the classification of different land-
scapes from satellite imagery. We try to investigate whether a knowledge base that
is incomplete by definition can be automatically enriched using ILP. Additionally, a
major challenge is to extract knowledge from satellite images that would meet the
experts requirements as experts views have become a matter of real concern. A few
works [14,26] combine machine learning and deductive reasoning to boost creating,
adapting and generalizing knowledge within the context of remote sensing. To our
knowledge, there is no consistent approach using both ontologies and ILPs as in the
work presented here.

2.2 Life sciences domain

At the opposite, in life sciences, different approaches combine in a very effective
manner ILP and ontology-based methods to acquire new knowledge and to validate
some biological hypothesis [18, 25, 29, 31]. Existing controlled vocabularies in life
sciences as Gene Ontology are of importance and constitute a real help to build such
approaches. Although the approaches are similar, it is difficult to compare results in
areas as different as satellite imagery and biomedicine.

This state of the art shows that our approach to extract knowledge in satellite
image combining ontologies and ILP is quite new and original.

3 Methodological approach

The different steps of our work are summarized in Fig. 1. In this diagram, we explain
the global approach that we implemented to move from a raw satellite image to
services exploitable by the geographer. To achieve clarity and accuracy, we divide
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our approach in three parts: the input (data & knowledge), the enrichment process
and the output.

Fig. 1 Overall approach

The first part (“Input”) concerns all data and knowledge used to feed the process
as well as the preliminary processing of satellite images. By preliminary process-
ing, we mean classical remote sensing treatments. The expertise provided by the
geographer guides these treatments and the calculations are build to replicate land-
scape metrics. The second step (“Enrichment process” ) describes how to extract
knowledge from the pre-processed satellite image, using two complementary meth-
ods: Inductive Logic Programming (ILP) and knowledge modeling. The geographic
knowledge is modelled in the landscape ontology. The results of the calculations
made in the preliminary processing of the satellite image are coded so that they
can be exploited by ILP to produce classification rules that can then be applied to
identify landscapes in the image. What is more, the characteristics obtained by the
calculations are used to populate the image ontology. What is original about this
method is that it combines two symbolic approaches: an inductive approach (ILP)
and a deductive approach (ontology-based reasoning). The geography expert inter-
venes at two levels: he is involved in the construction of the ILP Knowledge Base
and provides the necessary elements for ontological modeling. The last step (”Out-
put”) shows what you get at the end of this process. At this point, it is possible
to offer services adaptated to the geographer’s needs: reasoning, consultation and
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cartography for example. Each of these steps will be described in the following
sections: first, from a generic point of view, and then illustrated in an example.

3.1 Input data & knowledge

We begin by setting out the context of landscape geography as envisaged in our
study and the preliminary processing applied to the image to fulfill our requirements.

3.1.1 Geographical context.

Technically speaking, landscape identification uses a number of criteria, including
composition and configuration, measured using landscape metrics applied to land-
scape components [12]. At this level of observation, Landscape Components (LC)
refer to a specific land use or what is known as the “patch” in ecology. It is the
relationships between the various components that determine the classification of
a Landscape Type (LT). The landscape metrics used in this study are classical in
this context [10], such as composition, diversity or fragmentation. As an example,
a forest ecosystem landscape may be made up of various landscape components in
varying proportions and with specific configuration (terra ferme forest 90%, gallery
forest 6%, secondary vegetation (wild land and fallow land) 2%, cassava field 2%).
One of the difficulties lies in the fact that, in satellite images, there are no objects
“naturally” identifiable as landscape components to which landscape metrics could
be applied. Here we will explain the preliminary processing required to achieve this.

3.1.2 Preliminary processing of satellite images.

The aim of the processing work is to obtain objects that can be likened to landscape
components. The first step is therefore to produce a land use map that will be used
to establish this kind of object in the image. Land use labels are used to categorize
objects that can be likened to landscape components, such as “Water”, “Vegetation”
and “Forest” [28]. However, the semantic level attained by this initial output is not
high enough to take landscape structure into consideration. Most importantly, we are
unable to apply landscape metrics directly to the objects obtained. Two questions are
raised: how do you define the areas to which metrics should be applied, and what
calculations should be defined in relation to landscape metrics? To respond to the
first question, we place a grid on the image. The grid comprises a set of regular,
square-shaped cells, the size of which is defined according to need. This procedure
lets us identify well-defined arbitrary zones in the image, to which the metrics can
be applied. When it comes to metrics, multiple tools are already included in remote
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sensing image processing software, such as ENVI1 or GRASS2, and they can be
used to make calculations for landscape metrics. We therefore replicate the geogra-
phers approach by applying these metrics to “landscape components” contained in
each cell.

3.2 Enrichment process

3.2.1 Landscape extraction using ILP

Inductive logic programming is used to obtain landscape classification rules. In this
section, we explain how these rules are produced.

Developing rules through automatic learning.

Inductive Logic Programming (ILP) was selected to induce rules capable of ’pre-
dicting’ the classification of a cell as a landscape type, based on the landscape char-
acteristics found in that cell. ILP was introduced by Muggleton [24] and is an au-
tomatic learning method using examples (or a supervised learning method) and the
formalism of first-order logic. As such, it is especially well suited to the discov-
ery of relational knowledge within data. The value of this kind of method has been
demonstrated for the identification of classification rules in the field of geographic
and remote sensing data interpretation and processing [21, 32].

Inductive Logic Programming (ILP): basic principles.

Inductive Logic Programming [20] works with

• a knowledge base B expressed in first-order logic and describing a body of knowl-
edge and a set of constraints;

• a set of examples E split into two subsets E+ and E− respectively, corresponding
to positive and negative examples;

• a description language L.

ILP generates a “theory” (i.e. a set of rules), H, using the description language, L,
and i) must cover positive examples E+ and ii) must not cover negative examples
E−. Among the existing inductive systems, the Aleph system [30] has been selected.

1 Environment for Visualizing Images, the software commercialized by EXELIS
2 GRASS GIS, GIS freeware from the GRASS Development Team
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Information coding within the knowledge base.

Each landscape metric described above corresponds to a predicate in the knowl-
edge base, i.e. a function that returns a response (true or false, or a constant) when
adequate information is input. For example, the metric proportion of forest corre-
sponds to the binary predicate forest proportion/2, applicable to a cell and
returning the value of the proportion of forest in that cell. However, ILP can only
reason with symbolic information. However, landscape metrics provide numerical
data which therefore have to be recoded. The recoding method selected here is that
put forward by [17]: for a given numerical data item, each value observed is recoded
using inequalities that call on the characteristic values of the variable considered. In
our application, these characteristics are the minimum (min), the 10th, 20th, . . . ,
90th percentiles and the maximum (max) of the variable considered. Hence, each
landscape metric corresponds to a predicate that can be used to test 20 inequalities.
In the Prolog language used by the Aleph system, an inequality can be written as
follows:

forest proportion qual(M,≤ max):- forest proportion(M,X), X ≤ max
This coding is a good compromise between the loss of inherent information that
occurs when converting numerical data to symbolic information, and the capacity
for generalization during the learning process. Furthermore, it highlights significant
value ranges [5].

Example base and rule induction.

Given the goals set (i.e. the predicted classification of a given cell as a landscape
type), ILP requires knowledge of the landscape characteristics of a significant num-
ber of cells, and the landscape type that they belong to. A cell that is associated
with landscape metric values, and whose landscape type is known, therefore pro-
vides an example of a training set. It should be noted that a priori knowledge of
landscape type classification can come from various sources; here it comes from a
geographer’s expertise. The learning process is launched for each individual land-
scape type. For a given landscape type, the cells belonging to that type are positive
examples, and the remaining cells provide negative examples. The minimum accu-
racy of the rules is set at 0.7; it is established during the learning process using the
ratio p/(p+n), where p and n correspond to the number of examples, respectively
positive and negative, covered by the rule. This value is seen as a good compromise
between the conflicting requirements of accuracy and of generalization of the rules
induced. Finally, the maximum length of the premises of the rules is set at five lit-
erals because, in practice, this kind of value is considered to be the limit enabling
correct reading of the results [23].
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3.2.2 Constructing the ontologies

An ontology can be used to model a specific area of knowledge in a formal, struc-
tured manner [16]. This modelling is based on the definition of concepts and rela-
tions between those concepts. One of the stated objectives is to enable knowledge
sharing via a representation of an area of knowledge that is as consensual as possi-
ble. To define our ontologies, we use description logics, which are a language fam-
ily able to represent a knowledge base for a given area. In description logics, two
components make up the knowledge base: the terminological box (or TBox), which
models the concepts, and the assertional box (or ABox), which represents instances.
The description logics draw on first-order logic and result in inferential reasoning.
These mechanisms are used to enrich the knowledge base by specifying new facts
deduced from the original items through reasoning. We then chose to operational-
ize these formal ontologies in OWL2 (Web Ontology Language) [9], the language
recommended by the W3C.

Landscape ontology.

Landscape ontology is the ontology of an area of knowledge, reflecting the geog-
rapher’s expertise. It models concepts that depend on classification (landscape type
and landscape component) in the form of a tree structure expressing the specializa-
tion of the concepts (the subsumption relationship) and all the properties linking or
defining those concepts (the meronymy relationship and metrics). The model is then
formalized using description logics. Let us take the deliberately simplified example
of a ”forest ecosystem” landscape type. This kind of landscape must contain the
”forest” landscape component, but it may also include other component types. The
landscape is also characterized by its low diversity and limited heterogeneity. In this
example, we can see the concepts of landscape type and landscape component, each
specialized by a sub-concept (here, forest ecosystem and forest, respectively). Here,
we also need the properties ”diversity” and ”heterogeneity”, defined as functional
properties in the mathematical sense. More generally speaking, the landscape met-
rics defined in the ontology are all functional properties. In description logics, we
will write:

ForestEcosystem v LandscapeType
Forest v LandscapeComponent

>v≤ 1 hasDiversity
>v≤ 1 heterogeneity

}
functional properties

ForestEcosystem ≡ LandscapeType u ∃hasPart.Forest
u ∃hasDiversity.{lowDiversity}
u ∃heterogeneity.{limitedHeterogeneity}
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Image ontology.

The image ontology is constructed to take into account various knowledge taken
from the image, in connection with the landscape ontology. It is built as an applica-
tion ontology, i.e. it is seen as a container for the cell descriptors obtained via the
tasks run by the system. The concepts and relations in this ontology are obtained
from preliminary processing and the calculation of the landscape characteristics.
Most notably, it includes the key concept of ’cell’. The characteristics are assigned
literal values. In section 4.3, we will see how this ontology is populated.

4 Application

4.1 Data

To illustrate the method, we have taken a Landsat 5 image acquired on 23 October
2009, covering part of Amazonia situated in the state of Pará, at the confluence of
the Amazon and Rı́o Tapajós. Five different types (LT1 to LT5) of landscape have
been described and geolocated (Fig.2). They are input into the example database
used to generate rules via ILP. The aim is to search for these landscapes within the
image (Fig. 3), applying the strategy set out here above.

Fig. 2 The 5 labelled landscapes. Fig. 3 Lansat Image 2009.

4.1.1 Production of the land use map and grid.

There are different ways of producing land use maps [22]. We chose unsupervised
classification (or clustering) using the k-means algorithm. The land use map ob-
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tained is made up of seven labelled classes (Fig. 4) over which we lay a grid of
square cells that are then used to calculate the landscape characteristics (Fig. 5).

Fig. 4 Land use map. Fig. 5 Grid.

4.2 Production of the classification rules

To obtain the classification rules, we need to exploit the resulting characteristics, cal-
culated on the basis of the cells used in the learning process. These cells are those
contained in the five reference landscapes. The choice of metrics depends on the
approach taken by the geographer. We establish in Table 1 the correspondences be-
tween the landscape metrics and the characteristics calculated in the satellite image:

Table 1 Equivalence between landscape metrics and characteristics in the image.

Expert geographer Characteristics calculated in the cells

Composition Proportion of each class present

Diversity Specific richness (no. of classes present)

Heterogeneity Shannon index H =−∑
N
k=1 pk · ln(pk)

Fragmentation: patch surface area Average surface area of objects

Shape Perimeter/area: average measured
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4.3 Populating the image ontology

As we have seen above, the image ontology models the cells and the properties that
correspond to landscape characteristics. Each of these properties is used to associate
a cell with the value obtained from the calculation of a given characteristic. We thus
obtain information calculated cell by cell, which then instantiates the ontology by
populating the ABox. We can take the example of an individual from the cell class
- identified by m59 - which, as a proportion of the forest, has a value of 0.287. In
logical form, this is written as follows:

Cell v Top
Cell(m59)
>v≤ 1 f orest prop (functional property)
f orest prop(m59,"0.287")

As such, all cells in the ontology are described by a set of attributes that corre-
spond to the metric values calculated during preliminary processing. Each cell is
georeferenced using latitude/longitude centroid coordinates, as well as its geomet-
rical representation as a polygon. In GeoSPARQL3, the polygon has a literal value
expressed as geo:gmlLiteral. In addition, the classification rules specify the cell’s
landscape type: this information is added to the cell description. In the image ontol-
ogy, we therefore have a very comprehensive range of information. We can also note
that the structure of the ontology means we can add as many additional attributes as
we like, for example texture or vegetation index.

5 Results and discussion

5.1 Results

5.1.1 Characteristics of the ruleset and performance.

Six grids were generated, made up of square cells with sides measuring from 32,640
m to 1,020 m (system of nested cells for a multi-resolution approach). The large
grids (32,640 m, 16,320 m and 8,160 m) proved to be poorly suited to the sur-
face area of the landscapes making up the learning base. Calculations were there-
fore made on the grids measuring 1,020, 2,040 and 4,080. The most useful results
were obtained for the 1,020 and 2,040 grids, with little difference between them.
Here we present the 2,040 grid. Respectively 1, 3, 1, 6 and 4 rules for landscape
types LT1 to LT5 were induced for the full learning set made up of 300 cells with
sides measuring 2,040 metres. Here is an example of the kind of rule obtained:
landscape type(A, t p5) :− turbidWater prop(A,eq0), f orest prop(A, le0 009).
This rule means that a cell A belongs to LT5 if its proportion of turbid water is zero
and its proportion of forest is below 0.009. While the rules induced are easy to read
and intelligible, even for someone who is not expert in the learning method, the

3 geospatial standard defined by OGC (Open Geospatial Consortium)
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prediction results vary according to the landscape type considered. Table 2 shows
sensitivity and specificity4, calculated using the full learning set and via crossed
validation (average, minimum and maximum values). The accuracy of the predic-

Table 2 Predication results for the 2,040-metre resolution grid.
TP1 TP2 TP3 TP4 TP5

Full learning
set

Sensitivity 0,98 0,73 0,97 0,93 0,96
Specificity 0,98 1,00 0,97 0,99 0,99

Crossed validation
average
[min; max]

Sensitivity 0,76 0,15 0,64 0,46 0,62
[0,40; 1,00] [0,00; 1,00] [0,33; 0,83] [0,30; 0,62] [0,25; 0,80]

Specificity 0,92 0,92 0,82 0,75 0,83
[0,82; 1,00] [0,80; 1,00] [0,73; 0,89] [0,60; 0.90] [0,75; 0,94]

tion calculated using the full learning set comes to 94.7%. Stratified 10-fold cross-
validation resulted in an estimated 58.6% precision accuracy with a maximum (and
a minimum) of 71.0% for the ten subsets (respectively 45.7%). The results obtained
for sensitivity are particularly good, reaching 76.3% for landscape type 1 and ex-
ceeding 60% for types 3 and 5 (respectively 63.8 and 61.9%). Landscape type 2 is
especially difficult to predict with a success rate of just 15%, which is mainly ex-
plained by the limited number of related examples (15), but also by less clear-cut
identification and characterization by the expert (in his own view). Other tests were
run to produce rules using ILP. The spatial adjacency relationship, where two cells
are only adjacent if they share a side, was thus coded in the learning process knowl-
edge base, along with the multi-resolution character (inclusion relationships from
one cell to another). This final learning strategy, exploiting contiguity information
and the multi-resolution character of the spatial information, appears particularly
relevant: it corresponds to the way in which the expert geographer comprehends the
territory, using different mapping products with varying geographic reach and res-
olution. However, the inclusion of spatial relations and multi-resolution to produce
classification rules did not demonstrate any real improvement in results.

Figure 6 shows the landscapes that feed the learning base for ILP, and Figure 7
illustrates the prediction results for the complete study area. The prediction results,
most of which fall outside the reference landscape zone, lead to consistent charac-
terization of the territory, the relevance of which is confirmed a posteriori by the
expert.

5.1.2 Ontology modules.

Two ontology modules were built. The landscape ontology that ”captures” the geog-
rapher’s work and thus represents the conceptual modelling of an area of knowledge.
And the image ontology that contains all the information obtained from the satel-

4 Sensitivity: capacity of the classifier to predict belonging to an LT class, given that the objects
in question belong to that LT / Specificity: capacity of the classifier to predict non-belonging to an
LT class, given that the objects in question do not belong to that LT.
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Fig. 6 Learning landscapes. Fig. 7 Prediction results.

lite image and the ILP activity: georeferenced cells, landscape characteristic values
and prediction results. The image ontology also extends the core ontology found in
GeoSPARQL [4], facilitating coverage of the cell geometry. Some links connecting
the two ontological modules have already been explored. Initial work involved de-
veloping synergies between the geographer’s expertise concerning a landscape type,
as described in the landscape ontology, and the information on the cells classified
by ILP as belonging to that landscape type. As such, we define adequate CON-
STRUCT queries in SPARQL language [19], which produce new representations of
the knowledge contained in the image ontology, making it more consistent with the
content of the landscape ontology. Depending on the data searched, the information
can be exploited in several ways. We can then look into what identifies the transition
from one landscape to another by focusing on the boundary cells. The screen shot
shown in Figure 8 shows the result of a CONSTRUCT query (LT1 type cells pre-
dominantly containing “forest” or “sparse forest” type landscape components (or
patches) that we translate as cells in the forest ecosystem. These cells are shown
in green in the study zone5. In the landscape ontology, the forest ecosystem is de-
scribed as a landscape that is predominantly covered by forest, with little diversity.
The different shades of green illustrate the diversity of the patches found in the cells.

Fig. 8 Forest ecosystem cells on an OSM background map

5 Visualization makes use of the Javascript OpenLayers library
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The forest component is omnipresent in the dark green cells. The light green cells
show greater diversity with intermediate patches of water or vegetation. The cells
with a richer range of landscape components are frequently found at the boundaries
of the forest ecosystem landscape and diversity is therefore a good indicator of a
change of landscape, at least where the forest ecosystem is concerned. The content
of the two ontological modules can also be linked to open external data sources, also
represented using Semantic Web standards. Hence, in Figure 8, the cells are viewed
on an Openstreetmap background map [27]. The geographical entities defined in
OSM may be exploited via their RDF 6 representation [3] to better clarify the con-
tours of the landscapes. Likewise, the ecological data can also contribute to better
comprehension of landscapes through their ecosystem aspects. As such, data that
comes from the observation of occurrences of living species can also be integrated
into landscape characterization. We provide the example of data on the study zone
found on the GBIF portal [15].

5.2 Discussion

The first objective was to automate landscape identification in a satellite image as
far as possible. The second objective was to express and persist all that knowledge
via dedicated ontological modules so that it is interoperable and reusable in the
context of the Semantic Web. These objectives were attained by combining differ-
ent approaches, most notably associating ILP and ontologies. Furthermore, we have
obtained data that has been greatly enriched compared to the image’s initial content
and restructured in Semantic Web format. As we have demonstrated, this restructur-
ing opens up possibilities for the exploitation of the web of data. All these results
thus validate our approach. The method now needs perfecting and we have a number
of proposals in this respect, for example:

• refining landscape description (the geographer’s work) to improve the learning
base used by ILP to produce the rules;

• in the process of obtaining classification rules, making the most of the topological
relations and cell multi-resolution;

• in ontological modelling, using adjacency relations between cells by making use
of the GeoSPARQL model;

• using other open data sources, for example GeoNames7.

We have demonstrated all the potential of an approach that takes symbolic induction
mechanisms to partially populate an applicative ontology. The usual data mining
methods applied when processing an image, for example supervised classification,
treat the input attributes as dimensions that are independent of one another. In this
respect, ILP, which establishes dependencies between attributes, is better equipped

6 OSM data was previously collected in RDF format in the LinkedGeoData project
7 GeoNames : http://www.geonames.org/
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to take advantage of the spatial organization of radiometric values within the cells
seen as a set of connected pixels. Spatial analysis requires the processing of spatial
entities according to their descriptors but also according to the descriptors of the ad-
jacent entities and the relationships with those adjacent entities. We were thus able
to extract the predicates involving several descriptors (for example, the proportion of
each landscape component, diversity or fragmentation) to analyze landscape types
as closely as possible. However, it now remains for us to enrich the ILP activities
by including topological relationships, either within the same grid of cells or within
nested cells. Likewise, we will continue to develop the cell and landscape ontolo-
gies. Most notably, the spatial relationships between cells will be described within
the cell ontology and we also expect to work on new descriptors (such as texture).
Finally, the links used to exploit the application ontology alongside the landscape
ontology will be reinforced. The aim is to continue to develop conversion rules us-
ing SPARQL so that we are able to take a regularity on the cell ontology graph and
extract a regularity from the landscape ontology graph, and vice versa. This bidi-
rectional approach will enable us, on the one hand, to reconcile image data with
the geographer’s expertise and, on the other hand, potentially further the expert’s
knowledge according to the image’s content.

6 Conclusion

We have presented a hybrid approach that draws on both expert knowledge for-
malized in ontological modules and new knowledge developed through symbolic
learning. The goal is to work as closely as possible to the geography expert’s reality
while developing knowledge acquired via ILP. We have set out some encourag-
ing initial results on the ability to automate the extraction of interesting patterns in
a satellite image. We intend to enrich the ontological representation, especially in
terms of metric description to develop the potential of reasoning mechanisms. The
approach described in this paper can be improved upon as concerns the precision
of the results, but it has helped us fulfil our objectives: achieving a shift towards
automated landscape extraction from a satellite image while structuring, perpetuat-
ing, enriching and establishing interoperability of the knowledge and data exploited
throughout the process, clearly tailoring it for the Semantic Web.
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