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SIMPLE FOLIATED FLOWS

JESÚS A. ÁLVAREZ LÓPEZ, YURI A. KORDYUKOV, AND ERIC LEICHTNAM

Abstract. We describe transversely oriented foliations of codimension
one on closed manifolds that admit simple foliated flows.
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1. Introduction

In this paper, we describe transversely oriented foliations of codimension
one on closed manifolds that admit simple foliated flows. Our motivation to
study simple foliated flows comes from the role that they play in Deninger’s
program [10, 11, 12, 13, 14]. These are exactly those foliated flows for which
a dynamical Lefschetz trace formula conjectured by Deninger holds. For the
study of the associated Lefschetz trace formula, we refer to [1, 2, 3, 4, 5]. A
related classification of foliated dynamical systems was given in [29].

Let F be a smooth foliation of codimension one on a closed manifold M .
Flows on M are foliated when they map leaves to leaves. This means that
their infinitesimal generators are infinitesimal transformations of (M,F).
These infinitesimal transformations form the normalizer X(M,F) of the Lie
subalgebra X(F) ⊂ X(M) of vector fields tangent to the leaves, obtaining the
quotient Lie algebra X(M,F) = X(M,F)/X(F). The elements of X(M,F),
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called transverse vector fields, can be considered as leafwise invariant sec-
tions of the normal bundle of F .

Let (Σ,H) be the holonomy pseudogroup of F . The infinitesimal gen-
erators of H-equivariant local flows on Σ are the H-invariant vector fields.
These invariant vector fields form a Lie subalgebra X(Σ,H) ⊂ X(Σ). There
is a canonical identity X(M,F) ≡ X(Σ,H), and every foliated flow φ induces
an H-equivariant local flow φ̄ on Σ.

Simple fixed points and simple closed orbits of a flow φ can be defined by
using a transversality condition between the graph of φ and the diagonal.
The flow is simple when all of its fixed points and closed orbits are simple.
Using the canonical identity between leaf and orbit spaces,M/F ≡ Σ/H, the
leaves preserved by a foliated flow φ, which will be shortly called preserved
leaves in the sequel, correspond to H-orbits consisting of fixed points of φ̄.
A preserved leaf L is called transversely simple if the corresponding fixed
points p̄ of φ̄ are simple. In this case, φ̄t∗ = eκt on Tp̄Σ ≡ R for some
κ = κL ∈ R

× := R r {0}, which depends only on L. It is said that φ is
transversely simple when all of its preserved leaves are transversely simple.
Clearly, every simple flow is transversely simple.

Let L be any compact leaf whose holonomy group HolL can be described
by germs of homotheties at 0. This description of HolL can be achieved with
a foliated chart (U, (x, y)) around any point of L, where x is the transverse
coordinate. The same kind of description of HolL is given by the foliated
chart (U, (u, y)), with u = x |x|α−1 (0 < α 6= 1), which is not smooth at U∩L.
A transverse power change of the differentiable structure around L is defined
by requiring all of these new charts to be smooth. In Sections 5.4 and 6.1,
we give a description of this new differential structure in terms of a defining
form of F and a defining function of L on some tubular neighborhood.

The following is our main result, which is part of Theorem 7.9.

Theorem 1.1. Let F be a transversely oriented smooth foliation of codimen-
sion one on a closed manifold M . Then F admits a (transversely) simple
foliated flow in the following cases and uniquely in these ones:

(i) F is a fiber bundle over S1 with connected fibers.
(ii) F is a minimal R-Lie foliation.
(iii) F is an elementary transversely affine foliation whose developing map

is surjective over R, and whose global holonomy group is a non-trivial
group of homotheties.

(iv) F is a transversely projective foliation whose developing map is sur-
jective over the real projective line S1

∞ = R ∪ {∞}, and whose global
holonomy group consists of the identity and hyperbolic elements with a
common fixed point set.

(v) F is obtained from (iii) or (iv) using transverse power changes of the
differentiable structure of M around the compact leaves.

In all cases of Theorem 1.1, F is almost without holonomy.
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In the cases (i) and (ii), F is defined by a non-vanishing closed form ω
of degree one, and therefore it is indeed without holonomy. The group of
periods of [ω] ∈ H1(M) has rank 1 in (i), and rank > 1 in (ii).

In the case (i), all leaves are compact and we have X(M,F) ≡ X(S1).
Moreover, for any even number of points, x1, . . . , x2m ∈ S1 (m ≥ 0), in
cyclic order, and numbers κ1, . . . ,κ2m ∈ R

×, with alternate sign, there is
some (transversely) simple foliated flow φ whose preserved leaves are the
fibers Li over the points xi, with κLi

= κi. If m > 0, then φ has no closed
orbits transverse to the leaves. If m = 0, then φ has no preserved leaves,
and therefore no fixed points. Every transversely simple foliated flow is of
this form.

In the cases (ii)–(iv), X(M,F) is of dimension one.
In the case (ii), X(M,F) is generated by a non-vanishing transverse vector

field, and the transversely simple foliated flows have no preserved leaves.
In the cases (iii)–(v), there is a finite number of compact leaves, which

are the preserved leaves of every transversely simple foliated flow.
In the case (iii) or (iv), for every transversely simple flow φ, there is some

κ ∈ R
× such that the set of numbers κL is {κ} or {±κ}, respectively.

In the cases (iii) and (iv), the holonomy groups of the compact leaves
can be described by germs of homotheties at 0. Thus transverse power
changes of the differentiable structure can be considered around them to
get the case (v). X(M,F) and the (transversely) simple foliated flows are
independent of these changes of the differentiable structure. But every |κL|
can be modified arbitrarily by performing such changes, keeping sign(κL)
invariant.

Acknowledgment. We thank Hiraku Nozawa for helpful discussions about
the contents of this paper.

2. Preliminaries

Let M be a (smooth) manifold of dimension n.

2.1. Simple flows. Let Z ∈ X(M) with local flow φ : Ω → M , where Ω is
an open neighborhood of M × {0} in M × R. For p ∈M and t ∈ R, let

Ωp = { τ ∈ R | (p, τ) ∈ Ω } , Ωt = { q ∈M | (q, t) ∈ Ω } ,

and let φt = φ(·, t) : Ωt → M . It is said that p ∈ M is a fixed point of
φ if it is a fixed point of φt for all t in some neighborhood of 0 in Ωp; in
other words, if Z(p) = 0. The fixed point set is denoted by Fix(φ). For every
p ∈ Fix(φ), there is an endomorphism Hp of TpM so that φt∗ = etHp on TpM .
Then p is called simple1 (respectively, generic) if Hp is an automorphism
(respectively, no eigenvalue of Hp has zero real part).

Now assume that Z is complete with flow φ : M × R → M , which may
considered as a one-parameter subgroup of diffeomorphisms, φ = {φt} ⊂

1The terms transverse/elementary are also used instead of simple/generic.
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Diffeo(M). On M r Fix(φ), let Nφ denote the normal bundle to the orbits
of φ; i.e., Npφ = TpM/RZ(p) for all p ∈ M r Fix(φ). For every closed
orbit c of φ (without including fixed points), let ℓ(c) denote its smallest
positive period. Recall that c is called simple (respectively, generic) if the

eigenvalues of the isomorphism of Npφ induced by φ
ℓ(c)
∗ are different from 1

(respectively, have modulo different from 1) for all p ∈ c.
It is said that φ (or Z) is simple if all of its fixed points and closed orbits

are simple. This means that the maps M × R
± → M2 × R

±, (p, t) 7→
(p, φt(p), t) and (p, t) 7→ (p, p, t), are transverse [20, Lecture 2, Lemma 7].
Thus fixed points and closed orbits are isolated in this case; there are finitely
many of them if M is compact.

On the other hand, φ (or Z) is called generic if all of its fixed points
and closed orbits are generic, and their stable and unstable manifolds are
transverse—the definition of the stable and unstable manifolds is omitted
because we will not use them. A theorem of Kupka [31, 32] and Smale [39]
states that, for any closed manifold M , the set of generic smooth vector
fields on M is residual in X(M) with the C∞ topology (see also [34] for the
case of closed surfaces). This was generalized to open manifolds by Peixoto
[35], using the strong C∞ topology.

Remark 2.1. Suppose that M is closed. For 0 < f ∈ C∞(M), let Z ′ = fZ ∈
X(M). The flow φ′ of Z ′ has the same orbits as φ, considered as sets, but
with possibly different time parameterizations; precisely, there is a smooth
function t′ : M × R → R such that φ(p, t) = φ′(p, t′(p, t)) for all (p, t). It
easily follows that φ′ is simple if and only if φ is simple.

Example 2.2. Suppose that M is closed, and let f be a Morse function on
M . For any Riemannian metric on M , the flow φ of ∇f has no closed orbits
because f is strictly increasing on every orbit inMrFix(φ). Moreover every
p ∈ Fix(φ) is generic because Hp is given by Hess f(p), whose eigenvalues
are in R

×. The transversality of the stable and unstable manifolds of all
fixed points holds for an open dense set of Riemannian metrics in the C2

topology [36, Section 2.3] (see also [38]). In this case, ∇f is generic without
closed orbits.

2.2. Collar and tubular neighborhoods. Suppose that M is compact
with boundary, and let M̊ denote its interior. There exists a boundary
defining function x ∈ C∞(M), in the sense that x ≥ 0, x−1(0) = ∂M ,
and dx 6= 0 on ∂M . Then an (open) collar neighborhood of the boundary,
̟ : T → ∂M , can be chosen of the form2 T ≡ [0, ǫ)x × ∂M̟ for some ǫ > 0.
For any chart (V, y) of ∂M , we get a chart (U ≡ [0, ǫ)x × V, (x, y)) of M
adapted to ∂M .

Now assume that M is closed. Let M0 ⊂M be a (possibly disconnected)
regular and transversely oriented submanifold of codimension one, and let
M1 = M r M0. Since M0 is transversely oriented, there is a defining

2In a product, the projections may be indicated as subindexes of the factors.
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function x of M0 in some open W ⊂ M , in the sense that x ∈ C∞(W ),
M0 = x−1(0) ⊂ W , and dx 6= 0 on M0. Then there is an (open) tubular
neighborhood of M0 in W , ̟ : T → M0, of the form T ≡ (−ǫ, ǫ)x ×M0

̟

for some ǫ > 0. For any chart (V, y) of M0, we get a chart (U ≡ (−ǫ, ǫ)x ×
V, (x, y)) of M adapted to M0. Let M be the manifold with boundary
defined by “cutting” M along M0; i.e., modifying M only on the tubular
neighborhood T ≡ (−ǫ, ǫ) × M0, which is replaced with T = ((−ǫ, 0] ⊔

[0, ǫ)) ×M0 in the obvious sense. Thus ∂M ≡ M0 ⊔M0, and M̊ ≡ M1.
There is a canonical projection π : M → M , which is the combination of
the identity on M̊ ≡ M1 and the map T → T induced by the canonical
projection (−ǫ, 0]⊔ [0, ǫ) → (−ǫ, ǫ). This projection realizes M as a quotient
space of M by “gluing” the two copies of M0 in the boundary.

The connected components of M can be also described as the metric com-
pletion of the connected components of M1 with respect to the restriction
of any Riemannian metric on M , and then π is given by taking limits of
Cauchy sequences.

2.3. Foliations. The concepts used here are explained in standard refer-
ences on foliations, like [21, 25, 26, 7, 18, 40, 8, 9, 41]. Let F be a (smooth)
foliation3 on M of codimension n′ and dimension n′′. Locally, F can be
described by a (smooth) foliated chart (U, x), where x = (x′, x′′) : U →
x(U) = Σ × B′′ for open balls, Σ in R

n′

and B′′ in R
n′′

. In the case of
codimension one, we may use the notation (x, y) instead of (x′, x′′). The
fibers of x′ are the plaques. The intersections of plaques of different foliated
charts are open in the plaques. Thus all plaques of all foliated charts form
a base of a finer topology on M whose path-connected components are the
leaves, which are injectively immersed n′′-submanifolds. The leaf through
any p ∈ M may be denoted by Lp. The submanifolds transverse to the
leaves are called transversals; for example, the fibers of the maps x′′ are
local transversals. A transversal is called complete when it meets all leaves.
A foliated atlas is a covering of M by foliated charts.

If a smooth map φ : M ′ → M transverse to (the leaves of) F , then the
connected components of the inverse images of the leaves of F are the leaves
of the pull-back φ∗F , which is a smooth foliation on M ′ of codimension n′.
For the inclusion map of any open U ⊂M , this defines the restriction F|U .

Foliations on manifolds with boundary can be similarly defined, with
leaves tangent or transverse to the boundary. The concepts and proper-
ties of foliations considered here have obvious versions with boundary.

2.4. Holonomy. Let {Uk, xk} be a foliated atlas of F with xk = (x′k, x
′′

k)
and xk(Uk) = Σk × B′′

k . Assume that it is regular in the following sense:

{Uk} is locally finite, there are foliated charts (Vk, yk) with Uk ⊂ Vk and
yk|Uk

= xk, and Uk ∪Ul is in the domain of some foliated chart if Uk ∩Ul 6=
∅. Then, with the notation Σkl = x′k(Uk ∩ Ul), the elementary holonomy

3It is also said that (M,F) is a foliated manifold.
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transformations hkl : Σlk → Σkl are defined by hklx
′

l = x′k on Uk ∩ Ul. Let
H denote the representative of the holonomy pseudogroup on Σ :=

⊔
k Σk

generated by the local transformations hkl. The H-orbit of every p̄ ∈ Σ is
denoted by H(p̄). The maps x′k define a homeomorphism between the leaf
space M/F and the orbit space Σ/H.

Let c : I := [0, 1] → L be a path in a leaf from p ∈ L ∩ Uk to q ∈ L ∩ Ul,
and let p̄ = x′k(p) ∈ Σk and q̄ = x′l(q) ∈ Σl. Take a partition of I, 0 =
t0 < t1 < · · · < tm = 1, and a sequence of indices, k = k1, k2, . . . , km = l,
such that c([ti−1, ti]) ⊂ Uki for i = 1, . . . ,m. Let hc = hkmkm−1

· · · hk2k1 .
We have p̄ ∈ domhc ⊂ Σk and q̄ = hc(p̄) ∈ im hc ⊂ Σl. The germ hc

of hc at p̄ is the (germinal) holonomy of c, and the tangent map hc∗ :
Tp̄Σk → Tq̄Σl is its infinitesimal holonomy. End-point homotopic paths
in L define the same holonomy. Thus, taking p = q and k = l, we get
the holonomy homomorphism onto the holonomy group, h = hL : π1L =
π1(L, p) → HolL = Hol(L, p), [c] 7→ hc, which is independent of the foliated

chart containing p up to conjugation. The holonomy cover L̃ = L̃hol of

L is defined by π1L̃ = kerhL. If4 HolL = {e}, it is said that L has no
holonomy. The union of leaves without holonomy is a dense Gδ subset [23,
15]. If all leaves have no holonomy, then F is said to be without holonomy.
According to Reeb’s local stability, if L is compact, then the germ of F at L
is determined by hL using a construction called suspension [21, Section 2.7]
(see also [25, Theorem 2.1.7], [7, Theorem IV.2], [18, Theorem II.2.29], [8,
Theorem 2.3.9]). Similarly, we have the concepts of infinitesimal holonomy
groups of the leaves, and leaves/foliations without infinitesimal holonomy.

With the above notation, an element of HolL is called quasi-analytic if,
either it is the identity, or it is represented by some local transformation h
such that h|V 6= idV for all open V ⊂ domh with p̄ ∈ V . HolL is called
quasi-analytic when all of its elements are quasi-analytic.

In the case of codimension one, HolL can be described by germs at 0 of
local transformations of R. Then F is said to be infinitesimally C∞-trivial
at L if h′(0) = 1 and h(k)(0) = 0 (k > 1) for all local transformation h
representing an element of HolL. For instance, this property is satisfied if
HolL is generated by non-quasi-analytic elements.

2.5. Infinitesimal transformations and transverse vector fields. Let
TF ⊂ TM denote the subbundle of vectors tangent to the leaves, and let
NF = TM/TF . The terms leafwise5/normal are used for these vector
bundles, their elements and smooth sections (vector fields). The leafwise
vector fields form a Lie subalgebra and C∞(M)-submodule, X(F) ⊂ X(M).
Its normalizer is the Lie algebra X(M,F) of infinitesimal transformations
of (M,F), and X(M,F) = X(M,F)/X(F) is the Lie algebra of transverse
vector fields. An orientation (respectively, transverse orientation) of F is
an orientation of the vector bundle TF (respectively, NF).

4In abstract groups, the identity element is denoted by e.
5The terms “tangent” or “vertical” are also used instead of “leafwise”.
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For any X in TM (respectively, X(M) or X(M,F)), let X denote the
induced element of6 NF (respectively, C∞(M ;NF) or X(M,F)). NF be-
comes a leafwise flat vector bundle with the canonical flat TF-partial con-
nection ∇F given by ∇F

VX = [V,X] for V ∈ X(F) and X ∈ X(M). The
leafwise parallel transport along any piecewise smooth path c is the infini-
tesimal holonomy hc∗ : Tp̄Σk ≡ NpF → Tq̄Σl ≡ NqF .

X(M,F) can be realized as the linear subspace of C∞(M ;NF) consist-
ing of leafwise flat normal vector fields. The local projections x′k induce a

canonical isomorphism of X(M,F) to the Lie algebra X(Σ,H) of H-invariant
tangent vector fields on Σ. The notation X is also used for the element of
X(Σ,H) that corresponds to X ∈ X(M,F).

When M is not closed, let Xcom(F) ⊂ X(F) and Xcom(M,F) ⊂ X(M,F)
denote the subsets of complete vector fields, and Xcom(M,F) ⊂ X(M,F)
the projection of Xcom(M,F).

2.6. Foliated maps and foliated flows. A (smooth) map between foliated
manifolds, φ : (M1,F1) → (M2,F2), is called foliated if it maps leaves to
leaves. Then its tangent map defines morphisms, φ∗ : TF1 → TF2 and
φ∗ : NF1 → NF2, the second one being compatible with the leafwise flat
structures.

Let Diffeo(M,F) ⊂ Diffeo(M) be the subgroup of foliated diffeomor-
phisms. A smooth flow φ on M is called foliated if φt ∈ Diffeo(M,F) for all
t. This concept can be extended to a local flow φ : Ω → M by considering
the restriction to Ω of the foliation on M ×R with leaves L×{t}, for leaves
L of F and points t ∈ R. For X ∈ X(M) (respectively, X ∈ Xcom(M)), we
have X ∈ X(M,F) (respectively, X ∈ Xcom(M,F)) if and only if its local
flow (respectively, flow) is foliated.

For X ∈ Xcom(M,F) with foliated flow φ, let φ̄ be the local flow on Σ
generated by X ∈ X(Σ,H), which corresponds to φ via the maps x′k. In an
obvious sense, φ̄ is H-equivariant, and therefore it defines an H-equivariant
local flow φ̄ on any other representative of the holonomy pseudogroup.

2.7. Riemannian foliations. The H-invariant structures on Σ are called
(invariant) transverse structures. A transverse orientation has this inter-
pretation. Other examples are transverse Riemannian metrics and trans-
verse parallelisms. Their existence defines the classes of (transversely) Rie-
mannian and transversely parallelizable (TP) foliations. A Lie subalgebra
g ⊂ X(Σ,H) generated by a transverse parallelism is called a transverse Lie
structure, giving rise to the concept of (g-)Lie foliation.

Let G be the simply connected Lie group with Lie algebra g. F is a g-Lie
foliation just when {Uk, xk} can be chosen so that every Σk is realized as an
open subset of G and the maps hkl are restrictions of left translations.

Using the canonical isomorphism X(M,F) ∼= X(Σ,H), a transverse paral-
lelism can be given by a global frame of NF consisting of transverse vector

6The space of smooth sections of a vector bundle E is denoted by C∞(M ;E).
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fields X1, . . . ,Xn′ . This frame defines a transverse Lie structure when it
is a base of a Lie subalgebra g ⊂ X(M,F). If moreover X1, . . . ,Xn′ ∈
Xcom(M,F), the TP or Lie foliation F is called complete.

Similarly, a transverse Riemannian metric can be described as a leafwise
flat Euclidean structure on NF . It is induced by a bundle-like metric on
M , in the sense that the maps x′k are Riemannian submersions.

It is said that F is transitive at p ∈ M when the evaluation map evp :
X(M,F) → TpM is surjective, or, equivalently, the evaluation map evp :

X(M,F) ⊂ C∞(M ;NF) → NpF is surjective. Similarly, F is called trans-
versely complete (TC ) at p if evp(Xcom(M,F)) generates TpM , or, equiva-

lently, evp(Xcom(M,F)) generates NpF . The transitive/TC point set is open
and saturated. F is called transitive/TC if it is transitive/TC at every point
[33, Section 4.5].

TP foliations are transitive, and transitive foliations are Riemannian. In
turn, Molino’s theory describes Riemannian foliations in terms of TP fo-
liations [33]. A Riemannian foliation is called complete if, using Molino’s
theory, the corresponding TP foliation is TC. Furthermore Molino’s theory
describes TC foliations in terms of complete Lie foliations with dense leaves.
On the other hand, complete Lie foliations have the following description
due to Fedida [16, 17] (see also [33, Theorem 4.1 and Lemma 4.5]). As-
sume that M is connected and F a complete g-Lie foliation. Let G be the
simply connected Lie group with Lie algebra g. Then there is a regular

covering π : M̃ → M , a fiber bundle D : M̃ → G (the developing map)

and a monomorphism7 h : Γ := Aut(π) ≡ π1M/π1M̃ → G (the holonomy

homomorphism) such that the leaves of F̃ := π∗F are the fibers of D, and
D is h-equivariant with respect to the left action of G on itself by left trans-
lations. As a consequence, π restricts to diffeomorphisms between the leaves

of F̃ and F . The subgroup HolF := imh ⊂ G, isomorphic to Γ, is called the

global holonomy group. Since D induces an identity M̃/F̃ ≡ G, the π-lift
and D-projection of vector fields define identities

X(M,F) ≡ X(M̃, F̃ ,Γ) ≡ X(G,HolF) , (2.1)

where a group within the parentheses to denote subspaces of invariant sec-
tions8. These identities give a precise realization of g ⊂ X(M,F) as the Lie
algebra of left invariant vector fields on G. The holonomy pseudogroup of
F is equivalent to the pseudogroup on G generated by the action of HolF
by left translations. Thus the leaves are dense if and only if HolF is dense
in G, which means g = X(M,F).

2.8. Homogeneous foliations. More generally, consider the homogeneous
space S = G/H, defined by a closed subgroup of a connected Lie group,
H ⊂ G. It is said that F is a (transversely) homogeneous ((G,S)-) foliation

7Aut(π) denotes the group of deck transformations of the covering π : M̃ → M .
8This is preferred rather than the usual subindex to agree with X(Σ,H) and X(M,F).
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if {Uk, xk} can be chosen so that every Σk is realized as an open subset of S
and the maps hkl are restrictions of the action of elements of G. In this case,

there is a regular covering π : M̃ → M , a smooth submersion D : M̃ → S

and a monomorphism h : Γ := Aut(π) ≡ π1L/π1L̃ → G such that the

leaves of F̃ := π∗F are the connected components of the fibers of D, and
D is h-equivariant [6] (see also [18, Section III.3]). The terms of Fedida’s
description are also used in this case, as well as the notation HolF = imh.
This description is determined up to conjugation in G in an obvious sense.

Now M̃/F̃ is a possibly non-Hausdorff smooth manifold, and D induces a

local diffeomorphism D : M̃/F̃ → S, which is h-equivariant with respect to

the induced Γ-action on M̃/F̃ . Like in (2.1), we get

X(M,F) ≡ X(M̃, F̃ ,Γ) ≡ X(M̃/F̃ ,Γ) ⊃ X(imD,HolF) . (2.2)

The holonomy pseudogroup of F is equivalent to the pseudogroup generated

by the action of Γ on M̃/F̃ . In particular, for leaves, L of F and L̃ of F̃

with π(L̃) = L and D(L̃) = x ∈ S, we have

HolL ≡ { γ ∈ Γ | γ · L̃ = L̃ } ∼= h({ γ ∈ Γ | γ · L̃ = L̃ }) ⊂ HolxF , (2.3)

where HolxF ⊂ HolF is the isotropy subgroup at x.

3. Some classes of foliations of codimension one

3.1. Preliminary considerations. Let F be a smooth foliation of codi-
mension one on a closed n-manifold M . Suppose that F is transversely
oriented, obtaining9 ω, θ ∈ C∞(M ; Λ1) such that ω defines10 F (with its
transverse orientation) and dω = θ ∧ ω. There is some X ∈ X(M) with
ω(X) = 1; in fact, X ∈ C∞(M ;NF) and ω determine each other. Note
that F is Riemannian just when ω can be chosen so that dω = 0 (θ = 0);
i.e., X ∈ X(M,F). Actually, F is an R-Lie foliation in this case because
RX is a Lie subalgebra of X(M,F).

Take any leaf L and p ∈ L, and a local transversal Σ ≡ (−ǫ, ǫ) through
p ≡ 0 so that the transverse orientation corresponds to the standard orienta-
tion of (−ǫ, ǫ). Since the holonomy maps defining the elements of Hol(L, p)
preserve the orientation of (−ǫ, ǫ), they can be restricted to (−ǫ, 0] and [0, ǫ),
defining the lateral holonomy groups Hol±(L, p) = Hol± L.

Recall that L is said to be locally dense if it is dense in some open sat-
urated set. On the other hand, L is said to be resilient if there is some
element of Hol(L, p), represented by some local diffeomorphism f defined
around p in Σ, and there is some q 6= p in L∩ dom f such that the sequence
fk(q) is defined and converges to p.

Now a smooth connected closed transversal of F is a smooth embedding
c : S1 → M transverse to the leaves. It always has a (closed) tubular
neighborhood ̟ : T → c(S1) ≡ S1 in M , which can be chosen to be foliated

9We use the notation Λ = ΛM =
∧

T ∗M .
10This means that TF = kerω and the transverse orientation is induced by ω on NF .
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in the sense that its fibers are (n−1) disks in the leaves. If F is also oriented,
then ̟ trivial, T ≡ S1

̟ ×Dn−1, where Dn−1 is the standard disk in R
n−1.

3.2. R-Lie foliations. Suppose that F is a transversely complete R-Lie
foliation. This means that there is some Z ∈ Xcom(M,F) such that Z 6= 0
everywhere. Equivalently, the orbits of the foliated flow φ of Z are transverse
to F . The Fedida’s description of F is given by a regular covering map

π : M̃ → M , a holonomy homomorphism h : Γ := Aut(π) → R, and the

developing map D : M̃ → R (Section 2.7). Thus Γ ∼= imh ⊂ R is abelian

and torsion free. Let Z̃ and φ̃ be the lifts of Z and φ to M̃ . Then Z̃ is
Γ-invariant and D-projectable. Without lost of generality, we can assume

D∗Z̃ = ∂x ∈ X(R), where x denotes the standard global coordinate of

R. Thus φ̃ is Γ-equivariant and induces via D the flow φ̄ on R defined
by φ̄t(x) = t + x. This is the equivariant local flow induced by φ on this
representative of the holonomy pseudogroup (Section 2.7). It is easy to check
that φt preserves every leaf of F if and only if t ∈ HolF .

Example 3.1. The simplest example of minimal R-Lie foliation on a closed
manifold is the Kronecker’s flow on the torus T 2 ≡ R

2/Z2 [8, Example 1.1.5].
It is induced by a foliation on R

2 by parallel lines with irrational slope. This
construction has an obvious generalization to higher dimensions, obtaining
minimal R-Lie foliations on every torus T n ≡ R

n/Zn induced by foliations
on R

n by appropriate parallel hyperplanes [8, Example 1.1.8].

3.3. Foliations almost without holonomy. Recall that F is said to be
almost without holonomy when all non-compact leaves have no holonomy.
The structure of such a foliation was described by Hector using the following
model foliations G on compact manifolds N (possibly with boundary) [22,
Structure Theorem], [24, Theorem 1]:

(0) G is given by a trivial bundle over [0, 1],

(1) G̊ := G|N̊ is given by a fiber bundle over S1, or

(2) all leaves of G̊ are dense in N̊ .

In the case where F has finitely many leaves with holonomy, Hector’s de-
scription is as follows. Let M0 be the finite union of compact leaves with
holonomy. Let M1 = M rM0, whose connected components are denoted
by M1

l , with l running in a finite index set, and let F1
l = F|M1

l
. For

every l, there is a connected compact manifold11 Ml, possibly with bound-
ary, endowed with a smooth transversely oriented foliation Fl tangent to
the boundary, sutisfying the following. Equipping M :=

⊔
lMl with the

combination F of the foliations Fl, there is a foliated smooth local em-
bedding π : (M,F ) → (M,F), preserving the transverse orientations, so

that π : M̊l → M1
l is a diffeomorphism for all l (we may write M̊l ≡ M1

l ),
π : ∂M → M0 is a 2-fold covering map, and every Fl is a model foliation.

11Since Ml is the metric completion of M1
l , the notation M̂1

l and F̂
1
l would be more

standard. But the notation Ml is more appropriate for our use in [5] involving b-calculus.
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M can be described by gluing the manifolds Ml along corresponding pairs
of boundary components. Equivalently, M can be described by cutting M
along M0 (Section 2.2). Thus ∂M ≡ M0 ⊔M0, and π defines diffeomor-
phisms between corresponding connected components of ∂M and M0.

Remark 3.2. (i) (See [24, Lemma 7] and its proof.) For indices l±, and
boundary leaves L± of Fl± with L := π(L+) = π(L−), we have
Hol(L±) ≡ Hol± L. Hol± L is the germ group at 0 of a pseudogroup
HL,± of local transformations of R± ∪ {0}, generated by a (possibly
empty) set of contractions and dilations defined around 0. It follows
that Hol± L is an Archimedean totally ordered group, and therefore it
is isomorphic to a subgroup of (R,+), obtaining that HolL is abelian
and torsion free. It is easy to see that the orbits of HL,± on R

± are
singletons (respectively, monotone sequences with limit 0, or dense)
just when the rank of Hol± L is 0 (respectively, 1, or > 1).

(ii) If Fl is a model (0), or a model (1) with ∂Ml = ∅ (Ml = M and
M0 = ∅), then the leaves of Fl are compact.

(iii) If Fl is a model (1) with ∂Ml 6= ∅, or a model (2), then the leaves of F̊l

are not compact. In fact, the whole of ∂Ml is contained in the closure
of every leaf of F̊l. Hence, according to (i), the holonomy groups of
the boundary leaves of Fl are of rank 1 (respectively, > 1) if and only
if Fl is a model (1) with ∂Ml 6= ∅ (respectively, a model (2)).

(iv) If Fl is a model (2), then F̊l becomes a complete R-Lie foliation after a

possible change of the differentiable structure of M̊l, keeping the same
differentiable structure on the leaves [24, Theorem 2]. If moreover
∂Ml = ∅, then F is homeomorphic to a minimal R-Lie foliation.

(v) F1 has no holonomy, and therefore F has no resilient leaves. This

holds because F̊l is given by a fiber bundle in the models (0) and (1),
and is homeomorphic to a Lie foliation in the model (2) by (iv).

(vi) According to (ii) and (iii), the description holds as well if M0 is any fi-
nite union of compact leaves, including all leaves with holonomy. Thus,
if Fl is a model (1) with ∂Ml = ∅, then Ml =M can be cut into mod-
els (0) by adding compact leaves to M0. Conversely, if all foliations Fl

are models (0), then F is a model (1) with ∂M = ∅.

(vii) In the models (1) and (2), F̊l has smooth complete closed transversals
(see [8, Lemma 3.3.7]).

Proposition 3.3. If HolL is quasi-analytic for all leaf L ⊂ M0, then all
foliations Fl have the same model.

Proof. For all leaves L ⊂ M0, we have Hol+ L ∼= Hol− L ∼= HolL by the
hypothesis on HolL. Then, by Remark 3.2 (i)–(iii) and sinceM is connected,
the rank of the holonomy groups of all boundary leaves of all foliations Fl is
simultaneously 0, 1 or > 1, and all foliations Fl have the same model. �

Example 3.4. A Reeb component on Dn−1 × S1 is a model (1) [8, Exam-
ples 1.1.12 and 3.3.11], [18, Example I.3.14 (i)], [25, Section II.1.4.4]. All of
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the Reeb components on Dn−1 × S1 are homeomorphic, but they may not
be diffeomorphic.

The Reeb components on D1 × S1 = [−1, 1] × S1 can be described as

follows. Let f : (−1, 1) → R be a smooth function such that |f (k)(x)| → ∞
as x→ ±1 for all order k. Then the graphs of the functions f+c (c ∈ R) are
the interior leaves of a smooth foliation tangent to the boundary on the strip
[−1, 1]×R, which induces a smooth foliation G on [−1, 1]×S1 ≡ [−1, 1]×R/Z.
Its boundary leaves are L± = {±1} × S1. The following examples of f
produce non-diffeomorphic foliations:

(i) If f(x) = exp 1
1−x2 , then G is infinitesimally C∞-trivial at L±.

(ii) If f(x) = x2

1−x2 , then G is not infinitesimally C∞-trivial at L±, but L±

is without infinitesimal holonomy.
(iii) If |f(x)| = ln(1 − |x|)µ (µ > 0) for 1 − |x| small enough, then HolL±

is generated by the germ of u 7→ e1/µu at 0 in [0,∞).

Example 3.5. Let Ga (a = 1, 2) be transversely oriented models (1) or (2)
of dimension > 1 on manifolds Na. If there is a diffeomorphism φ be-
tween boundary leaves, La of Ga, then a tangential gluing via φ can be
made, obtaining a foliation G on N := N1 ∪φ N2, with the compact leaf

L := L1 ∪φ L2 ⊂ N̊ [8, Section 3.4], [18, Example I.3.14 (i)], [26, The-
orem IV.4.2.2]. G may not be smooth. It is smooth only when, for all
σ ∈ π1L1, the combination of representatives of hσ and hφ∗σ are smooth
maps (considering the elements of HolL1 and HolL2 as germs at 0 of local
transformations of (−∞, 0] and [0,∞), respectively). For example, this is
true if every hσ and hφ∗σ are germs of homotheties at 0 with the same ratio.
This property is also guaranteed when every Ga is infinitesimally C∞-trivial
at La [8, Proposition 3.4.2].

We can continue making tangential gluing of models to produce a foliation
F on a closed manifold M . If every tangential gluing preserves smoothness,
then F is almost without holonomy with finitely many leaves with holonomy.
The following are some examples of foliations obtained in this way:

(i) The Reeb foliation F on S3 is almost without holonomy and has one
compact leaf L. It is obtained by tangential gluing of two Reeb com-
ponents on D2×S1, so that the gluing map interchanges meridian and
longitude in the boundary leaves S1 × S1 [8, Example 3.4.3 and Ex-
ercise 3.4.4], [18, Examples I.3.14]. Since HolL has non-quasi-analytic
generators, the Reeb components must be infinitesimally C∞-trivial at
the boundary leaves to get smoothness of F .

(ii) Let F be foliation on Sn−1 × S1 obtained by tangential gluing of two
Reeb components onDn−1×S1 using the identity map on the boundary
leaves Sn−2 × S1. F becomes smooth if the Reeb components are in-
finitesimally C∞-trivial at the boundary leaves, but now this condition
is not necessary to get smoothness (see Example 3.13 below).
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(iii) A smooth foliation F on the 2-torus or on the Klein bottle can be
constructed by tangential gluing of Reeb components on [−1, 1] × S1

of the type in Example 3.4 (iii), all of them constructed with the same
constant µ. The holonomy groups of the leaves with holonomy are
generated by the germ of u 7→ e1/µu at 0 in R.

Example 3.6. Let F and G be oriented and transversely orientable folia-
tions of codimension one on closed n-manifolds M and N (n ≥ 2). Suppose
that both of them are almost without holonomy, and that they have finitely
many leaves with holonomy. Take smooth closed transversals, c : S1 →M1

of F1 and d : S1 → N1 of G1 (Remark 3.2 (vii)), and let F ′ be the connected
sum of F and G along c and d [18, Example I.2.20 (i)]. F ′ is another trans-
versely orientable foliation almost without holonomy on a closed manifold,
and it has finitely many leaves with holonomy.

For models (1) or (2), we can also consider their connected sum along
smooth closed transversals in their interior. The result is a model (1) if
both foliations are models (1), and a model (2) otherwise.

Example 3.7. Let F be an oriented and transversely orientable foliation
of codimension one on a closed n-manifold M . Suppose that F is almost
without holonomy, and that it has finitely many leaves with holonomy. Let
(M ′,F ′) be the turbulization of (M,F) along a smooth closed transversal
c : S1 → M1 of F1 [8, Example 3.3.11], [18, Section I.2.18]. F ′ is another
transversely orientable foliation almost without holonomy, and it has finitely
many leaves with holonomy. Actually, F ′ can be considered as a connected
sum along c of F and the foliation of Example 3.5 (ii).

The turbulization can be also applied to a model (1) or (2) along a smooth
closed transversal in its interior. After removing the interior of the resulting
Reeb component, we get a model of the same type.

3.4. Transversely affine foliations. ConsiderR as the homogeneous space
defined by the canonical action of Aff+(R), the Lie group of its orientation
preserving affine transformations. It is said that F is transversely affine if
it is a transversely homogeneus (Aff+(R),R)-foliation12. This means that,
according to Section 3.1, ω and θ can be chosen so that dθ = 0 [37]; it will
be said that the transversely affine foliation F is defined by (ω, θ). In this

case, the description of Section 2.8 is given by π : M̃ → M , D : M̃ → R,
h : Γ → Aff+(R) and HolF ⊂ Aff+(R).

Assume that F is transversely affine. Then Γ 6= {e} because D(M̃ ) is
open in R. Furthermore F has a finite number of compact leaves with
holonomy [18, Proposition III.3.10], but non-compact leaves may also have
holonomy. A theorem of Inaba [27, Theorem 1.2] states that, either F is

12We only consider transversely affine foliations that are transversely oriented. The
group Aff(R) of affine transformations would define transversely affine foliations that may
not be transversely oriented.
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almost without holonomy and HolF is abelian (the elementary case), or F
has a locally dense resilient leaf and HolF is non-abelian.

From now on, consider only the elementary case. Then:

(a) either HolF is a group of translations; or
(b) HolF is conjugate by some translation to a group of homotheties.

In the case (a), F is an R-Lie foliation on a closed manifold, whose Fedida’s
description is given by π, D and h; in particular, imD = R.

In the case (b), after conjugation, we can assume that HolF is indeed
a group of homotheties. Since imD is HolF-invariant and HolF 6= {idR},
either imD = R

±, or imD = R. If imD = R
±, we can pass to a group

of translations by using ln |D| instead of D. Thus, if F is not an R-Lie
foliation, we can assume that HolF is a non-trivial group of homotheties
and imD = R. Let us analyze this case using the notation of Section 3.3.

Lemma 3.8. (i) M0 = π(D−1(0)).
(ii) The holonomy groups of leaves in M0 are isomorphic to non-trivial

subgroups of Hol0F .
(iii) All foliations Fl have the same model, either (1) with ∂Ml 6= ∅, or (2).

Proof. By Proposition 3.3, all foliations Fl have the same model, which is
neither (0), nor (1) with ∂Ml = ∅, otherwise F would be an R-Lie foliation.
Thus (iii) holds. It also follows that the holonomy groups of the leaves inM0

cannot be trivial, obtaining “⊂” in (i) because Hol0F is the only non-trivial
isotropy group. Hence (ii) is true by (2.3).

There is a regular foliated atlas {Uk, xk} of F such that, for every k, there

is foliated chart (Ũk, x̃k) of F̃ so that π : Ũk → Uk is a diffeomorphism, x̃k =

xkπ and x̃′k = D|
Ũk
. HenceD−1(0) contains just one plaque of every (Ũk, x̃k).

Since {Uk, xk} is finite, andD
−1(0) is Γ-invariant because 0 is fixed by HolF ,

it follows that π(D−1(0)) contains a finite number of plaques of the foliated
atlas {Uk, xk}. So π(D−1(0)) is a finite union of compact leaves because
{Uk, xk} is regular. This shows “⊃” in (i) by (iii) and Remark 3.2 (iii). �

Note that x∂x ∈ X(R) is invariant by homotheties. Let Diffeo(R, 0) ⊂
Diffeo(R) denote the subgroup of diffeomorphisms that fix 0.

Lemma 3.9. (i) If Z ∈ X(R) is invariant by some homothety h 6= idR,
then Z = κx∂x for some κ ∈ R.

(ii) If h ∈ Diffeo(R, 0) preserves x∂x, then h is a homothety.

Proof. Let us prove (i). We can assume h(x) = λx (x ∈ R) for some λ > 1;
otherwise consider h−1. Any h-invariant Z ∈ X(R) vanishes at 0 because
this is the only fixed point of h. Thus Z = xf∂x for some f ∈ C∞(R). From
the h-invariance of both Z and x∂x, and since x∂x only vanishes at x = 0,
we get that f is h-invariant. So f(0) = limm→∞ f(x/λm) = f(x) for all
x ∈ R; i.e., f is constant.
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Let us prove (ii). Since h preserves x∂x, it commutes with the flow of
x∂x; i.e., h(e

tx) = eth(x) for all x, t ∈ R. Therefore x 7→ h(x)/x is constant
on R

±. Since h is smooth at zero, it follows that h is a homothety. �

Remark 3.10. The same arguments can be used to show versions of Lemma 3.9
on intervals J of the form (−ǫ, ǫ), [0, ǫ) or (−ǫ, 0] (0 < ǫ ≤ ∞):

(i) If Z ∈ X(J) is invariant by the restriction to J of the pseudogroup
generated by some homothety 6= idR, then Z = κx∂x for some κ ∈ R.

(ii) If a smooth pointed embedding h : (J, 0) → (R, 0) preserves x∂x, then
h is the restriction of a homothety.

By Lemma 3.9 (i), X(R,HolF) = Rx∂x. Let Z ∈ X(M,F) be defined by
x∂x ∈ X(R,HolF) according to (2.2). By Lemma 3.8 (i), the zero set of Z is

M0. Thus F1
l ≡ F̊l becomes a complete R-Lie foliation with the restriction

of Z to everyM1
l ≡ M̊l, without having to change the differentiable structure

(cf. Remark 3.2 (iv)).

Lemma 3.11. For any neighborhood V in M of a leaf L ⊂ M0, every
Z ∈ X(M,F) is determined by Z|V .

Proof. With the notation of Remark 3.2 (i) for this particular L, any leaf

of F1
l±

meets V by Remark 3.2 (iii). So the restriction Z to M1
l+

∪M1
l−

is

determined by Z|V . By Lemma 3.9 (i) and Remark 3.10 (i), and using the
Reeb’s local stability, it follows that the restriction Z to some neighborhood

of M1
l+

∪M1
l−

is also determined by Z|V . Then we can apply the same

argument to all closures M1
l that meet M1

l+
∪M1

l−
. Continuing in this way,

the result follows because M is connected. �

Proposition 3.12. X(M,F) ≡ X(R,HolF) via (2.2).

Proof. We have to prove that the injection of (2.2) is surjective in this case.

Let Z ∈ X(M̃/F̃ ,Γ). Take leaves, L ⊂M0 of F and L̃ of F̃ with π(L̃) = L.

There are open neighborhoods, V of L̃ in M̃/F̃ and W of 0 in R, so that
D : V →W is a diffeomorphism. Consider {e} 6= HolL ⊂ Hol0 F according
to (2.3). By Lemma 3.9 (i) and Remark 3.10 (i), D∗(Z|V ) = κx∂x|V for some
κ ∈ R if V and W are small enough. So, by Lemma 3.11, Z corresponds to
κx∂x ∈ X(R,HolF) via (2.2). �

The transverse orientation of every Fl is directed, either outward on all
boundary leaves of Ml, or inward on all of them [27, Lemma 3.4]. Thus no
pair of boundary components of the same Ml is glued to get M . So, not

only M̊l ≡ M1
l , but also Ml ≡ M1

l via π. In particular, there have to be at
least two manifolds Ml, and M

0 contains at least two leaves.

Example 3.13. Let F̃ denote the foliation on M̃ := Rn r {0} (n > 1)
whose leaves are the connected components of the last coordinate projection

D : M̃ → R. Multiplication by any λ > 1 defines an action of Z on M̃ ,
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giving rise to a covering πλ : M̃ → Mλ, where Mλ is diffeomorphic to

Sn−1 × S1. Since F̃ is Z-invariant, it induces an elementary transversely
affine foliation Fλ on Mλ, being πλ and D the maps of its description of
Section 2.8. M0

λ = πλ(D
−1(0)) is diffeomorphic to Sn−2 × S1. Thus there

are two compact leaves if n = 2, and one compact leaf if n > 2. M1
λ has

two components, M1
λ,± = πλ(R

±). The corresponding foliated manifolds

with boundary, (Mλ,±,Fλ,±), are transversely affine Reeb components on
Dn−1 × S1 [25, Section 1.4.4], using the obvious extension of this property
to foliations on manifolds with boundary. A different description of these
transversely affine Reeb components is given in [8, Example 1.1.12].

Example 3.14. Consider the standard affine structure on R, and its re-
striction to R+. The affine circles are [30], [19, Appendix to Section 2]:

(i) the quotient of R by the additive action of Z; and,
(ii) for every λ > 1, the quotient of R+ by the multiplicative action of λZ.

After fixing an orientation, affine structures on S1 are the transversely affine
structures (ω, θ) of the foliation by points. Then the affine structure defined
by (ω, θ) is isomorphic to (i) if

´

S1 θ = 0, and isomorphic to (ii) for some

λ > 1 if |
´

S1 θ| = lnλ. Thus |
´

S1 θ| classifies these structures on S1; indeed,
´

S1 θ classifies these structures up to orientation preserving isomorphisms
[18, Section III.3.3], [37, Section 4.1].

Now let F be a transversely affine foliation on a closed manifoldM defined
by (ω, θ). Any smooth closed transversal c : S1 → M of F induces the
orientation and affine structure on S1 given by (c∗ω, c∗θ).

In Example 3.6, suppose F and G are transversely affine, defined by (ω, θ)
and (α, β), respectively. If they induce the same orientation and affine
structure on S1 via c and d (c∗ω = f d∗α for some 0 < f ∈ C∞(S1) and
´

S1 c
∗θ =

´

S1 c
∗β), then F ′ clearly becomes transversely affine.

In Example 3.13, let cλ,± : S1 → Mλ be a smooth closed transversal of
Fλ that cuts every leaf of F1

λ,± once, and induces the standard orientation

of S1. Via cλ,±, we get the affine structure (ii) on S1 defined with λ.
In Example 3.7, if F is also transversely affine, inducing the standard

orientation on S1 via c, then there is a transversely affine turbulization
along c if and only if lnλ :=

´

S1 c
∗θ 6= 0 (taking the connected sum with Fλ

along c and cλ,±) [37, Section 2].

3.5. Transversely projective foliations. Recall that SL(2,R) is the Lie
group of 2×2 matrices of determinant one, and PSL(2,R) = SL(2,R)/{±I},
where I denotes the identity matrix. PSL(2,R) acts on the projective line
S1
∞ = R ∪ {∞} by projective transformations, the action of

(
a b
c d

)
being

x 7→ (ax + b)/(cx + d). The stabilizer of ∞ consists of the upper trian-
gular matrices (c = 0), whose restriction to R gives Aff+(R). An element
A ∈ PSL(2,R) is called hyperbolic, parabolic or elliptic if it has 2, 1 or 0
fixed points in S1

∞, respectively. Elliptic elements are conjugate to rotations
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(elements of PSO(2) = SO(2)/{±I}) different from the identity. The hyper-
bolic and parabolic elements are conjugate to transformations of the form
x 7→ λx (λ > 0) and x 7→ x+ λ (λ 6= 0), respectively.

It is said that F is transversely projective if it is a transversely homogeneus
(PSL(2,R), S1

∞)-foliation. This means that, according to Section 3.1, ω and
θ can be chosen so that dθ = η ∧ ω and dη = η ∧ θ for some η ∈ C∞(M ; Λ1)
[6]. In this case, the corresponding description of Section 2.8 is given by

π : M̃ →M , D : M̃ → S1
∞, h : Γ → PSL(2,R) and HolF ⊂ PSL(2,R).

Assume that F is transversely projective and almost without holonomy.
Then Inaba and Matsumoto proved that either of the following holds [28,
Proposition 2.1, the proof of Proposition 3.4 and its remark]:

(a) HolF is conjugate to an abelian subgroup of PSO(2).
(b) HolF consists of the identity, hyperbolic elements with a common fixed

point set and possible elliptic elements which keep the fixed point set
invariant.

(c) HolF is conjugate to a subgroup of the stabilizer of ∞.

In the case (a), F is an R-Lie foliation.
In the case (c), we can assume that HolF is a subgroup of the stabilizer of

∞ after conjugation. If∞ /∈ imD, then F is transversely affine. If∞ ∈ imD
and HolF does not contain parabolic elements, then F satisfies (b). If
∞ ∈ imD and HolF has some parabolic element h, then the fixed point of
h is ∞, and π(D−1(∞)) consists of some compact leaves whose holonomy
group cannot be given by germs of homotheties.

In the case (b), HolF is virtually abelian, and it is abelian just when
there are no elliptic elements. After conjugation, we can assume that the
fixed point set of the hyperbolic elements is {0,∞}. Since imD is HolF-

invariant and M̃ is connected, it follows that imD is R
±, R, S1

∞ r {0}
or S1

∞. If imD = R
± or imD = R, then F is transversely affine. If

imD = S1
∞ r {0}, then we pass to the case imD = R using conjugation by

the rotation x 7→ −1/x of S1
∞. Thus, if F is not transversely affine, then

imD = S1
∞. Let us analyze the last case from now on.

Now an obvious version of Lemma 3.8 follows with a similar proof, where
D−1({0,∞}) is used in (i) instead of D−1(0), and subgroups of Hol0F or
Hol∞F are used in (ii) instead of just subgroups of Hol0F .

Note that x∂x ∈ X(R) extends to a smooth vector field on S1
∞, also

denoted by x∂x, which is invariant by all hyperbolic elements with fixed
point set {0,∞}. In fact, x∂x on S1

∞ r {0} corresponds to −y∂y on R by
the rotation x 7→ y = −1/x of S1

∞.

Lemma 3.15. If Z ∈ X(S1
∞) is invariant by some hyperbolic element whose

fixed point set is {0,∞}, then Z = κx∂x for some κ ∈ R. In partic-
ular, X(S1

∞,HolF) = Rx∂x if HolF has no elliptic element, otherwise
X(S1

∞,HolF) = 0.
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Proof. By Lemma 3.9 (i), Z|R = κx∂x for some κ ∈ R because the re-
striction to R of any hyperbolic element with fixed point set {0,∞} is a
homothety different from the identity. So Z = κx∂x on S1

∞.
The last assertion is true because any elliptic element A preserving {0,∞}

is conjugated to the rotation x 7→ −1/x by some hyperbolic element with
fixed point set {0,∞}, and therefore A∗(x∂x) = −x∂x. �

Like in Section 3.4, every F1
l ≡ F̊l becomes a complete R-Lie foliation

with the restriction to M1
l ≡ M̊l of the element of X(M,F) defined by

x∂x ∈ X(R,HolF) via (2.2). Moreover the statements of Lemma 3.11 and
Proposition 3.12 hold as well, with the obvious adaptations of the proofs.

Now the transverse orientation of every Fl may be directed outward and
inward on different boundary leaves of Ml. Anyway, M0 contains at least
two leaves because ∅ 6= π(D−1(0)), π(D−1(∞)) ⊂M0.

Example 3.16. The identity and the hyperbolic elements with common
fixed point set {0,∞} form an abelian and torsion free subgroup H ⊂
PSL(2,R) (its restriction to R is the group of orientation preserving homo-

theties). Let Γ ⊂ H be a subgroup of finite rank, and let L̃ be a Γ-covering

of the closed oriented surface L of genus two. Let M̃ = S1
∞ × L̃ with the

foliation F̃ by the fibers of the first factor projection D : M̃ → S1
∞. The

diagonal action of Γ on M̃ , given by γ · (x, ỹ) = (γ(x), γ · ỹ), preserves F̃ .

Thus it induces a suspension foliation F on the closed manifold M = Γ\M̃
[8, Section 3.1]. F is a transversely projective foliation, whose developing
map is D and with HolF = Γ (Section 2.8). It has two compact leaves,

which are diffeomorphic to L, and all other leaves are diffeomorphic to L̃.

Example 3.17. In Example 3.4 (iii), the model (1) foliation G is trans-
versely projective. It is transversely affine if and only if sign(f(x)) has the
same limit as x → 1 and as x → −1, which is another description of the
transversely affine Reeb component of Example 3.13 for n = 2 and λ = e1/µ.

In Example 3.5 (iii), using the above model (1) foliations to make tangen-
tial gluing, all of them with the same µ, the result is a transversely projective
foliation if it is transversely oriented, which means that the number of trans-
versely affine models is even. It is transversely affine if and only if all models
are transversely affine.

Example 3.18. In Example 3.6, if F and G are also transversely projective,
and induce the same projective structure on S1 via c and d, then F ′ clearly
becomes transversely projective. (See [19, Appendix to Section 2] for the
classification of projective circles.)

4. Transversely simple foliated flows

Let F be a smooth foliation of codimension one on a manifold M . For
the sake of simplicity, assume that F is transversely oriented. Let Z ∈
Xcom(M,F) with foliated flow φ. Let M0 be the union of leaves preserved
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by φ. The φ-invariant set M0 is closed in M because it is the zero set of
Z ∈ X(M,F) ⊂ C∞(M ;NF). Moreover φ is transverse to the leaves on the
open set M1 := M rM0. So there is a canonical isomorphism Nφ ∼= TF
on M1, and F is TC at every point of M1 (Section 2.7); in particular, the
leaves in M1 have no holonomy. With the notation of Sections 2.4–2.6, let
φ̄ be the H-equivariant local flow on Σ generated by Z ∈ X(Σ,H). Via the
homeomorphismM/F → Σ/H defined by the maps x′k, the leaves preserved
by φ correspond to the H-orbits preserved by φ̄, whose union is Fix(φ̄)
because they are totally disconnected.

Definition 4.1. The leaves preserved by φ that correspond to simple fixed
points of φ̄ are called transversely simple. If all leaves preserved by φ are
transversely simple, then φ (or Z) is called transversely simple.

Since dimΣ = 1, for all simple p̄ ∈ Fix(φ̄), there is some κ = κp̄ ∈ R
×

such that φ̄t∗ ≡ eκt on Tp̄Σ ≡ R. By the H-equivariance of φ̄, we easily get
κp̄ = κq̄ for all q̄ ∈ H(p̄) ⊂ Fix(φ̄). Thus we can use the notation κL = κp̄

if H(p̄) corresponds to the simple preserved leaf L.

Lemma 4.2. Let ψ be a local flow on R with infinitesimal generator X ∈
X(R). If 0 is a simple fixed point of ψ with κ0 = κ, then there is a coordinate
x around 0 in R so that x(0) = 0 and X = κx∂x, and therefore ψt(x) = eκtx.

Proof. Let u denote the standard coordinate of R. The condition on 0 means
that X = f(u)∂u for some f ∈ C∞(R) with f(0) = 0 and f ′(0) = κ. Then
f(u) = uh(u) for some h ∈ C∞(R) with h(0) = κ. Hence there is some
g ∈ C∞(R) such that κ − h(u) = ug(u). We look for some smooth function
x = x(u) around 0 so that x(0) = 0, x′(0) 6= 0 and κx∂x = X. Thus
x(u) = ue(u) for some smooth function e = e(u) defined around 0 with
e(0) 6= 0. Since ∂u = x′(u)∂x, we need κue(u) = uh(u)(e(u) + ue′(u))
around 0; i.e., e′(u)/e(u) = (κ − h(u))/uh(u) = g(u)/h(u). Any e(u) =
C exp(

´ u
0 g(v)/h(v) dv) with C 6= 0 will do the job. �

Remark 4.3. (i) Since φ̄ and Z ∈ X(Σ,H) ≡ X(M,F) determine each
other, the condition on the preserved leaves of φ to be transversely
simple depends only on Z ∈ X(M,F).

(ii) By Lemma 4.2, around any point p in a transversely simple leaf L ⊂
M0, there are foliated coordinates (x, y) with x(p) = 0 and Z = κLx∂x.

(iii) If φ is transversely simple, then every closed orbit is contained in either
M0 or M1, and all fixed points belong to M0.

From now on, suppose that φ is transversely simple and M is compact,
unless otherwise stated.

Proposition 4.4. M0 is a finite union of compact leaves.

Proof. Since Fix(φ̄) has no accumulation points in Σ (Section 2.1), every
leaf L in M0 has a neighborhood V such that V ∩M0 = L. Thus the result
follows using that M is compact, and M0 is closed in M . �
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By Proposition 4.4 and since the leaves in M1 have no holonomy, F is
almost without holonomy (Section 3.3), and only a finite number of leaves
may have holonomy. According to Remark 3.2 (vi), we can consider Hec-
tor’s description with this choice of M0 and M1, even though there may
be leaves without holonomy in M0. Consider also the rest of the notation
of Section 3.3. If the leaves in M1 are not compact, then M1 is just the
transitive point set of F .

Given any leaf L ⊂ M0 and p ∈ L, let (x, y) : U → Σ× B′′ be a foliated
chart around p like in Remark 4.3 (ii), where Σ is some open interval con-
taining 0. Let h : π1L → HolL, σ 7→ hσ, be the holonomy homomorphism
of L at p. Via the projection x : U → Σ, we can regard HolL as a subgroup
of the group of germs at 0 of local transformations of Σ such that 0 is a fixed
point in their domains.

Proposition 4.5. HolL consists of germs at 0 of homotheties on R.

Proof. All elements of HolL can be represented by elements of the group
Diffeo+(R, 0) of orientation-preserving diffeomorphisms of R that fix 0. Ac-
cording to Remark 4.3 (ii), for the above foliated coordinates (x, y) around
p, we have Z = κx∂x for κ = κL. Then, by Lemma 3.9 (ii) and Re-
mark 3.10 (ii), any element of HolL is the germ at 0 of a homothety. �

According to Proposition 4.5, h = hL is induced by the homomorphism
ĥ = ĥL : π1L → Diffeo+(R, 0) whose image consists of homotheties. We

get an induced monomorphism h = hL : Γ := π1L/ ker ĥ → Diffeo+(R, 0),
γ 7→ hγ , with hγ(x) = aγx for some monomorphism Γ → R

+ ≡ (R+,×),

γ 7→ aγ = aL,γ . The holonomy cover π = πL : L̃ → L is determined by

π1L̃ ≡ ker ĥ = kerh. On some neighborhood of L, F can be described with
the suspension defined by π and h, recalled in Section 5.

Every F1
l becomes a complete R-Lie foliation with the structure induced

by Zl ∈ Xcom(M
1
l ,F

1
l ), with the original differentiable structure (see Re-

mark 3.2 (iv)). We use the following notation for its Fedida’s description

(Sections 2.7 and 3.2): πl : M̃
1
l →M1

l , hl : Γl := Aut(πl) → R, Dl : M̃
1
l → R

and F̃1
l = π∗l F

1
l . The abelian and torsion free group Γl has finite rank be-

cause π1M
1
l ≡ π1M̊l

∼= π1Ml and Ml is compact. The action of any γ ∈ Γl

on M̃1
l is denoted by p̃ 7→ γ · p̃ or by Tγ . Let Z̃l and φ̃l be the lifts of Zl

and φl to M̃
1
l . Recall that Z̃l is Dl-projectable, and we can assume that

Dl∗Z̃l = ∂x (Section 3.2).
By Remark 3.2 and Proposition 3.3, we have the following cases for F :

(a) F is given by a fiber bundle M → S1 with connected fibers.
(b) F is an R-Lie foliation with dense leaves.
(c) M0 6= ∅, HolL ∼= Z for all leaves L ⊂ M0, and the foliations F1

l are
given by fiber bundles M1

l → S1 with connected fibers.
(d) M0 6= ∅, HolL is a finitely generated abelian group of rank > 1 for all

leaves L ⊂M0, and all foliations F1
l are minimal R-Lie foliations.
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The case (a) can be considered as a model (1) with empty boundary, avoiding
the use of models (0), or it can be cut into models (0) by adding a finite
number of leaves without holonomy to M0 (Remark 3.2 (vi)).

Remark 4.6. The results and observations of this section hold without re-
quiring M to be compact, assuming only that M0 is compact.

Example 4.7. By Proposition 4.5, the Reeb foliation F on S3 does not
admit any transversely simple foliated flow because it has a leaf with ho-
lonomy but no infinitesimal holonomy. Actually, this proves that its Reeb
components of [8, Example 3.3.11] cannot show up as models in Hector’s
description of any foliation on a closed manifold with a simple foliated flow.
Similarly, this realization is impossible for Example 3.4 (i),(ii).

5. Case of a suspension foliation

5.1. Basic definitions. For a connected closed manifold L, let ĥ : π1L →
Diffeo+(R, 0) be a homomorphism whose image consists of homotheties

(like in Section 4). It induces a monomorphism h : Γ := π1L/ ker ĥ →
Diffeo+(R, 0), γ 7→ hγ . We have hγ(x) = aγx for some monomorphism
Γ → R

+, γ 7→ aγ ; in particular, Γ is abelian, torsion free and finitely gen-

erated. Let π = πL : (L̃, p̃) → (L, p) be the pointed regular covering map

with π1L̃ = π1(L̃, p̃) ≡ ker ĥ, and therefore Aut(π) ≡ Γ. We may use the

notation [ỹ] = π(ỹ) for ỹ ∈ L̃. The canonical left action of every γ ∈ Γ

on L̃ is denoted by Tγ or ỹ 7→ γ · ỹ. For the diagonal left action of Γ on

M̃ = R× L̃, γ · (x, ỹ) = (aγx, γ · ỹ), let M = Γ\M̃ . The canonical projection

πM : M̃ →M is a Γ-cover with deck transformations hγ ×Tγ (γ ∈ Γ). Write

[x, ỹ] = πM (x, y) for (x, ỹ) ∈ M̃ . Let ˜̟ : M̃ → L̃ denote the second factor

projection, and let F̃ be the foliation on M̃ with leaves {x} × L̃ (x ∈ R).
Since ˜̟ is Γ-equivariant, it induces a fiber bundle map ̟ :M → L, defined

by ̟([x, ỹ]) = [ỹ]. On the other hand, since F̃ is Γ-invariant, it induces a

foliation F on M so that π∗F = F̃ , which is transverse to the fibers of ̟.
(M,F) is called the suspension defined by ĥ (or h) and π [8, Section 3.1].
Note that the typical fiber of ̟ is R because the corresponding fibers of ˜̟
and ̟ can be identified via πM . Since 0 is fixed by the Γ-action on R, the

leaf {0}× L̃ ≡ L̃ of F̃ is Γ-invariant, and πM ({0}× L̃) ≡ L is a compact leaf

of F . The other leaves of F̃ are diffeomorphic via πM to the corresponding
leaves of F because the elements of Γ r {e} have no fixed points in R

×.

Given ỹ ∈ L̃ and y = [ỹ] ∈ L, the fiber ̟−1(y) ≡ ˜̟−1(ỹ) = R × {ỹ} ≡ R

is a global transversal of F through [0, ỹ] ≡ y. Note that the holonomy

homomorphism h : π1L → HolL is induced by h, and therefore L̃hol ≡ L̃.

The standard orientation of R induces a transverse orientation of F̃ , which
is Γ-invariant, giving rise to a transverse orientation of F .

F is transversely affine foliation on an open manifold. Its description of

Section 2.8 is given by πM : M̃ →M , the first factor projection D : M̃ → R
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and h : Γ → Aff+(R). In this case, D induces an identity M̃/F̃ ≡ R, and
therefore the inclusions of (2.2) and (2.3) are equalities (cf. Proposition 3.12
for the case where M is closed).

5.2. Transversely simple vector fields on a suspension foliation.

Given any κ ∈ R
×, consider the transversely simple foliated flow ξ̃ on

(M̃, F̃) given by ξ̃t(x, ỹ) = (eκtx, ỹ), whose infinitesimal generator is Ỹ =

(κx∂x, 0) ∈ Xcom(M̃, F̃). With the notation of Section 4 for ξ̃, we have

Fix(ξ̃t) = M̃0 = {0} × L̃ ≡ L̃, and the orbits on M̃1 are the fibers of the

restriction ˜̟ : M̃1 → L̃. Since ξ̃t is Γ-equivariant and Ỹ is Γ-invariant, they
can be projected to M obtaining a transversely simple foliated flow ξt with

infinitesimal generator Y ∈ X(M,F), satisfying Fix(ξt) =M0 = πM (M̃0) ≡

L, and the orbits on M1 are the fibers of the restriction ̟ : M1 → L̃.
Moreover Y ≡ κx∂x on R via (2.2), whose flow ξ̄ is given by ξ̄t(x) = eκtx.

F1
± ≡ F̊± onM1

± ≡ M̊± is a transversely complete R-Lie foliation with the

structure defined by Y± ∈ Xcom(M
1
±,F

1
±) (see Remark 4.6). In its Fedida’s

description (Section 2.7), M̃1
± is the holonomy covering of M1

±, whose group

of deck transformations is also Γ. The developing map D± : M̃1
± → R

and holonomy homomorphism h± : Γ → R can be chosen to be given by
D±(x, y) = κ

−1 ln |x| =: t and h±(γ) = κ
−1 ln aγ , and therefore HolF± =

{κ−1 ln aγ | γ ∈ Γ }. In this way, (D±)∗Ỹ± = ∂t, like in Section 3.2.
Let φ be any transversely simple foliated flow on M , with infinitesi-

mal generator Z ∈ Xcom(M,F), such that M0 = L. According to Re-

mark 4.3 (ii), we can assume φ̄ = ξ̄ and Z = Y . Then the lifts to M̃ , φ̃ of φ

and Z̃ of Z, are of the form

φ̃t(x, ỹ) = (eκtx, φ̃tx(ỹ)) , Z̃ = (κx∂x, Z̃x) , (5.1)

for smooth families, { φ̃tx | x, t ∈ R } ⊂ Diffeo(L̃) and { Z̃x | x ∈ R } ⊂ X(L̃).

In particular, Z̃0 is the restriction of Z̃ to L̃ ≡ {0} × L̃, and its flow is

φ0 = {φ̃t0}. Thus Z̃0 is Γ-invariant and φ̃0 is Γ-equivariant, inducing the
restrictions of Z and φ to L, denoted by Z0 and φ0.

Proposition 5.1. The flow φ0 is simple if and only if the fixed points and
closed orbits of φ in M0 are simple.

Proof. Let ỹ ≡ (0, ỹ) ∈ L̃ ≡ M̃0 and y = [ỹ] ≡ [0, ỹ] ∈ L ≡ M0. Suppose

that y ∈ Fix(φ0) ≡ Fix(φ) ∩M0, and therefore ỹ ∈ Fix(φ̃0) ≡ Fix(φ̃) ∩ M̃0.
By (5.1),

T[0,ỹ]M ≡ T(0,ỹ)M̃ ≡ R⊕ TỹL̃ ≡ R⊕ TyL ,

φt
∗[0,ỹ] ≡ φ̃t

∗(0,ỹ) ≡ eκt ⊕ φ̃t0∗ỹ ≡ eκt ⊕ φt0∗y .

So p is simple for φ if and only if y is simple for φ0.
Now suppose that y is in some closed orbit c of φ0, which can be also

considered as a closed orbit of φ in M0. Then there is some γ ∈ Γ such that
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φ̃
ℓ(c)
0 (ỹ) = γ · ỹ. As before,

N[0,ỹ]φ ≡ N(0,ỹ)φ̃ ≡ R⊕Nỹφ̃0 ≡ R⊕Nyφ0 ,

N[0,ỹ]φ ≡ N(0,γ·ỹ)φ̃ ≡ R⊕Nγ·ỹφ0 ≡ R⊕Nyφ0 ,

φ
ℓ(c)
∗[0,ỹ] ≡ φ̃

ℓ(c)
∗(0,ỹ) ≡ eκℓ(c) ⊕ φ̃

ℓ(c)
0∗ỹ ≡ eκℓ(c) ⊕ φ

ℓ(c)
0∗y .

So c is simple for φ if and only if it is simple for φ0. �

Proposition 5.2. For every simple A ∈ X(L) without closed orbits, there
is some simple B ∈ Xcom(M,F) without closed orbits such that B = Y and
B0 ≡ A.

Proof. Let Ã ∈ Xcom(L̃) be the lift of A, whose flow is denoted by ζ̃, and

let B̃ = (κx∂x, Ã) ∈ X(M̃ , F̃). Clearly, B̃0 ≡ Ã and B̃ = Ỹ . Moreover B̃ is

complete because its flow η̃ is given by η̃t(x, ỹ) = (eκtx, ζ̃t(ỹ)). Since B̃ is
Γ-invariant, it induces some B ∈ Xcom(M,F) with flow η.

Claim 1. The flow η has neither fixed points nor closed orbits in M1.

By absurdity, suppose that ηt([x, ỹ]) = [x, ỹ] for some [x, ỹ] ∈ M1 and
t > 0. Then there is some γ ∈ Γ such that η̃t(x, ỹ) = γ · (x, ỹ). Since x 6= 0,

this means that eκt = aγ and ζ̃t(ỹ) = γ · ỹ. Thus ζt(y) = y for y = [ỹ].

Hence y ∈ Fix(ζ) because ζ has no closed orbits, and therefore ỹ ∈ Fix(ζ̃).
It follows that γ · ỹ = ỹ, yielding γ = e. So eκt = 1, obtaining κt = 0, a
contradiction.

By Proposition 5.1, Claim 1 and since η0 ≡ ζ, it follows that η is simple
without closed orbits. �

5.3. Differential forms defining a suspension foliation. For k = rankΓ,
fix generators γ1, . . . , γk of Γ. Let ci be a piecewise smooth loop in L based
at p such that [ci] ∈ π1(L, p) defines γi, and let ai = aγi . By the universal
coefficients and Hurewicz theorems, there are closed 1-forms β1, . . . , βk on

L so that δij = 〈[βi], [cj ]〉 =
´ 1
0 c

∗
jβi and 〈[βi], ker ĥ〉 = 0. Thus every π∗βi is

exact on L̃. Let θ = − ln(a1)β1 − · · · − ln(ak)βk. Then θ̃ = π∗θ = dF for

some F ∈ C∞(L̃). With some abuse of notation, let θ ≡ ̟∗θ, θ̃ ≡ ˜̟ ∗θ̃ and

F ≡ ˜̟ ∗F . It is easy to check that T ∗
γF = F − ln aγ on L̃ for all γ ∈ Γ. Thus

ρ̃ = eFx and ω̃ = |κ|−1eF dx are Γ-invariant on M̃ . Furthermore ρ̃ is a defin-

ing function of L̃ on M̃ , ω̃ defines F̃ , dω̃ = θ̃∧ ω̃ and dρ̃ = ρ̃θ̃+ |κ| ω̃. We get
an induced defining function ρ of L on M , and an induced form ω defining
of F , so that dω = θ ∧ ω and dρ = ρθ + |κ|ω. We also get M ≡ Rρ × L̟,
giving rise to smaller tubular neighborhoods Tǫ ≡ (−ǫ, ǫ)ρ × L̟ (ǫ > 0).

5.4. Change of the differentiable structure. Given 0 < α 6= 1, let
fα : R → R be the homeomorphism defined by fα(x) = sign(x)|x|α =
x |x|α−1. The restrictions fα : R± → R

± are diffeomorphisms, but fα is
not diffeomorphism around 0. Clearly, fα(aγx) = aαγfα(x), and it is easy to
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check that fα∗(x∂x) = αu∂u on R
±, using the coordinate u = fα(x). Like

in Section 5.1, let hα : Γ → Diffeo+(R, 0) be the monomorphism defined by
hα,γ(u) = aαγu, and let (Mα,Fα) be the suspension defined with hα and π.

The foliated homeomorphism Υ̃α = fα × id of (M̃ , F̃) is equivariant with
respect to the Γ-actions defined by h and hα, and therefore it induces a
foliated homeomorphism Υα : (M,F) → (Mα,Fα). The restriction Υα :
(M1,F1) → (M1

α,F
1
α) is a diffeomorphism.

A transversely simple foliated flow ξα on (Mα,Fα), with infinitesimal
generator Yα, can be defined like ξ and Y in Section 5.2, using κα in-
stead of κ, and we get Υα∗Y = Yα on M1

α. With more generality, for any
transversely simple foliated flow φ on (M,F), with infinitesimal generator
Z ∈ Xcom(M,F), such that φ̄ = ξ̄ and Z = Y , there is a transversely sim-
ple foliated flow φα on (Mα,Fα), with infinitesimal generator Zα, such that
φ̄α = ξ̄α, Zα = Yα, and Υα∗Z = Zα on M1

α. Precisely, using (5.1), their lifts

φ̃α and Z̃α to M̃ are given by

φ̃tα(u, ỹ) = (eκαtu, φ̃tu(ỹ)) , Z̃α = (καu∂u, Z̃u) .

In other words, we get a new differentiable structure on (M,F) via Υα,
which agrees with the original one on M1. This will be called a transverse
power change of the differentiable structure (around the leaf L). With this
point of view, φ is a smooth transversely simple foliated flow with both
differentiable structures, replacing κ with κα. In this way, we can change
|κ| arbitrarily, but keeping sign(κ) invariant.

With the new differentiable structure, C∞(M) is generated by ρα :=
ρ |ρ|α−1 and C∞(L) ≡ ̟∗C∞(L). Moreover ρα is a defining function of L,
ωα := ρα−1ω and θα have smooth extensions to M , ωα defines F , dωα =
θα ∧ ωα and dρα = ραθα + |ακ|ωα.

6. Global structure

Consider the notation of Section 4, whereM is compact, F is transversely
oriented, and φ is transversely simple.

6.1. Tubular neighborhoods of the components of M0. In the follow-
ing, L runs in π0M

0 (the set of leaves in M0), and we have corresponding

objects ĥL, hL, ΓL, πL : L̃→ L, aL,γ and κL, defined by F and φ. Consider
the constructions of Sections 5.1–5.3, using this data, adding a prime and
the subindex “L” to their notation: the suspension (M ′

L,F
′
L) defined with

hL, with projection ̟′
L : M ′

L → L, the transversely simple foliated flow
ξ′L with infinitesimal generator Y ′

L, the differential forms ω′
L and θ′L, the

defining function ρ′L, and the tubular neighborhoods T ′
ǫ,L.

By the Reeb’s local stability, there are foliated diffeomorphisms between
the restrictions of F and F ′ to tubular neighborhoods, TL,0 of L in M
and T ′

L,0 := T ′
L,ǫ0

(ǫ0 > 0) of L in M ′
L, so that the projection ̟L of TL,0

corresponds to the projection ̟′
L of T ′

L,0. We will simply write F ≡ F ′
L and
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̟L ≡ ̟′
L on TL,0 ≡ T ′

L,0. We can assume that the sets TL,0 are disjoint

in M , and φ̄ ≡ ξ̄′L and Z ≡ Y ′
L on TL,0 ≡ T ′

L,0 (Remark 4.3 (ii)). Fix also

smaller tubular neighborhoods, TL ≡ T ′
L := T ′

L,ǫ (0 < ǫ < ǫ0).

Let M ′ =
⊔

LM
′
L, where we consider the combinations of all of the above

objects, removing L from the notation: F ′, ̟′, ξ′, Y ′, ω′, θ′ and ρ′. Similarly,
let T ′ =

⊔
L T

′
L, T

′
0 =

⊔
L T

′
L,0, T =

⋃
L TL and T0 =

⋃
L TL,0.

Proposition 6.1. (i) There is some Z ′ ∈ Xcom(M
′,F ′) such that Z ′ =

Y ′, Z ′ ≡ Z on T ≡ T ′, and Z ′ = Y ′ on M ′
r T ′

0.

(ii) For any A ∈ X(M ′,F ′) with A = Y ′, there is some B ∈ X(M,F) with
B = Z, B ≡ A on T ≡ T ′, and B = Z on M r T0.

(iii) There are ω, θ ∈ C∞(M ; Λ1) such that ω defines F , ω ≡ ω′ on T ≡ T ′

and dω = θ ∧ ω on M .

Proof. Let λ ∈ C∞(M) such that 0 ≤ λ ≤ 1, λ = 1 on T , and suppλ ⊂ T0,
and let λ′ ∈ C∞

c (M ′) such that suppλ ⊂ T ′
0 and λ′ ≡ λ on T ′

0 ≡ T0.
To prove (i), let Z ′

0 ≡ Z on T ′
0 ≡ T0, and take Z ′ ≡ Y ′ + λ′(Z ′

0 − Y ′).
To prove (ii), let B0 ≡ A on T0 ≡ T ′

0, and take B = Z + λ(B0 − Z).
To prove (iii), take ω0 ≡ ω′ and θ0 ≡ θ′ on T0. Take ω1 ∈ C∞(M ; Λ1)

defining F . Then ω = λω0 +(1− λ)ω1 also defines F . Thus dω = θ1 ∧ω for
some θ1 ∈ C∞(M ; Λ1). We get (θ0 − θ1) ∧ ω = 0 on T , and therefore (iii) is
satisfied θ = θ1 + λ(θ0 − θ1). �

We can also consider a transverse power change of the differential struc-
ture on every M ′

L around L (Section 5.4). The corresponding new differen-
tiable structure on every TL ≡ T ′

L can be combined with the differentiable
structure of M1 to produce a new differentiable structure on M , also called
a transverse power change of the differentiable structure (around M0), and
keeping Z ∈ X(M,F) after this change. In this way, the absolute values
|κL| can be changed arbitrarily, but keeping every sign(κL) invariant.

Consider the forms ω and θ of Proposition 6.1 (iii), and let ρ ≡ ρ′ on
T ≡ T ′. With the new differentiable structure, C∞(T ) is generated by
ρα := ρ |ρ|α−1 and C∞(M0) ≡ ̟∗C∞(M0). Moreover ωα := ρα−1ω and
θα := αθ have smooth extensions to T , ωα defines F|T , dωα = θα ∧ ωα on
T , and dρα = ραθα + |ακL|ωα on TL. Like in Proposition 6.1 (iii), the
restrictions of ωα and θα to some smaller tubular neighborhood of L can be
extended to M , keeping the relation dωα = θα ∧ ωα.

6.2. Transverse structure. Let P be the pseudogroup on S1
∞ = R∪ {∞}

generated by the projective rotation x 7→ −1/x, the hyperbolic projective
transformations x 7→ λx (λ > 0), and the diffeomorphisms x 7→ xα of R+

(α > 0). F is called a P-foliation if {Uk, xk} can be chosen such that every
Σk is realized as an open subset of S1

∞ and the maps hkl belong to P.

Proposition 6.2. F is a P-foliation.

Proof. Since F ≡ F ′ on every TL,0 ≡ T ′
L,0 (Section 6.1), the restriction

of F to any TL,0 has a regular foliated atlas {Ua, (xa, ya)} such that the
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corresponding elementary holonomy transformations are restrictions of ho-
motheties. For κ = κL ∈ R

×, we have Z = κxa ∂xa on xa(Ua) (Section 6.1),
whose local flow φ̄a is given by φ̄a(x, t) = eκtx.

Now the restrictions F1
l are R-Lie foliations according to Sections 4. Then

any F1
l has a regular foliated atlas {Vi, (wi, vi)} whose elementary holonomy

transformations are given by translations, wi = hij(wj) = wj + cij , between
open intervals of R. Taking the new transverse coordinates ui = ewi , we get
another regular foliated atlas {Vi, (ui, vi)} of F1

l , whose elementary holo-
nomy transformations are given by homotheties, ui = ecijuj, between open
intervals of R+. Thus {Vi, (ui, vi)} defines a transversely affine structure of

F1
l . With the notation of Section 4, we can indeed assume that πl : Ṽi → Vi

is a diffeomorphism for some open Ṽi ⊂ M̃1
l , and uiπl = Dl on Ṽi. Hence

Z = ∂wi
on wi(Vi), and therefore Z = ui∂ui

on ui(Vi), whose local flow φ̄i is
given by φ̄ti(u) = etu.

For any nonempty intersection Ua ∩ Vi, via the corresponding elementary
holonomy transformation hai = xau

−1
i , the vector field κxa ∂xa corresponds

to ui∂ui
, and therefore φ̄a corresponds to φ̄i. Take any p ∈ Ua ∩ Vi, and let

p̄a = xa(p) ∈ R
× and p̄i = ui(p) ∈ R

+. Then, for |t| small enough,

hai(e
tp̄i) = haiφ̄

t
i(p̄i) = φ̄ta(p̄a) = eκtp̄a = p̄ap̄

−κ

i (etp̄i)
κ ,

yielding hai(u) = p̄ap̄
−κ

i uκ for u close enough to p̄i. Since hai preserves the
orientation, p̄a and κ must have the same sign. Then hai can be expressed
as a composition of generators of P:

u 7→ ũ := uκ 7→ p̄ap̄
−κ

i ũ if p̄a,κ > 0 , (6.1)

u 7→ ũ := u−κ 7→ û := |p̄a|
−1p̄κi ũ 7→ −1/û if p̄a,κ < 0 . (6.2)

Thus a union of foliated atlases of these types, for all L ∈ π0M
0 and folia-

tions Fl, is a foliated atlas of F defining a structure of P-foliation. �

Proposition 6.3. After performing some transverse power change of the
differentiable structure around M0, F becomes transversely projective.

Proof. Using a transverse power change of the differentiable structure around
M0, we can assume that κL = ±1 for all L ∈ π0M

0. Then, in the proof of
Proposition 6.2, the elementary holonomy transformations (6.1) and (6.2)
are also restrictions of elements of PSL(2,R). �

7. Existence and description of simple foliated flows

Now let F be any smooth transversely oriented foliation of codimension
one on a closed manifold M .

7.1. Existence of simple foliated flows.

Proposition 7.1. If (M,F) admits some transversely simple foliated flow
φ, then it also admits some simple foliated flow ψ with φ̄ = ψ̄.
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Proof. Let Z ∈ X(M,F) be the infinitesimal generator of φ, and consider
the notation of Section 6.1. Take some simple flow ζ on M0 without closed
orbits (Example 2.2), and let A denote its infinitesimal generator. By Propo-
sition 5.2, there is some simple B ∈ Xcom(M

′,F ′), without closed orbits,
such that B|M0 = A and B = Z ′. Then, by Proposition 6.1 (ii), there is
some C ∈ X(M,F) with C = Z, C ≡ B on T ≡ T ′, and C = Z on M r T0.

By Peixoto’s extension to open manifolds of a theorem of Kupka and
Smale (Section 2.1), there is some generic D ∈ X(M1) as close as desired
to C|M1 in the strong C∞ topology; in particular, D is simple. If D close
enough to C|M1 in the strong C∞ topology, then D has an extension E ∈
X(M) with E|M0 = A, and C = fE in C∞(M ;NF) for some 0 < f ∈
C∞(M) with f = 1 onM0. Thus fE ∈ X(M,F) and fE = Z, and therefore
the foliated flow ψ of fE satisfies ψ̄ = φ̄. So ψ is transversely simple and
has the same preserved leaves as φ (the leaves in M0); in particular, ψ has
no fixed points in M1. Since fE = E = C ≡ B = A on M0, we get
that ψ agrees with ζ on M0, and therefore its fixed points are simple by
Proposition 5.1. Moreover fE|M1 = fD is simple by Remark 2.1. �

Definition 7.2. It is said that φ (or Z) is weakly simple if its preserved
leaves are transversely simple and its closed orbits are simple.

By Proposition 5.1, simple foliated flows are weakly simple.

Proposition 7.3. If (M,F) has some transversely simple foliated flow φ,
then it also has some weakly simple foliated flow ζ such that φ̄ = ζ̄, ζt = id
on M0 for all t, and ζ has no closed orbit in some neighborhood of M0.

Proof. Apply Proposition 6.1 (ii) with some transversely simple Z ∈ X(M,F)
and A = Y ′. �

7.2. Description of foliations with simple foliated flows. Now, with-
out requiring the existence of any special foliated flow a priori, assume that
F satisfies the following properties:

(A) F is almost without holonomy with finitely many leaves with holonomy.
(B) The holonomy groups of the compact leaves can be described as groups

of germs at 0 of homotheties on R.

By (A), we can use the notation of Section 3.3. In the following, we refer to
the possibilities (a)–(d) of Section 4 for transversely simple flows.

Example 7.4. Suppose that F is given by a fiber bundle M → S1 with
connected fibers. For any even number of points, x1, . . . , x2m ∈ S1 (m ≥ 0),
in cyclic order, and numbers κ1, . . . ,κ2m ∈ R

×, with alternate sign, there is
some simple flow φ̄ on S1 such that Fix(φ̄) = {x1, . . . , x2m} and φ̄t∗ = eκjt on
Txj

S1 ≡ R. By Proposition 7.1, there is a simple foliated flow φ on (M,F)
whose preserved leaves are fibers L1, . . . , L2m over x1, . . . , x2m. If m > 0,
then φ has no closed orbits in M1. If m = 0, then φ has no preserved leaves,
and therefore no fixed points. This is of type (a).
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Example 7.5. If F is an R-Lie foliation with dense leaves, X(M,F) is
of dimension 1 and generated by a non-vanishing transverse vector field.
Hence there are simple foliated flows by Proposition 7.1, all of them without
preserved leaves. This is of type (b),

Example 7.6. Suppose that F is a transversely affine foliation that is not an
R-Lie foliation. Then, according to Section 3.4, to get (A), F is elementary,
and we can assume that imD = R and HolF is a non-trivial group of
homotheties. Then, by Lemma 3.9 (i) and Proposition 3.12, X(M,F) is
generated by a transverse vector field Z such that the foliated flow φ of Z
is transversely simple. By Proposition 7.1, there is a simple foliated flow φ′

with φ̄′ = φ̄. It also follows from Lemma 3.9 (i) and Proposition 3.12 that
there is some κ ∈ R

× such that {κL | L ∈ π0M
0 } = {κ}.

Example 7.7. Assume that F is a transversely projective foliation that is
not transversely affine. Then, according to Section 3.5, to get (A) and (B),
we can assume that imD = S1

∞ and HolF consists of the identity and hy-
perbolic elements with common fixed point set {0,∞} and possible elliptic
elements that keep {0,∞} invariant. By Lemma 3.15 and the projective
version of Proposition 3.12, to get X(M,F) 6= 0, there must be no elliptic
element in HolF . Moreover, in this case, X(M,F) is generated by a trans-
verse vector field Z such that the foliated flow φ of Z is transversely simple.
By Proposition 7.1, there is some simple foliated flow φ′ with φ̄′ = φ̄. By
Lemma 3.15 and the projective version of Proposition 3.12, there is some
κ ∈ R

+ such that {κL | L ∈ π0M
0 } = {±κ}.

Example 7.8. In Examples 7.6 and 3.16, we can consider any transverse
power change of the differentiable structure aroundM0 (Sections 5.4 and 6.1).
With the new differentiable structure, the foliation has the same simple fo-
liated flows, but the absolute values |κL| can be arbitrary, keeping the same
signs sign(κL). Thus { sign(κL) | L ∈ π0M

0 } is {1} or {±1} if and only we
have changed the differential structure of Example 7.6 or 3.16, respectively.

Examples 7.6–7.8 can be of type (c) or (d).

Theorem 7.9. For any smooth transversely oriented foliation of codimen-
sion one on a closed manifold, the following conditions are equivalent:

(i) It satisfies (A) and (B).
(ii) It is described by one of Examples 7.4–7.8.
(iii) It admits a transversely simple foliated flow.
(iv) It admits a weakly simple foliated flow (trivial on its preserved leaves).
(v) It admits a simple foliated flow.

Proof. We already know that (iii) yields (i) (Section 4). By Proposition 6.3,
Examples 7.4–7.8 cover all cases (a)–(d), and therefore (i) yields (ii). Propo-
sition 7.1 states that (iii) yields (v), which was used in Examples 7.4–7.8,
showing that (ii) yields (v). Proposition 7.3 states that (iii) yields (iv). The
remaining implications are obvious. �
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According to Theorem 7.9, the foliations of Examples 3.1, 3.13, 3.14
and 3.16–3.18 admit simple foliated flows.
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