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SIMPLE FOLIATED FLOWS

JESUS A. ALVAREZ LOPEZ, YURI A. KORDYUKOV, AND ERIC LEICHTNAM

ABSTRACT. We describe transversely oriented foliations of codimension
one on closed manifolds that admit simple foliated flows.
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1. INTRODUCTION

In this paper, we describe transversely oriented foliations of codimension
one on closed manifolds that admit simple foliated flows. Our motivation to
study simple foliated flows comes from the role that they play in Deninger’s
program [10} 1Tl 12, 13} [14]. These are exactly those foliated flows for which
a dynamical Lefschetz trace formula conjectured by Deninger holds. For the
study of the associated Lefschetz trace formula, we refer to [II, 2, Bl [4, [5]. A
related classification of foliated dynamical systems was given in [29].

Let F be a smooth foliation of codimension one on a closed manifold M.
Flows on M are foliated when they map leaves to leaves. This means that
their infinitesimal generators are infinitesimal transformations of (M, F).
These infinitesimal transformations form the normalizer X(M, F) of the Lie
subalgebra X(F) C X(M) of vector fields tangent to the leaves, obtaining the
quotient Lie algebra X(M,F) = X(M,F)/X(F). The elements of X(M,F),
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2 J.A. ALVAREZ LOPEZ, Y.A. KORDYUKOV, AND E. LEICHTNAM

called transverse vector fields, can be considered as leafwise invariant sec-
tions of the normal bundle of F.

Let (X,H) be the holonomy pseudogroup of F. The infinitesimal gen-
erators of H-equivariant local flows on X are the H-invariant vector fields.
These invariant vector fields form a Lie subalgebra X(2,H) C X(X). There
is a canonical identity X(M, F) = X(X2,H), and every foliated flow ¢ induces
an H-equivariant local flow ¢ on X.

Simple fixed points and simple closed orbits of a flow ¢ can be defined by
using a transversality condition between the graph of ¢ and the diagonal.
The flow is simple when all of its fixed points and closed orbits are simple.
Using the canonical identity between leaf and orbit spaces, M /F = X /H, the
leaves preserved by a foliated flow ¢, which will be shortly called preserved
leaves in the sequel, correspond to H-orbits consisting of fixed points of ¢.
A preserved leaf L is called transversely simple if the corresponding fixed
points p of ¢ are simple. In this case, ¢. = e*! on T5% = R for some
x = 35, € R* := R~ {0}, which depends only on L. It is said that ¢ is
transversely simple when all of its preserved leaves are transversely simple.
Clearly, every simple flow is transversely simple.

Let L be any compact leaf whose holonomy group Hol L can be described
by germs of homotheties at 0. This description of Hol L can be achieved with
a foliated chart (U, (x,y)) around any point of L, where x is the transverse
coordinate. The same kind of description of Hol L is given by the foliated
chart (U, (u,y)), withu = z |z|*~! (0 < a # 1), which is not smooth at UNL.
A transverse power change of the differentiable structure around L is defined
by requiring all of these new charts to be smooth. In Sections [5.4] and [6.1],
we give a description of this new differential structure in terms of a defining
form of F and a defining function of L on some tubular neighborhood.

The following is our main result, which is part of Theorem

Theorem 1.1. Let F be a transversely oriented smooth foliation of codimen-
sion one on a closed manifold M. Then F admits a (transversely) simple
foliated flow in the following cases and uniquely in these ones:

(i) F is a fiber bundle over St with connected fibers.

(ii) F is a minimal R-Lie foliation.

(iii) F is an elementary transversely affine foliation whose developing map
1s surjective over R, and whose global holonomy group is a non-trivial
group of homotheties.

(iv) F is a transversely projective foliation whose developing map is sur-
jective over the real projective line SL, = R U {00}, and whose global
holonomy group consists of the identity and hyperbolic elements with a
common fixed point set.

(v) F is obtained from (d) or (id) using transverse power changes of the
differentiable structure of M around the compact leaves.

In all cases of Theorem [[T], F is almost without holonomy.



SIMPLE FOLIATED FLOWS 3

In the cases () and (), F is defined by a non-vanishing closed form w
of degree one, and therefore it is indeed without holonomy. The group of
periods of [w] € H'(M) has rank 1 in (@), and rank > 1 in (f).

In the case (), all leaves are compact and we have X(M,F) = X(S').
Moreover, for any even number of points, z1,...,z2, € S' (m > 0), in
cyclic order, and numbers s,..., x,, € R*, with alternate sign, there is
some (transversely) simple foliated flow ¢ whose preserved leaves are the
fibers L; over the points x;, with sy, = 5. If m > 0, then ¢ has no closed
orbits transverse to the leaves. If m = 0, then ¢ has no preserved leaves,
and therefore no fixed points. Every transversely simple foliated flow is of
this form.

In the cases ([{)—([), X(M, F) is of dimension one.

In the case (i), X(M, F) is generated by a non-vanishing transverse vector
field, and the transversely simple foliated flows have no preserved leaves.

In the cases (i)—(w), there is a finite number of compact leaves, which
are the preserved leaves of every transversely simple foliated flow.

In the case () or (M), for every transversely simple flow ¢, there is some
» € R* such that the set of numbers s, is {>} or {4}, respectively.

In the cases (i) and (iu), the holonomy groups of the compact leaves
can be described by germs of homotheties at 0. Thus transverse power
changes of the differentiable structure can be considered around them to
get the case ([@). X(M,F) and the (transversely) simple foliated flows are
independent of these changes of the differentiable structure. But every ||
can be modified arbitrarily by performing such changes, keeping sign(sy)
invariant.

Acknowledgment. We thank Hiraku Nozawa for helpful discussions about
the contents of this paper.

2. PRELIMINARIES
Let M be a (smooth) manifold of dimension n.

2.1. Simple flows. Let Z € X(M) with local flow ¢ : Q@ — M, where Q is
an open neighborhood of M x {0} in M x R. For p € M and t € R, let

Q={7eR|(pr)eQ}, A={qeM]|(qt)eQ},

and let ¢' = ¢(-,t) : Q8 — M. Tt is said that p € M is a fized point of
¢ if it is a fixed point of ¢ for all ¢ in some neighborhood of 0 in ©Q,; in
other words, if Z(p) = 0. The fixed point set is denoted by Fix(¢). For every
p € Fix(¢), there is an endomorphism H,, of T,,M so that ¢! = ety on T,M.
Then p is called simpleEl (respectively, generic) if H, is an automorphism
(respectively, no eigenvalue of H,, has zero real part).

Now assume that Z is complete with flow ¢ : M x R — M, which may
considered as a one-parameter subgroup of diffeomorphisms, ¢ = {¢'} C

IThe terms transverse /elementary are also used instead of simple/generic.
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Diffeo(M). On M \ Fix(¢), let N¢ denote the normal bundle to the orbits
of ¢; ie., Ny¢ = T,M/R Z(p) for all p € M \ Fix(¢). For every closed
orbit ¢ of ¢ (without including fixed points), let ¢(c) denote its smallest
positive period. Recall that ¢ is called simple (respectively, generic) if the

eigenvalues of the isomorphism of N,¢ induced by (bi(c) are different from 1
(respectively, have modulo different from 1) for all p € c.

It is said that ¢ (or Z) is simple if all of its fixed points and closed orbits
are simple. This means that the maps M x RT — M? x R*, (p,t)
(p, ¢! (p),t) and (p,t) — (p,p,t), are transverse [20, Lecture 2, Lemma 7).
Thus fixed points and closed orbits are isolated in this case; there are finitely
many of them if M is compact.

On the other hand, ¢ (or Z) is called generic if all of its fixed points
and closed orbits are generic, and their stable and unstable manifolds are
transverse—the definition of the stable and unstable manifolds is omitted
because we will not use them. A theorem of Kupka [31] 32] and Smale [39]
states that, for any closed manifold M, the set of generic smooth vector
fields on M is residual in X(M) with the C*® topology (see also [34] for the
case of closed surfaces). This was generalized to open manifolds by Peixoto
[35], using the strong C'*° topology.

Remark 2.1. Suppose that M is closed. For 0 < f € C®(M),let Z' = fZ €
X(M). The flow ¢ of Z’ has the same orbits as ¢, considered as sets, but
with possibly different time parameterizations; precisely, there is a smooth
function ¢’ : M x R — R such that ¢(p,t) = ¢'(p,t'(p,t)) for all (p,t). It
easily follows that ¢’ is simple if and only if ¢ is simple.

Example 2.2. Suppose that M is closed, and let f be a Morse function on
M. For any Riemannian metric on M, the flow ¢ of V f has no closed orbits
because f is strictly increasing on every orbit in M \ Fix(¢). Moreover every
p € Fix(¢) is generic because H,, is given by Hess f(p), whose eigenvalues
are in R*. The transversality of the stable and unstable manifolds of all
fixed points holds for an open dense set of Riemannian metrics in the C?
topology [36, Section 2.3] (see also [38]). In this case, V f is generic without
closed orbits.

2.2. Collar and tubular neighborhoods. Suppose that M is compact
with boundary, and let M denote its interior. There exists a boundary
defining function x € C°(M), in the sense that > 0, 271(0) = dM,
and dr # 0 on M. Then an (open) collar neighborhood of the boundary,
@ : T — &M, can be chosen of the formf] T = [0,€) X OM for some € > 0.
For any chart (V,y) of OM, we get a chart (U = [0,¢), x V,(x,y)) of M
adapted to OM.

Now assume that M is closed. Let MY C M be a (possibly disconnected)
regular and transversely oriented submanifold of codimension one, and let
M' = M ~ M°. Since MY is transversely oriented, there is a defining

’Ina product, the projections may be indicated as subindexes of the factors.
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function x of M° in some open W C M, in the sense that x € C®(W),
M% = 271(0) ¢ W, and dx # 0 on M°. Then there is an (open) tubular
neighborhood of MY in W, w : T — MY, of the form T = (—¢,€), x M2
for some € > 0. For any chart (V,y) of M?, we get a chart (U = (—e¢,¢), x
V,(z,y)) of M adapted to M°. Let M be the manifold with boundary
defined by “cutting” M along MP?; i.e., modifying M only on the tubular
neighborhood T' = (—¢,¢) x M°, which is replaced with T = ((—¢,0] U
[0,€)) x M° in the obvious sense. Thus &M = M° U M°, and M = M™.
There is a canonical projection 7w : M — M, which is the combination of
the identity on M = M! and the map T — T induced by the canonical
projection (—e,0]LI[0,€) — (—e¢,€). This projection realizes M as a quotient
space of M by “gluing” the two copies of M? in the boundary.

The connected components of M can be also described as the metric com-
pletion of the connected components of M! with respect to the restriction
of any Riemannian metric on M, and then 7 is given by taking limits of
Cauchy sequences.

2.3. Foliations. The concepts used here are explained in standard refer-
ences on foliations, like [21], 25], 261, [7], 18 [40L [8, @, [41]. Let F be a (smooth)
foliatiorHl on M of codimension n/ and dimension n”. Locally, F can be
described by a (smooth) foliated chart (U,z), where z = (2/,2") : U —
z(U) = ¥ x B” for open balls, ¥ in R” and B” in R*'. In the case of
codimension one, we may use the notation (z,y) instead of (2/,2”). The
fibers of ' are the plaques. The intersections of plaques of different foliated
charts are open in the plaques. Thus all plaques of all foliated charts form
a base of a finer topology on M whose path-connected components are the
leaves, which are injectively immersed n”-submanifolds. The leaf through
any p € M may be denoted by L,. The submanifolds transverse to the
leaves are called transversals; for example, the fibers of the maps z” are
local transversals. A transversal is called complete when it meets all leaves.
A foliated atlas is a covering of M by foliated charts.

If a smooth map ¢ : M’ — M transverse to (the leaves of) F, then the
connected components of the inverse images of the leaves of F are the leaves
of the pull-back ¢*F, which is a smooth foliation on M’ of codimension n’.
For the inclusion map of any open U C M, this defines the restriction F|y.

Foliations on manifolds with boundary can be similarly defined, with
leaves tangent or transverse to the boundary. The concepts and proper-
ties of foliations considered here have obvious versions with boundary.

2.4. Holonomy. Let {Uy,z1} be a foliated atlas of F with x = (z},2})
and z,(Uy) = X x By. Assume that it is regular in the following sense:
{Uy} is locally finite, there are foliated charts (Vj,y;) with U, C V4 and
Yklu, = Tk, and U, U U is in the domain of some foliated chart if U N U; #
(. Then, with the notation Xy = z} (Uy N U;), the elementary holonomy

31t is also said that (M, F) is a foliated manifold.
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transformations hy : ¥y, — Xp; are defined by hya; = x) on U, N Uj. Let
H denote the representative of the holonomy pseudogroup on ¥ := | |, X,
generated by the local transformations hyg;. The H-orbit of every p € X is
denoted by #(p). The maps z), define a homeomorphism between the leaf
space M /F and the orbit space ¥/H.

Let ¢: I :=[0,1] — L be a path in a leaf from p € LNU; to g € LN U,
and let p = z}.(p) € X; and ¢ = z}(¢) € ;. Take a partition of I, 0 =
to < t1 < -+ <t =1, and a sequence of indices, k = ki, ko,... . kyn =1,
such that c([tZ 1,t]) C Uy, for i =1,...,m. Let he = hy k1 - Phgky -
We have p € domh,. C ¥ and ¢ = hc(ﬁ) € imh. C . The germ h,
of h. at p is the (germinal) holonomy of ¢, and the tangent map he. :
TpX — 13X is its infinitesimal holonomy. End-point homotopic paths
in L define the same holonomy. Thus, taking p = ¢ and k = [, we get
the holonomy homomorphism onto the holonomy group, h = hy : mL =
m1(L,p) — Hol L = Hol(L, p), [¢] — h,, which is independent of the foliated
chart containing p up to conjugation. The holonomy cover L = L[hol of
L is defined by m L = kerhy. Ifl HolL = {e}, it is said that L has no
holonomy. The union of leaves without holonomy is a dense G5 subset [23),
[I5]. If all leaves have no holonomy, then F is said to be without holonomy.
According to Reeb’s local stability, if L is compact, then the germ of F at L
is determined by hy, using a construction called suspension [21], Section 2.7]
(see also [25] Theorem 2.1.7], [7, Theorem IV.2], [18, Theorem II.2.29], [8|
Theorem 2.3.9]). Similarly, we have the concepts of infinitesimal holonomy
groups of the leaves, and leaves/foliations without infinitesimal holonomy.

With the above notation, an element of Hol L is called quasi-analytic if,
either it is the identity, or it is represented by some local transformation h
such that hly # idy for all open V' C domh with p € V. Hol L is called
quasi-analytic when all of its elements are quasi-analytic.

In the case of codimension one, Hol L can be described by germs at 0 of
local transformations of R. Then F is said to be infinitesimally C°°-trivial
at L if h/(0) = 1 and h*)(0) = 0 (k > 1) for all local transformation h
representing an element of Hol L. For instance, this property is satisfied if
Hol L is generated by non-quasi-analytic elements.

2.5. Infinitesimal transformations and transverse vector fields. Let
TF C TM denote the subbundle of vectors tangent to the leaves, and let
NF = TM/TF. The terms leafwisdﬁ/ normal are used for these vector
bundles, their elements and smooth sections (vector fields). The leafwise
vector fields form a Lie subalgebra and C*°(M)-submodule, X(F) C X(M).
Its normalizer is the Lie algebra X(M,F) of infinitesimal transformations
of (M, F), and X(M,F) = X(M,F)/X(F) is the Lie algebra of transverse
vector fields. An orientation (respectively, transverse orientation) of F is
an orientation of the vector bundle T'F (respectively, N.F).

4In abstract groups, the identity element is denoted by e.
5The terms “tangent” or “vertical” are also used instead of “leafwise”.
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For any X in TM (respectively, X(M) or X(M,F)), let X denote the
induced element of] NF (respectively, C°(M; NF) or (M, F)). NF be-
comes a leafwise flat vector bundle with the canonical flat T F-partial con-
nection V7 given by V{,X = [V, X] for V € X(F) and X € X(M). The
leafwise parallel transport along any piecewise smooth path c¢ is the infini-
tesimal holonomy he, : TpXg = NpF — 152 = NyF.

X(M,F) can be realized as the linear subspace of C*°(M; N.F) consist-
ing of leafwise flat normal vector fields. The local projections z}, induce a
canonical isomorphism of X(M, F) to the Lie algebra X (3, ) of H-invariant
tangent vector fields on ¥. The notation X is also used for the element of
X(2,#H) that corresponds to X € X(M, F).

When M is not closed, let Xcom(F) C X(F) and Xeom (M, F) C X(M,F)
denote the subsets of complete vector fields, and Xcom(M,F) C X(M,F)
the projection of Xcom (M, F).

2.6. Foliated maps and foliated flows. A (smooth) map between foliated
manifolds, ¢ : (My,F1) — (Ma, F2), is called foliated if it maps leaves to
leaves. Then its tangent map defines morphisms, ¢, : TF; — TF5 and
¢« : NF1 — NJFo, the second one being compatible with the leafwise flat
structures.

Let Diffeo(M,F) C Diffeo(M) be the subgroup of foliated diffeomor-
phisms. A smooth flow ¢ on M is called foliated if ¢' € Diffeo(M, F) for all
t. This concept can be extended to a local flow ¢ : @ — M by considering
the restriction to Q of the foliation on M x R with leaves L x {t}, for leaves
L of F and points t € R. For X € X(M) (respectively, X € Xcom(M)), we
have X € X(M,F) (respectively, X € Xcom(M,F)) if and only if its local
flow (respectively, flow) is foliated.

For X € Xeom(M,F) with foliated flow ¢, let ¢ be the local flow on %
generated by X € X(X,H), which corresponds to ¢ via the maps z}. In an
obvious sense, ¢ is H-equivariant, and therefore it defines an H-equivariant
local flow ¢ on any other representative of the holonomy pseudogroup.

2.7. Riemannian foliations. The H-invariant structures on > are called
(invariant) transverse structures. A transverse orientation has this inter-
pretation. Other examples are transverse Riemannian metrics and trans-
verse parallelisms. Their existence defines the classes of (transversely) Rie-
mannian and transversely parallelizable (TP) foliations. A Lie subalgebra
g C X(X,H) generated by a transverse parallelism is called a transverse Lie
structure, giving rise to the concept of (g-)Lie foliation.

Let G be the simply connected Lie group with Lie algebra g. F is a g-Lie
foliation just when {Uy, x} can be chosen so that every Y is realized as an
open subset of G and the maps hy; are restrictions of left translations.

Using the canonical isomorphism X(M, F) = X(X,H), a transverse paral-
lelism can be given by a global frame of NF consisting of transverse vector

6The space of smooth sections of a vector bundle E is denoted by C*°(M; E).
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fields X1,...,X,,. This frame defines a transverse Lie structure when it

is a base of a Lie subalgebra g C X(M,F). If moreover Xi,...,X, €
Xecom(M, F), the TP or Lie foliation F is called complete.

Similarly, a transverse Riemannian metric can be described as a leafwise
flat Euclidean structure on NJF. It is induced by a bundle-like metric on
M, in the sense that the maps z} are Riemannian submersions.

It is said that F is transitive at p € M when the evaluation map ev, :
X(M,F) — T,M is surjective, or, equivalently, the evaluation map &v, :
X(M,F) C C®°(M;NF) — N,F is surjective. Similarly, F is called trans-
versely complete (TC) at p if evy(Xeom (M, F)) generates T, M, or, equiva-
lently, &V, (Xcom (M, F)) generates N, F. The transitive/TC point set is open
and saturated. F is called transitive/ TC if it is transitive/TC at every point
[33L Section 4.5].

TP foliations are transitive, and transitive foliations are Riemannian. In
turn, Molino’s theory describes Riemannian foliations in terms of TP fo-
liations [33]. A Riemannian foliation is called complete if, using Molino’s
theory, the corresponding TP foliation is TC. Furthermore Molino’s theory
describes T'C foliations in terms of complete Lie foliations with dense leaves.
On the other hand, complete Lie foliations have the following description
due to Fedida [16] [I7] (see also [33] Theorem 4.1 and Lemma 4.5]). As-
sume that M is connected and F a complete g-Lie foliation. Let G be the
simply connected Lie group with Lie algebra g. Then there is a regular
covering w : M — M, a fiber bundle D : M — G (the developing map)
and a monomorphisml] i : T := Aut(r) = mM/mM — G (the holonomy
homomorphism) such that the leaves of F := m*F are the fibers of D, and
D is h-equivariant with respect to the left action of G on itself by left trans-
lations. As a consequence, 7 restricts to diffeomorphisms between the leaves
of  and F. The subgroup Hol ¥ :=imh C G, isomorphic to I, is called the
global holonomy group. Since D induces an identity M /F = G, the z-lift
and D-projection of vector fields define identities

X(M,F)=%X(M,F,T) = X(G,Hol F) (2.1)

where a group within the parentheses to denote subspaces of invariant sec-
tiond. These identities give a precise realization of g C X(M,F) as the Lie
algebra of left invariant vector fields on G. The holonomy pseudogroup of
F is equivalent to the pseudogroup on G generated by the action of Hol F
by left translations. Thus the leaves are dense if and only if Hol F is dense

in G, which means g = X(M, F).

2.8. Homogeneous foliations. More generally, consider the homogeneous
space S = G/H, defined by a closed subgroup of a connected Lie group,
H C G. It is said that F is a (transversely) homogeneous ((G,S)-) foliation

7Aut(7r) denotes the group of deck transformations of the covering 7 : M — M.
8This is preferred rather than the usual subindex to agree with X(X,H) and X(M, F).
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if {Uy, z} can be chosen so that every X is realized as an open subset of S
and the maps hy; are restrictions of the action of elements of G. In this case,
there is a regular covering 7 : M — M , a smooth submersion D : M— S
and a monomorphism A : T' := Aut(r) = mL/mL — G such that the
leaves of F := m*F are the connected components of the fibers of D, and
D is h-equivariant [6] (see also [I8] Section III.3]). The terms of Fedida’s
description are also used in this case, as well as the notation Hol 7 = im h.
This description is determined up to conjugation in G in an obvious sense.
Now M / Fisa possibly non-Hausdorff smooth manifold, and D induces a
local diffeomorphism D : M / F— S, which is h-equivariant with respect to
the induced I'-action on M / F. Like in 2.10), we get

X(M,F) = %(M F, = (M/]-" I') D X(im D,Hol F) . (2.2)
The holonomy pseudogroup of F is equivalent to the pseudogroup generated

by the action of I' on M /]: In particular, for leaves, L of F and Lof F
with 7(L) = L and D(L) = z € S, we have

HolL={yeTl|y-L=L}~h({yel|y-L=L}) CHol, F, (2.3)
where Hol, F C Hol F is the isotropy subgroup at z.

3. SOME CLASSES OF FOLIATIONS OF CODIMENSION ONE

3.1. Preliminary considerations. Let F be a smooth foliation of codi-
mension one on a closed n-manifold M. Suppose that F is transversely
oriented, obtammgﬁ w,0 € C®°(M;A') such that w defined] 7 (with its
transverse orientation) and dw = 6 A w. There is some X € X(M) with
w(X) = 1; in fact, X € C°®°(M;NF) and w determine each other. Note
that F is Riemannian just when w can be chosen so that dw = 0 (8 = 0);
ie, X € X(M,F). Actually, F is an R-Lie foliation in this case because
R X is a Lie subalgebra of X(M, F).

Take any leaf L and p € L, and a local transversal ¥ = (—¢, €) through
p = 0 so that the transverse orientation corresponds to the standard orienta-
tion of (—¢,€). Since the holonomy maps defining the elements of Hol(L, p)
preserve the orientation of (—e, €), they can be restricted to (—e, 0] and [0, €),
defining the lateral holonomy groups Holy (L,p) = Holy L.

Recall that L is said to be locally dense if it is dense in some open sat-
urated set. On the other hand, L is said to be resilient if there is some
element of Hol(L,p), represented by some local diffeomorphism f defined
around p in X, and there is some g # p in L Ndom f such that the sequence
f¥(q) is defined and converges to p.

Now a smooth connected closed transversal of F is a smooth embedding
c: S' — M transverse to the leaves. It always has a (closed) tubular
neighborhood @ : T' — ¢(S') = S! in M, which can be chosen to be foliated

9We use the notation A = AM = AT*M.
10This means that TF = kerw and the transverse orientation is induced by w on NF.
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in the sense that its fibers are (n—1) disks in the leaves. If F is also oriented,
then o trivial, T = SL x D"~! where D"~! is the standard disk in R"~!.

3.2. R-Lie foliations. Suppose that F is a transversely complete R-Lie
foliation. This means that there is some Z € Xcom (M, F) such that Z # 0
everywhere. Equivalently, the orbits of the foliated flow ¢ of Z are transverse
to 7. The Fedida’s description of F is given by a regular covering map
m: M — M, a holonomy homomorphism h : I' := Aut(7) — R, and the
developing map D : M — R (Section 27). Thus I' = imh C R is abelian
and torsion free. Let Z and & be the lifts of Z and ¢ to M. Then Z is
I-invariant and D-projectable. Without lost of generality, we can assume
D.Z = 0, € X(R), where z denotes the standard global coordinate of
R. Thus ¢ is I-equivariant and induces via D the flow ¢ on R defined
by ¢'(x) =t + . This is the equivariant local flow induced by ¢ on this
representative of the holonomy pseudogroup (Section[Z7]). It is easy to check
that ¢! preserves every leaf of F if and only if ¢+ € Hol F.

Example 3.1. The simplest example of minimal R-Lie foliation on a closed
manifold is the Kronecker’s flow on the torus 72 = R?/Z? [8, Example 1.1.5].
It is induced by a foliation on R? by parallel lines with irrational slope. This
construction has an obvious generalization to higher dimensions, obtaining
minimal R-Lie foliations on every torus 7" = R"/Z" induced by foliations
on R™ by appropriate parallel hyperplanes [8, Example 1.1.8].

3.3. Foliations almost without holonomy. Recall that F is said to be
almost without holonomy when all non-compact leaves have no holonomy.
The structure of such a foliation was described by Hector using the following
model foliations G on compact manifolds N (possibly with boundary) [22]
Structure Theorem], [24, Theorem 1]:

(0 ) g is given by a trivial bundle over [0, 1],
Q =G| is glven by a fiber bundle over S-, L oor
N
(2 ) all leaves of G are dense in N.

In the case where F has finitely many leaves with holonomy, Hector’s de-
scription is as follows. Let MY be the finite union of compact leaves with
holonomy. Let M' = M ~. M°, whose connected components are denoted
by M}, with | running in a finite index set, and let F}' = F| ;- For

every [, there is a connected compact manlfold. M, possibly with bound—
ary, endowed with a smooth transversely oriented foliation JF; tangent to
the boundary, sutisfying the following. Equipping M := | |, M; with the
combination F of the foliations JFj, there is a foliated smooth local em-
bedding w : (M, F) — (M, F), preserving the transverse orientations, so
that 7 : Ml — Mll is a diffeomorphism for all [ (we may write Ml Ml),
7w : OM — M is a 2-fold covering map, and every Fj is a model foliation.

Hgince M; is the metric completion of M}, the notation ]\/4\11 and .7?11 would be more
standard. But the notation M; is more appropriate for our use in [5] involving b-calculus.
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M can be described by gluing the manifolds M; along corresponding pairs
of boundary components. Equivalently, M can be described by cutting M
along M (Section 22). Thus OM = M° U M°, and 7 defines diffeomor-
phisms between corresponding connected components of 9M and M?.

Remark 3.2. (i) (See [24, Lemma 7] and its proof.) For indices l4, and
boundary leaves Ly of F, with L := w(Ly) = w(L_), we have
Hol(L+) = Holy L. Holy L is the germ group at 0 of a pseudogroup
Hp + of local transformations of R* U {0}, generated by a (possibly
empty) set of contractions and dilations defined around 0. It follows
that Holy L is an Archimedean totally ordered group, and therefore it
is isomorphic to a subgroup of (R, +), obtaining that Hol L is abelian
and torsion free. It is easy to see that the orbits of Hz 4+ on R* are
singletons (respectively, monotone sequences with limit 0, or dense)
just when the rank of Holy L is 0 (respectively, 1, or > 1).

(i) If F; is a model (@), or a model (@) with OM; = 0 (M; = M and
MY = (), then the leaves of F; are compact.

(iii) If 7y is a model () with M; # 0, or a model (@), then the leaves of F
are not compact. In fact, the whole of 0M; is contained in the closure
of every leaf of . Hence, according to (i), the holonomy groups of
the boundary leaves of F; are of rank 1 (respectively, > 1) if and only
if F; is a model [l) with OM; # () (respectively, a model [2)).

(iv) If 7 is a model (@), then F; becomes a complete R-Lie foliation after a
possible change of the differentiable structure of Ml, keeping the same
differentiable structure on the leaves [24] Theorem 2|. If moreover
OM,; = (), then F is homeomorphic to a minimal R-Lie foliation.

(v) F! has no holonomy, and therefore F has no resilient leaves. This
holds because Jj is given by a fiber bundle in the models (@) and (),
and is homeomorphic to a Lie foliation in the model ([2) by (iu).

(vi) According to () and (), the description holds as well if MY is any fi-
nite union of compact leaves, including all leaves with holonomy. Thus,
if 7 is a model ([Il) with M; = 0, then M; = M can be cut into mod-
els ([@) by adding compact leaves to M°. Conversely, if all foliations F;
are models ([l), then F is a model (Il) with OM = 0.

(vii) In the models (@) and (@), F; has smooth complete closed transversals
(see [8, Lemma 3.3.7]).

Proposition 3.3. If Hol L is quasi-analytic for all leaf L C M°, then all
foliations F; have the same model.

Proof. For all leaves L C MY, we have Hol, L = Hol_ L = Hol L by the
hypothesis on Hol L. Then, by Remark [3:2] (i) (i) and since M is connected,
the rank of the holonomy groups of all boundary leaves of all foliations F; is
simultaneously 0, 1 or > 1, and all foliations F; have the same model. [

Example 3.4. A Reeb component on D"~ x S' is a model () [§, Exam-
ples 1.1.12 and 3.3.11], [I8, Example 1.3.14 (i)], [25, Section I1.1.4.4]. All of
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the Reeb components on D"~ x S' are homeomorphic, but they may not
be diffeomorphic.

The Reeb components on D! x §' = [~1,1] x S! can be described as
follows. Let f: (—1,1) — R be a smooth function such that |f®*)(z)| — oo
as ¢ — =£1 for all order k. Then the graphs of the functions f+c (c € R) are
the interior leaves of a smooth foliation tangent to the boundary on the strip
[~1,1]xR, which induces a smooth foliation G on [~1,1]xS! = [-1,1]xR/Z.
Its boundary leaves are L. = {41} x S'. The following examples of f
produce non-diffeomorphic foliations:

(i) If f(z) =exp ﬁ, then G is infinitesimally C'*°-trivial at L.

(ii) If f(z) = %, then G is not infinitesimally C'°°-trivial at Ly, but Ly
is without infinitesimal holonomy.

(iii) If |f(z)| = In(1 — |z|)* (1 > 0) for 1 — |z| small enough, then Hol Ly
is generated by the germ of u +— e'/#u at 0 in [0, o).

Example 3.5. Let G, (a = 1,2) be transversely oriented models () or (2)
of dimension > 1 on manifolds N,. If there is a diffeomorphism ¢ be-
tween boundary leaves, L, of G,, then a tangential gluing via ¢ can be
made, obtaining a foliation G on N := N; Uy No, with the compact leaf
L := LUy Ly € N [8 Section 3.4], [I8, Example 1.3.14 (i)], [26, The-
orem 1V.4.2.2]. G may not be smooth. It is smooth only when, for all
o € m Ly, the combination of representatives of h, and hg , are smooth
maps (considering the elements of Hol L; and Hol Ly as germs at 0 of local
transformations of (—oo,0] and [0,00), respectively). For example, this is
true if every h, and hy, , are germs of homotheties at 0 with the same ratio.
This property is also guaranteed when every G, is infinitesimally C'*-trivial
at L, [8, Proposition 3.4.2].

We can continue making tangential gluing of models to produce a foliation
F on a closed manifold M. If every tangential gluing preserves smoothness,
then F is almost without holonomy with finitely many leaves with holonomy.
The following are some examples of foliations obtained in this way:

(i) The Reeb foliation F on S? is almost without holonomy and has one
compact leaf L. It is obtained by tangential gluing of two Reeb com-
ponents on D? x S', so that the gluing map interchanges meridian and
longitude in the boundary leaves S x S! [8, Example 3.4.3 and Ex-
ercise 3.4.4], [18, Examples 1.3.14]. Since Hol L has non-quasi-analytic
generators, the Reeb components must be infinitesimally C'*°-trivial at
the boundary leaves to get smoothness of F.

(ii) Let F be foliation on S™~! x S! obtained by tangential gluing of two
Reeb components on D"~ ! x S! using the identity map on the boundary
leaves S™~2 x S'. F becomes smooth if the Reeb components are in-
finitesimally C°°-trivial at the boundary leaves, but now this condition
is not necessary to get smoothness (see Example below).
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(iii) A smooth foliation F on the 2-torus or on the Klein bottle can be
constructed by tangential gluing of Reeb components on [—1,1] x S*
of the type in Example [3.4] (), all of them constructed with the same
constant p. The holonomy groups of the leaves with holonomy are
generated by the germ of u — e'/#u at 0 in R.

Example 3.6. Let F and G be oriented and transversely orientable folia-
tions of codimension one on closed n-manifolds M and N (n > 2). Suppose
that both of them are almost without holonomy, and that they have finitely
many leaves with holonomy. Take smooth closed transversals, ¢ : S1 — M!
of Ft and d : S — N' of G' (Remark B2 (¥)), and let F’ be the connected
sum of F and G along ¢ and d [I8, Example 1.2.20 (i)]. F' is another trans-
versely orientable foliation almost without holonomy on a closed manifold,
and it has finitely many leaves with holonomy.

For models () or (@), we can also consider their connected sum along
smooth closed transversals in their interior. The result is a model () if
both foliations are models (), and a model () otherwise.

Example 3.7. Let F be an oriented and transversely orientable foliation
of codimension one on a closed n-manifold M. Suppose that F is almost
without holonomy, and that it has finitely many leaves with holonomy. Let
(M', F') be the turbulization of (M,F) along a smooth closed transversal
c: S — M! of F! [8 Example 3.3.11], [18, Section 1.2.18]. F’ is another
transversely orientable foliation almost without holonomy, and it has finitely
many leaves with holonomy. Actually, 7' can be considered as a connected
sum along ¢ of F and the foliation of Example ().

The turbulization can be also applied to a model () or (2)) along a smooth
closed transversal in its interior. After removing the interior of the resulting
Reeb component, we get a model of the same type.

3.4. Transversely affine foliations. Consider R as the homogeneous space
defined by the canonical action of Aff™(RR), the Lie group of its orientation
preserving affine transformations. It is said that F is transversely affine if
it is a transversely homogeneus (AH+(R),R)—foliatio. This means that,
according to Section Bl w and € can be chosen so that df = 0 [37]; it will
be said that the transversely affine foliation F is defined by (w,#). In this
case, the description of Section isgivenbym: M — M, D : M — R,
h:T — AffT(R) and Hol F C Aff™(R).

Assume that F is transversely affine. Then I' # {e} because D(M) is
open in R. Furthermore F has a finite number of compact leaves with
holonomy [I8] Proposition I11.3.10], but non-compact leaves may also have
holonomy. A theorem of Inaba [27, Theorem 1.2] states that, either F is

12vye only consider transversely affine foliations that are transversely oriented. The
group Aff(R) of affine transformations would define transversely affine foliations that may
not be transversely oriented.
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almost without holonomy and Hol F is abelian (the elementary case), or F
has a locally dense resilient leaf and Hol F is non-abelian.
From now on, consider only the elementary case. Then:

(a) either Hol F is a group of translations; or
(b) Hol F is conjugate by some translation to a group of homotheties.

In the case (@), F is an R-Lie foliation on a closed manifold, whose Fedida’s
description is given by m, D and h; in particular, im D = R.

In the case (), after conjugation, we can assume that Hol F is indeed
a group of homotheties. Since im D is Hol F-invariant and Hol F # {idgr},
either imD = R*, or imD = R. If imD = R*, we can pass to a group
of translations by using In|D| instead of D. Thus, if F is not an R-Lie
foliation, we can assume that Hol F is a non-trivial group of homotheties
and im D = R. Let us analyze this case using the notation of Section B.3]

Lemma 3.8. (i) M° = n(D~1(0)).
(ii) The holonomy groups of leaves in M° are isomorphic to non-trivial
subgroups of Holg F.
(111) All foliations F; have the same model, either () with OM; # 0, or (2).

Proof. By Proposition B3] all foliations F; have the same model, which is
neither ({0l), nor () with dM; = @), otherwise F would be an R-Lie foliation.
Thus () holds. It also follows that the holonomy groups of the leaves in M°
cannot be trivial, obtaining “C” in (fl) because Holy F is the only non-trivial
isotropy group. Hence () is true by (Z3)).

There is a regular foliated atlas {Uy, x} of F such that, for every k, there
is foliated chart (ﬁk, Zy) of F so that 7 : ﬁk — Uy, is a diffeomorphism, T =
xpmand T, = D|[~]k. Hence D~1(0) contains just one plaque of every (Uy, @)
Since {U}, x1.} is finite, and D~1(0) is I-invariant because 0 is fixed by Hol F,
it follows that 7(D~!(0)) contains a finite number of plaques of the foliated
atlas {Uy, x1}. So w(D71(0)) is a finite union of compact leaves because
{Ug, xr} is regular. This shows “D” in () by (i) and Remark B2 ([@). O

Note that z0, € X(R) is invariant by homotheties. Let Diffeo(R,0) C
Diffeo(R) denote the subgroup of diffeomorphisms that fix 0.

Lemma 3.9. (i) If Z € X(R) is invariant by some homothety h # idg,
then Z = »x0, for some » € R.
(ii) If h € Diffeo(R,0) preserves x0,, then h is a homothety.

Proof. Let us prove (). We can assume h(xz) = Az (z € R) for some A\ > 1;
otherwise consider h=!. Any h-invariant Z € X(R) vanishes at 0 because
this is the only fixed point of h. Thus Z = z f0, for some f € C*(R). From
the h-invariance of both Z and zd,, and since x9, only vanishes at x = 0,
we get that f is h-invariant. So f(0) = limy, o f(x/A") = f(x) for all
r € R; i.e., fis constant.
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Let us prove (). Since h preserves xd,, it commutes with the flow of
x0y; i.e., h(elx) = eth(z) for all z,t € R. Therefore x — h(x)/z is constant
on R*. Since h is smooth at zero, it follows that h is a homothety. O

Remark 3.10. The same arguments can be used to show versions of Lemma[3.9]
on intervals J of the form (—¢,¢), [0,¢€) or (—¢,0] (0 < € < c0):

(i) If Z € X(J) is invariant by the restriction to J of the pseudogroup
generated by some homothety # idr, then Z = »x0, for some » € R.

(ii) If a smooth pointed embedding A : (J,0) — (R,0) preserves xd,, then
h is the restriction of a homothety.

By Lemma B9 (), X(R, Hol F) = Rxd,. Let Z € X(M, F) be defined by
29, € X(R,Hol F) according to (22). By Lemma[3.§ (@), the zero set of Z is
MP°. Thus ]:l ]-"l becomes a complete R-Lie foliation with the restriction

of Z to every M, ll = Ml, without having to change the differentiable structure
(cf. Remark B2 (iv)).

Lemma 3.11. For any neighborhood V in M of a leaf L C M, every
Z € X(M,F) is determined by Z|y .

Proof. With the notation of Remark [ for this particular L, any leaf
of ]:lli meets V' by Remark (@). So the restriction Z to Mll+ UM is
determined by Z|. By Lemma @) and Remark (@), and using the
Reeb’s local stability, it follows that the restriction Z to some neighborhood
of Mll+ U Ml{ is also determined by Z|y. Then we can apply the same

argument to all closures Mll that meet M, 11+ U Ml{. Continuing in this way,
the result follows because M is connected. O

Proposition 3.12. X(M,F) = X(R,Hol F) via 22).

Proof. We have to prove that the injection of ([2.2)) is surjective in this case.
Let Z € X(M/F,T). Take leaves, L C M° of F and L of F with w(L) = L.
There are open neighborhoods, V' of Lin M /f and W of 0 in R, so that
D :V — W is a diffeomorphism. Consider {e} # Hol L C Holy F according
to (23). By LemmaB.9l [i) and RemarkBI0 @), D«(Z|y) = »x0,|v for some
» € Rif V and W are small enough. So, by Lemma BT1l Z corresponds to
»x0y € X(R,Hol F) via (22]). O

The transverse orientation of every JF; is directed, either outward on all
boundary leaves of M;, or inward on all of them [27, Lemma 3.4]. Thus no
pair of boundary components of the same M is glued to get M. So, not
only Ml Ml , but also M; = M, M} via 7. In particular, there have to be at
least two manifolds M;, and M° contalns at least two leaves.

Example 3.13. Let F denote the foliation on M := R™ ~ {0} (n > 1)
whose leaves are the connected components of the last coordinate projection
D: M — R Multiplication by any A > 1 defines an action of Z on M
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giving rise to a covering my : M — M », where M) is diffeomorphic to
571 x S, Since F is Z-invariant, it induces an elementary transversely
affine foliation Fy on M), being 7\ and D the maps of its description of
Section Z8 MY = m,(D~1(0)) is diffeomorphic to S"~2? x S1. Thus there
are two compact leaves if n = 2, and one compact leaf if n > 2. M )1\ has
two components, M)l\ L = 7(R*). The corresponding foliated manifolds
with boundary, (M) +,F) +), are transversely affine Reeb components on
D=1 x S 25 Section 1.4.4], using the obvious extension of this property
to foliations on manifolds with boundary. A different description of these
transversely affine Reeb components is given in [8, Example 1.1.12].

Example 3.14. Consider the standard affine structure on R, and its re-
striction to R*. The affine circles are [30], [19, Appendix to Section 2J:

(i) the quotient of R by the additive action of Z; and,
(ii) for every A > 1, the quotient of RT by the multiplicative action of \Z.

After fixing an orientation, affine structures on S' are the transversely affine
structures (w, #) of the foliation by points. Then the affine structure defined
by (w,0) is isomorphic to @) if [¢, 6 = 0, and isomorphic to () for some
A>1if | g1 0] =InX. Thus | [5 0] classifies these structures on S'; indeed,
f g1 0 classifies these structures up to orientation preserving isomorphisms
[18, Section II1.3.3], [37), Section 4.1].

Now let F be a transversely affine foliation on a closed manifold M defined
by (w,f). Any smooth closed transversal ¢ : S' — M of F induces the
orientation and affine structure on S' given by (c*w, c*0).

In Example 3.6 suppose F and G are transversely affine, defined by (w, 6)
and («, 3), respectively. If they induce the same orientation and affine
structure on S' via ¢ and d (c*w = fd*a for some 0 < f € C*(S') and
Jg1 €0 = [ ¢*B), then F' clearly becomes transversely affine.

In Example B3] let ¢y 4 : S 1 5 M, be a smooth closed transversal of
F that cuts every leaf of F )\1 , once, and induces the standard orientation
of S*. Via 4+, we get the affine structure () on S I defined with .

In Example B.7, if F is also transversely affine, inducing the standard
orientation on S' via ¢, then there is a transversely affine turbulization
along c if and only if In \ := fsl c*0 # 0 (taking the connected sum with F
along c and ¢y 1) [37, Section 2].

3.5. Transversely projective foliations. Recall that SL(2,R) is the Lie
group of 2 x 2 matrices of determinant one, and PSL(2,R) = SL(2,R)/{+I},
where I denotes the identity matrix. PSL(2,R) acts on the projective line
51, = R U {oo} by projective transformations, the action of (¢5%) being
x +— (ax + b)/(cx + d). The stabilizer of oo consists of the upper trian-
gular matrices (¢ = 0), whose restriction to R gives AffT(R). An element
A € PSL(2,R) is called hyperbolic, parabolic or elliptic if it has 2, 1 or 0
fixed points in S._, respectively. Elliptic elements are conjugate to rotations
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(elements of PSO(2) = SO(2)/{+£I}) different from the identity. The hyper-
bolic and parabolic elements are conjugate to transformations of the form
x+— Ar (A >0) and = — x4+ X\ (A # 0), respectively.

It is said that F is transversely projective if it is a transversely homogeneus
(PSL(2,R), SL,)-foliation. This means that, according to Section B.1l w and
6 can be chosen so that df = n Aw and dn = n A6 for some n € C(M;A')
[6]. In this case, the corresponding description of Section [2.8] is given by
7:M—M,D:M— S, h:T — PSL(2,R) and Hol F C PSL(2,R).

Assume that F is transversely projective and almost without holonomy.
Then Inaba and Matsumoto proved that either of the following holds [28]
Proposition 2.1, the proof of Proposition 3.4 and its remark]:

(a) Hol F is conjugate to an abelian subgroup of PSO(2).

(b) Hol F consists of the identity, hyperbolic elements with a common fixed
point set and possible elliptic elements which keep the fixed point set
invariant.

(c) Hol F is conjugate to a subgroup of the stabilizer of cc.

In the case @), F is an R-Lie foliation.

In the case (@), we can assume that Hol F is a subgroup of the stabilizer of
oo after conjugation. If co ¢ im D, then F is transversely affine. If oo € im D
and Hol F does not contain parabolic elements, then F satisfies (B). If
oo € im D and Hol F has some parabolic element h, then the fixed point of
h is oo, and m(D~!(c0)) consists of some compact leaves whose holonomy
group cannot be given by germs of homotheties.

In the case (b)), Hol F is virtually abelian, and it is abelian just when
there are no elliptic elements. After conjugation, we can assume that the
fixed point set of the hyperbolic elements is {0,00}. Since im D is Hol F-
invariant and M is connected, it follows that im D is R*, R, SL ~ {0}
or SL. If imD = R* or imD = R, then F is transversely affine. If
im D = S ~ {0}, then we pass to the case im D = R using conjugation by
the rotation x — —1/z of SL. Thus, if F is not transversely affine, then
im D = S . Let us analyze the last case from now on.

Now an obvious version of Lemma [B.8] follows with a similar proof, where
D71({0,00}) is used in () instead of D~1(0), and subgroups of Holy F or
Holy F are used in (i) instead of just subgroups of Holy F.

Note that 20, € X(R) extends to a smooth vector field on S. , also
denoted by xd,, which is invariant by all hyperbolic elements with fixed
point set {0,00}. In fact, 20, on SL ~ {0} corresponds to —yd, on R by
the rotation z — y = —1/z of SL..

Lemma 3.15. If Z € X(SL) is invariant by some hyperbolic element whose
fized point set is {0,00}, then Z = xxd, for some » € R. In partic-
ular, X(S. ,Hol F) = Rzd, if HolF has no elliptic element, otherwise
X(SL, Hol F) = 0.
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Proof. By Lemma @), Z|g = »xd, for some » € R because the re-
striction to R of any hyperbolic element with fixed point set {0,00} is a
homothety different from the identity. So Z = 20, on SL..

The last assertion is true because any elliptic element A preserving {0, oo}
is conjugated to the rotation z — —1/z by some hyperbolic element with
fixed point set {0,000}, and therefore A,(xd,) = —x0,. O

Like in Section B4] every .7-"11 = .7-"1 becomes a complete R-Lie foliation
with the restriction to M} = M; of the element of X(M,F) defined by
20, € X(R,Hol F) via ([Z22). Moreover the statements of Lemma B.I1] and
Proposition hold as well, with the obvious adaptations of the proofs.

Now the transverse orientation of every F; may be directed outward and
inward on different boundary leaves of M;. Anyway, M? contains at least
two leaves because () # 7(D~1(0)), (D~ !(c0)) € M.

Example 3.16. The identity and the hyperbolic elements with common
fixed point set {0,00} form an abelian and torsion free subgroup H C
PSL(2,R) (its restriction to R is the group of orientation preserving homo-
theties). Let I' C H be a subgroup of finite rank, and let L be a I'-covering
of the closed oriented surface L of genus two. Let M = SL x L with the
foliation F by the fibers of the first factor projection D : M — Sl. The
diagonal action of " on M, given by v - (x,7) = (y(x),v - §), preserves F.
Thus it induces a suspension foliation F on the closed manifold M = F\ﬁ
[8, Section 3.1]. F is a transversely projective foliation, whose developing
map is D and with Hol F = I" (Section 2.8]). It has two compact leaves,
which are diffeomorphic to L, and all other leaves are diffeomorphic to L.

Example 3.17. In Example B4 (i), the model () foliation G is trans-
versely projective. It is transversely affine if and only if sign(f(z)) has the
same limit as x — 1 and as ¢ — —1, which is another description of the
transversely affine Reeb component of Example B3l for n = 2 and A = el/4.

In Example (i), using the above model () foliations to make tangen-
tial gluing, all of them with the same p, the result is a transversely projective
foliation if it is transversely oriented, which means that the number of trans-
versely affine models is even. It is transversely affine if and only if all models
are transversely affine.

Example 3.18. In Example B8 if 7 and G are also transversely projective,
and induce the same projective structure on S' via ¢ and d, then F’ clearly
becomes transversely projective. (See [19, Appendix to Section 2] for the
classification of projective circles.)

4. TRANSVERSELY SIMPLE FOLIATED FLOWS

Let F be a smooth foliation of codimension one on a manifold M. For
the sake of simplicity, assume that F is transversely oriented. Let Z €
Xeom(M, F) with foliated flow ¢. Let M° be the union of leaves preserved
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by ¢. The ¢-invariant set MY is closed in M because it is the zero set of
Z € X(M,F) C C®(M;NF). Moreover ¢ is transverse to the leaves on the
open set M := M ~. M°. So there is a canonical isomorphism N¢ = TF
on M', and F is TC at every point of M! (Section 27)); in particular, the
leaves in M! have no holonomy. With the notation of Sections Z4H2.0] let
® be the H-equivariant local flow on ¥ generated by Z € X(X,H). Via the
homeomorphism M/F — ¥ /H defined by the maps z}, the leaves preserved

by ¢ correspond to the H-orbits preserved by ¢, whose union is Fix(¢)
because they are totally disconnected.

Definition 4.1. The leaves preserved by ¢ that correspond to simple fixed
points of ¢ are called transversely simple. If all leaves preserved by ¢ are
transversely simple, then ¢ (or Z) is called transversely simple.

Since dim ¥ = 1, for all simple p € Fix(¢), there is some s = s; € R*
such that ¢L = e on T;¥ = R. By the H-equivariance of ¢, we easily get

»np = g for all § € H(p) C Fix(¢). Thus we can use the notation sy, = s
if H(p) corresponds to the simple preserved leaf L.

Lemma 4.2. Let ¢ be a local flow on R with infinitesimal generator X €
X(R). If0 is a simple fixed point of 1 with g = s, then there is a coordinate
x around 0 in R so that x(0) = 0 and X = »xd,, and therefore Y'(z) = e*'x.

Proof. Let u denote the standard coordinate of R. The condition on 0 means
that X = f(u)9, for some f € C*°(R) with f(0) = 0 and f/(0) = 5. Then
f(u) = uh(u) for some h € C*(R) with h(0) = ». Hence there is some
g € C*(R) such that » — h(u) = ug(u). We look for some smooth function
x = z(u) around 0 so that xz(0) = 0, 2/(0) # 0 and 20, = X. Thus
x(u) = we(u) for some smooth function e = e(u) defined around 0 with
e(0) # 0. Since 9, = 2'(u)d,, we need sxue(u) = uh(u)(e(u) + ue'(u))
around 0; i.e., €'(u)/e(u) = (3¢ — h(u))/uh(u) = g(u)/h(u). Any e(u) =
Cexp( [, g(v)/h(v) dv) with C' # 0 will do the job. O

Remark 4.3. (i) Since ¢ and Z € X(3,H) = X(M,F) determine each
other, the condition on the preserved leaves of ¢ to be transversely
simple depends only on Z € X(M, F).

(ii) By Lemma 2] around any point p in a transversely simple leaf L C
MO, there are foliated coordinates (z,y) with z(p) = 0 and Z = »p20,.

(iii) If ¢ is transversely simple, then every closed orbit is contained in either

MY or M, and all fixed points belong to M?.

From now on, suppose that ¢ is transversely simple and M is compact,
unless otherwise stated.

Proposition 4.4. M is a finite union of compact leaves.

Proof. Since Fix(¢) has no accumulation points in X (Section 21]), every
leaf L in M° has a neighborhood V such that V N M° = L. Thus the result
follows using that M is compact, and MY is closed in M. O
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By Proposition 4] and since the leaves in M' have no holonomy, F is
almost without holonomy (Section B3]), and only a finite number of leaves
may have holonomy. According to Remark (), we can consider Hec-
tor’s description with this choice of M? and M?, even though there may
be leaves without holonomy in M°. Consider also the rest of the notation
of Section B3l If the leaves in M' are not compact, then M! is just the
transitive point set of F.

Given any leaf L ¢ M® and p € L, let (z,y) : U — X x B” be a foliated
chart around p like in Remark 3] (i), where ¥ is some open interval con-
taining 0. Let h : m;L — Hol L, o — h,, be the holonomy homomorphism
of L at p. Via the projection z : U — X, we can regard Hol L as a subgroup
of the group of germs at 0 of local transformations of 3 such that 0 is a fixed
point in their domains.

Proposition 4.5. Hol L consists of germs at 0 of homotheties on R.

Proof. All elements of Hol L can be represented by elements of the group
Diffeo™ (R, 0) of orientation-preserving diffeomorphisms of R that fix 0. Ac-
cording to Remark (), for the above foliated coordinates (z,y) around
p, we have Z = »x0, for s« = »r. Then, by Lemma @@ and Re-
mark (), any element of Hol L is the germ at 0 of a homothety. O

Accordlng to Proposition L5l h = hy, is induced by the homomorphism
h = hy : m L — Diffeot (R,0) whose image consists of homotheties. We
get an induced monomorphism h = hy, : I' := 7L/ ker h — Diffeo™ (R, 0),
v +— hy, with hy(z) = ay2 for some monomorphism I' - R = (RT, x),
v + a, = ar. The holonomy cover 7 = 7, : L — L is determined by
7L = ker h = ker h. On some neighborhood of L, F can be described with
the suspension defined by 7w and h, recalled in Section

Every ]:ll becomes a complete R-Lie foliation with the structure induced
by Z; € .’{Com(Mll,}"ll), with the original differentiable structure (see Re-
mark (). We use the following notation for its Fedida’s description
(SectionsIZ'_ZlandB]I): m e ]\Zl — M}, by Ty = Aut(m) = R, Dy : ]\Zl —R
and ]:l = 7Tl ]:l The abelian and torsion free group I'; has finite rank be-
cause 7T1M = 7T1M1 =~ 11 M; and M, is compact The action of any v € I
on Ml is denoted by p + v - p or by T.,. Let Z, and & be the lifts of Z

and ¢; to Ml . Recall that Zl is D;-projectable, and we can assume that
D7, = 0, (Section B.2]).
By Remark and Proposition B3] we have the following cases for F:
(a) F is given by a fiber bundle M — S' with connected fibers.
(b) F is an R-Lie foliation with dense leaves.
(¢) M® £ 0, HolL = Z for all leaves L C MY, and the foliations F}' are
given by fiber bundles Ml1 — S' with connected fibers.
(d) M° # 0, Hol L is a finitely generated abelian group of rank > 1 for all
leaves L € MY, and all foliations ]:11 are minimal R-Lie foliations.
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The case (@) can be considered as a model ([{]) with empty boundary, avoiding
the use of models (@), or it can be cut into models (0 by adding a finite
number of leaves without holonomy to M? (Remark ()8

Remark 4.6. The results and observations of this section hold without re-
quiring M to be compact, assuming only that MY is compact.

Example 4.7. By Proposition @5 the Reeb foliation F on S does not
admit any transversely simple foliated flow because it has a leaf with ho-
lonomy but no infinitesimal holonomy. Actually, this proves that its Reeb
components of [§, Example 3.3.11] cannot show up as models in Hector’s
description of any foliation on a closed manifold with a simple foliated flow.
Similarly, this realization is impossible for Example B4 (), ().

5. CASE OF A SUSPENSION FOLIATION

5.1. Basic definitions. For a connected closed manifold L, let h m L —
Diffeo™(R,0) be a homomorphism whose image consists of homotheties
(like in Section H). It induces a monomorphism h : I := mL/kerh —
Diffeo™(R,0), v ~ h,. We have h,(z) = a,z for some monomorphism
I - R, v+ a~; in particular, I" is abelian, torsion free and finitely gen-
erated. Let m = 7, : (L p) (L,p) be the pointed regular covering map
with 7L = m1(L,p) = ker h, and therefore Aut(r) = I'. We may use the
notation [j] = x(j) for j € L. The canonical left action of every v € T
on L is denoted by T, or § — v -%. For the diagonal left action of I' on
M=RxL,~v-(z,§) = (ayx,v-7), let M = I'\M. The canonical projection
7y + M — M is a T-cover with deck transformations hy xT, (v €T'). Write
[z, 9] = ma(z,y) for (z,79) € M. Let @ : M — L denote the second factor
projection, and let F be the foliation on M with leaves {z} x L (z € R).
Since @ is I'-equivariant, it induces a fiber bundle map w : M — L, defined
by @([z,§]) = [§]. On the other hand, since F is I-invariant, it induces a
foliation F on M so that 7*F = F , which is transverse to the fibers of w.
(M, F) is called the suspension defined by h (or h) and 7 [8, Section 3.1].
Note that the typical fiber of w is R because the corresponding fibers of @
and @ can be identified via 7. Since 0 is fixed by the I'-action on R, the
leaf {0} x L = L of F is [-invariant, and ({0} x L) = L is a compact leaf
of F. The other leaves of F are diffeomorphic via mp; to the corresponding
leaves of F because the elements of I' \ {e} have no fixed points in R*.
Given j € L and y = [] € L, the fiber o () = @ 1(5) =R x {} =R
is a global transversal of F through [0,75] = y. Note that the holonomy
homomorphism h : 7L, — Hol L is induced by h, and therefore Lhol = T,
The standard orientation of R induces a transverse orientation of F , which
is I'-invariant, giving rise to a transverse orientation of F.

F is transversely affine foliation on an open manifold. Its description of
Section 2.8 is given by mys : M — M, the first factor projection D : M >R
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and h : I' — AffT(R). In this case, D induces an identity M JF =R, and
therefore the inclusions of (Z2) and (23] are equalities (cf. Proposition B.12]
for the case where M is closed).

5.2. Transversely simple vector fields on a suspension foliation.
Given any > € R*, consider the transversely simple foliated flow 5 on
(M F) given by §t(a: y) = (e*tx,§), whose infinitesimal generator is Y =
(5220,,0) € %Com(M F ). With the notation of Section [l for ¢, we have
Fix(£') = MY = {0} x L = L, and the orbits on M are the fibers of the

restriction & : M! — L. Since ¢! is T-equivariant and Y is - invariant, they
can be projected to M obtaining a transversely simple foliated flow ft with
infinitesimal generator Y € X(M, F), satisfying Fix(¢) = M° = WM(MO) =
L, and the orbits on M' are the fibers of the restriction w : M! — L.
Moreover Y = »x0, on R via (Z2), whose flow ¢ is given by &!(z) = .
Fl= Fion Ml = My is a transversely complete R-Lie foliation with the
structure defined by Y4 € Xeom (M1, F1) (see Remark EL6)). In its Fedida’s
description (Section [27]), ]\7}[ is the holonomy covering of M1, whose group

of deck transformations is also I. The developing map Dy : M1 — R
and holonomy homomorphism h4 : I' — R can be chosen to be given by
Dy (z,y) = s> 'In|z| =: t and hy(y) = » 'Ina,, and therefore Hol Fy =
{»1Ina, |y €T}. In this way, (D+),Y: = 8, like in Section

Let ¢ be any transversely simple foliated flow on M, with infinitesi-
mal generator Z € Xeom(M,F), such that MY = L. According to Re-

mark [1.3] (), we can assume ¢ = £ and Z =Y. Then the lifts to M, $ of ¢
and Z of Z, are of the form

'(2,9) = (72, 84(9)) . Z = (5204, Zs) (5.1)
for smooth families, { ¢!, | z,t € R} C Diﬁ‘eo(N) and {ZD~| reR} cX(L).
In particular, Zy is the restriction of Z to L = {0} x L, and its flow is

¢ = {(bt} Thus Zo is I'-invariant and qﬁo is I'-equivariant, inducing the
restrictions of Z and ¢ to L, denoted by Zy and ¢g.

Proposition 5.1. The flow ¢q is simple if and only if the fized points and
closed orbits of ¢ in MO are simple.
Proof. Let § = (0,§) € L= M° and y = [j] = [0,7] € L = M°. Suppose
that y € Fix(¢o) = Fix(¢) N M°, and therefore §j € Fix(¢o) = Fix(¢) N MO.
By @.,

T[O,Q]M = T(Qg)M = R @ TQL = R @ TyL 5

¢i[07g} = ¢i(o,g) = @ Phy = O By -
So p is simple for ¢ if and only if y is simple for ¢g.

Now suppose that y is in some closed orbit ¢ of ¢, which can be also
considered as a closed orbit of ¢ in M. Then there is some € I' such that
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%(C)(g) =~ -7. As before,
Nio,5¢ = Nog¢ =R ® Nygo = R & Ny ,
Niog¢ = Noqyp® = RO Nygdo =R S Nygo ,
L) _ qlle) _  xl(c we) —  sl(c £(c)
Dulog) = Puog) = €O ® bouy = @ 40
So ¢ is simple for ¢ if and only if it is simple for ¢y. O
Proposition 5.2. For every simple A € X(L) without closed orbits, there
is some simple B € Xeom (M, F) without closed orbits such that B=Y and
B() = A.
Proof. Let Ae xwm(i) be the lift of A, whose flow is denoted by ¢, and
let B = (520, A) € %(M, F). Clearly, By = A and B =Y. Moreover E is
complete because its flow 7 is given by 7'(z,7) = (e**x,('(g)). Since B is
[-invariant, it induces some B € Xcom (M, F) with flow 7.
Claim 1. The flow 1 has neither fixed points nor closed orbits in M?.

By absurdity, suppose that n!([z,7]) = [z, 7] for some [z,7] € M' and
t > 0. Then there is some 7 € I such that 7*(z,9) = v - (x,9). Since x # 0,
this means that e*! = a, and Ct(H) = ~v- 4. Thus C'(y) = y for y = [§].
Hence y € Fix({) because ¢ has no closed orbits, and therefore g € Fix(g: ).
It follows that + -4 = 7, yielding v = e. So ¢ = 1, obtaining st = 0, a
contradiction.

By Proposition b1l Claim [ and since ng = ¢, it follows that 7 is simple

without closed orbits. (]
5.3. Differential forms defining a suspension foliation. For k = rank I,
fix generators v1,...,7v, of I'. Let ¢; be a piecewise smooth loop in L based
at p such that [¢;] € m1(L,p) defines 7;, and let a; = a,,. By the universal
coefficients and Hurew1cz theorems, there are closed 1-forms (31,..., 5, on
L so that (Lj = ([8i], [c fol jﬂ, and ([3i],ker h) = 0. Thus every m*f; is
exact on L. Let = ln(al) B1 —--- —1In(az) Br. Then 6 = 7% = dF for

some F € C*(L). With some abuse of notation, let § = @*0, § = ©*f and

F =w"F. It is easy to check that Ty F = F'—In 10y on L for all ~v € I'. Thus

p=clzand @ = ]%[ LeF dz are T-invariant on M. Furthermore j p is a defin-

ing function of L on M, & defines F, di> = 0 A@ and dp = pl+ |2¢| 0. We get
an induced defining functlon p of L on M, and an induced form w defining
of F, so that dw = 0 Aw and dp = pf + ]%]w. We also get M =R, X L,
giving rise to smaller tubular neighborhoods T, = (—¢,€), X L (e > 0).

5.4. Change of the differentiable structure. Given 0 < « # 1, let
fo : R — R be the homeomorphism defined by f,(x) = sign(z)|z|* =
x|z|*"1. The restrictions f, : R*¥ — R¥ are diffeomorphisms, but f, is
not diffeomorphism around 0. Clearly, fa(ayx) = affa(z), and it is easy to
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check that fu.(20;) = aud, on R*, using the coordinate u = f,(z). Like
in Section 5.1 let hg : I' — Diffeo™ (R, 0) be the monomorphism defined by
haq(u) = aSu, and let (M, Fy) be the suspension defined with h, and 7.

The foliated homeomorphism Ta = fo x id of (M , F ) is equivariant with
respect to the ['-actions defined by h and h,, and therefore it induces a
foliated homeomorphism Y, : (M,F) — (Mg, Fs). The restriction T,
(MY, FYY — (ML, FL) is a diffeomorphism.

A transversely simple foliated flow &, on (Mg, F,), with infinitesimal
generator Y,, can be defined like ¢ and Y in Section (.2l using s« in-
stead of s, and we get ToY = Y, on M!. With more generality, for any
transversely simple foliated flow ¢ on (M, F), with infinitesimal generator
Z € Xeom(M, F), such that ¢ = £ and Z =Y, there is a transversely sim-
ple foliated flow ¢, on (M, Fo), with infinitesimal generator Z,, such that
qﬁa = fa, 0 = Ya, and Yo.Z = Z, on M}. Precisely, using (5.1)), their lifts

qﬁa and Z to M are given by
(Z;fx(u7g) = (e%atua (Z;Z(g)) ’ ZO& - (%auaw Zu) :

In other words, we get a new differentiable structure on (M, F) via T,
which agrees with the original one on M"'. This will be called a transverse
power change of the differentiable structure (around the leaf L). With this
point of view, ¢ is a smooth transversely simple foliated flow with both
differentiable structures, replacing » with »a. In this way, we can change
|>¢| arbitrarily, but keeping sign(s¢) invariant.

With the new differentiable structure, C°°(M) is generated by p, :=
plp|® ! and C*°(L) = w*C*°(L). Moreover p, is a defining function of L,

a—1

We = p* w and 0, have smooth extensions to M, w, defines F, dw, =
0o N we and dpy = paba + || wgy.

6. GLOBAL STRUCTURE

Consider the notation of Sectiondl where M is compact, F is transversely
oriented, and ¢ is transversely simple.

6.1. Tubular neighborhoods of the components of M°. In the follow-
ing, L runs in moM° (the set of leaves in M), and we have corresponding
objects hL, hr,Ur, 7 : L— L, ar, and s, defined by F and ¢. Consider
the constructions of Sections |5:[|—|5_3L using this data, adding a prime and
the subindex “L” to their notation: the suspension (M 7, Fp) defined with
hr, with projection @} : M} — L, the transversely simple foliated flow
&7 with infinitesimal generator Y7, the differential forms w} and 67, the
defining function p}, and the tubular neighborhoods TE’ I

By the Reeb’s local stability, there are foliated dlﬁeomorphlsms between
the restrictions of F and F’ to tubular neighborhoods, T ro of L in M
and Ti,o = TLEO (0 > 0) of L in M}, so that the projection wy, of T7¢
corresponds to the projection @}, of Ty ;. We will simply write 7 = ] and
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wp = wy, on Tpo = TLO. We can assume that the sets T o are disjoint
in M, and ¢ =&, and Z =Y/ on Tpo = T7 o (Remark ([). Fix also
smaller tubular neighborhoods, Ty, = 77 := T} (0 < € < ).

Let M' = | |; M}, where we consider the combinations of all of the above
objects, removing L from the notation: F/, @', &/, Y’, ', #’ and p/. Similarly,
let T" = |—|LT£7 TO/ = |—|LT£,07 T = ULTL and Ty = UL TL70.

Proposition 6.1. (i) There is some Z' € Xeom(M', F') such that Z' =
Y, Z'=ZonT=T,and Z' =Y on M' \ T},
(ii) For any A € X(M',F') with A =Y, there is some B € X(M,F) with
B=Z,B=AonT=T,and B=2Z on M ~T,.
(i4i) There are w,0 € C°°(M;A') such that w defines F, w=w' on T =T’
and dw =0 Nw on M.

Proof. Let A € C*°(M) such that 0 < A <1, A=1on T, and supp A C Ty,
and let \ € C°(M’) such that supp A C T and X = X on T, = Tp.

To prove (i), let Z) = Z on Tj) = Ty, and take Z' =Y’ + N (Z) - Y').

To prove (i), let By = A on Ty = T, and take B = Z + \(By — Z).

To prove (i), take wo = w’ and §p = &' on Ty. Take wy € C°(M;AY)
defining F. Then w = Awy + (1 — A\)w; also defines F. Thus dw = 6; Aw for
some 6, € C°(M;A'). We get (6p — 1) Aw =0 on T, and therefore (i) is
satisfied 0 = 01 + A(6p — 61). O

We can also consider a transverse power change of the differential struc-
ture on every M; around L (Section [5.4]). The corresponding new differen-
tiable structure on every Ty, = T} can be combined with the differentiable
structure of M! to produce a new differentiable structure on M, also called
a transverse power change of the differentiable structure (around M?), and
keeping Z € X(M,F) after this change. In this way, the absolute values
|>¢1| can be changed arbitrarily, but keeping every sign(s¢z,) invariant.

Consider the forms w and 6 of Proposition (), and let p = p’ on
T = T'. With the new differentiable structure, C°°(T") is generated by
pa = plp|*t and C*°(M?) = w*C>(M"). Moreover w, := p* 'w and
0, := af have smooth extensions to T, w, defines F|r, dw, = 04 A w, on
T, and dp, = paba + |asr|we on Tr. Like in Proposition ([, the
restrictions of w, and 0, to some smaller tubular neighborhood of L can be
extended to M, keeping the relation dw, = 0, A wq.-

6.2. Transverse structure. Let P be the pseudogroup on SL =R U {0}
generated by the projective rotation z — —1/z, the hyperbolic projective
transformations x + Az (A > 0), and the diffeomorphisms z — 2% of R
(a > 0). F is called a P-foliation if {U, x} can be chosen such that every
Y, is realized as an open subset of SL and the maps hy; belong to P.

Proposition 6.2. F is a P-foliation.

Proof. Since F = F' on every Tpo = Ty (Section G, the restriction
of F to any Ty has a regular foliated atlas {Ug, (z4,y,)} such that the
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corresponding elementary holonomy transformations are restrictions of ho-
motheties. For » = s € R*, we have Z = »x,0,, on ,(U,) (Section G.1)),
whose local flow ¢, is given by ¢q(x,t) = e .

Now the restrictions ]:ll are R-Lie foliations according to Sections@ Then
any F} has a regular foliated atlas {V;, (w;, v;)} whose elementary holonomy
transformations are given by translations, w; = hsj(w;) = w; + ¢;;, between
open intervals of R. Taking the new transverse coordinates u; = ¢“¢, we get
another regular foliated atlas {V;, (u;,v;)} of F}, whose elementary holo-
nomy transformations are given by homotheties, u; = e“/u;, between open
intervals of RT. Thus {V, (u;,v;)} defines a transversely affine structure of
]-"ll. With the notation of Section [, we can indeed assume that 7 : ‘7, —V;
is a diffeomorphism for some open XN/Z C Mll, and u;m = D; on XN/Z Hence
7 = 0y, on w;(V;), and therefore Z = ;0,, on u;(V;), whose local flow ¢; is
given by ¢t(u) = e'u.

For any nonempty intersection U, NV}, via the corresponding elementary
holonomy transformation hy; = :Eaul-_l, the vector field sz, 0,, corresponds
to u;0y,, and therefore ¢, corresponds to ¢;. Take any p € U, N'V;, and let
Pa = Za(p) € R* and p; = u;(p) € RT. Then, for |¢| small enough,

hai(€'Pi) = haidi(Pi) = $a(Pa) = P = Dab; *(e'Di)
yielding hg;i(u) = pap; “u” for u close enough to p;. Since hg; preserves the

orientation, p, and » must have the same sign. Then h,; can be expressed
as a composition of generators of P:
= U= u” = Pep; U if Pa,2¢>0, (6.1)
U U= w7 e U= P T P — 1)1 if P, 2 < 0. (6.2)

Thus a union of foliated atlases of these types, for all L € moM° and folia-
tions i, is a foliated atlas of F defining a structure of P-foliation. O

Proposition 6.3. After performing some transverse power change of the
differentiable structure around MY, F becomes transversely projective.

Proof. Using a transverse power change of the differentiable structure around
MY, we can assume that s;, = £1 for all L € mgM°. Then, in the proof of
Proposition [6.2] the elementary holonomy transformations (G.I]) and (G.2))
are also restrictions of elements of PSL(2,R). O

7. EXISTENCE AND DESCRIPTION OF SIMPLE FOLIATED FLOWS

Now let F be any smooth transversely oriented foliation of codimension
one on a closed manifold M.

7.1. Existence of simple foliated flows.

Proposition 7.1. If (M, F) admits some transversely simple foliated flow
¢, then it also admits some simple foliated flow v with ¢ = ).
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Proof. Let Z € X(M, F) be the infinitesimal generator of ¢, and consider
the notation of Section Take some simple flow ¢ on M? without closed
orbits (Example[2.2)), and let A denote its infinitesimal generator. By Propo-
sition 5.2 there is some simple B € Xcom(M', F'), without closed orbits,
such that Bl = A and B = Z'. Then, by Proposition (), there is
some C € X(M,F) withC=Z,C=BonT=1T,and C =Z on M \Ty.

By Peixoto’s extension to open manifolds of a theorem of Kupka and
Smale (Section ZT]), there is some generic D € X(M?!) as close as desired
to C|pp1 in the strong C*° topology; in particular, D is simple. If D close
enough to C|y;1 in the strong C*° topology, then D has an extension E €
X(M) with E|j0 = A, and C = fE in C®°(M;NF) for some 0 < f €
C>®(M) with f = 1 on M°. Thus fE € X(M,F) and fE = Z, and therefore
the foliated flow ¢ of fE satisfies ¥ = ¢. So 1) is transversely simple and
has the same preserved leaves as ¢ (the leaves in M?); in particular, ¢ has
no fixed points in M'. Since fE = E = C = B = A on M°, we get
that 1 agrees with ¢ on MY, and therefore its fixed points are simple by
Proposition 511 Moreover fE|y;1 = fD is simple by Remark 211 O

Definition 7.2. It is said that ¢ (or Z) is weakly simple if its preserved
leaves are transversely simple and its closed orbits are simple.

By Proposition B.11 simple foliated flows are weakly simple.

Proposition 7.3. If (M, F) has some transversely simple foliated flow ¢,
then it also has some weakly simple foliated flow ¢ such that ¢ = ¢, ¢t = id
on MO for all t, and ¢ has no closed orbit in some neighborhood of MP.

Proof. Apply Proposition[6.1] ({il) with some transversely simple Z € X(M, F)
and A =Y". O

7.2. Description of foliations with simple foliated flows. Now, with-
out requiring the existence of any special foliated flow a priori, assume that
F satisfies the following properties:

(A) F is almost without holonomy with finitely many leaves with holonomy.
(B) The holonomy groups of the compact leaves can be described as groups
of germs at 0 of homotheties on R.

By (A]), we can use the notation of Section In the following, we refer to
the possibilities (@)—(dl) of Section M for transversely simple flows.

Example 7.4. Suppose that F is given by a fiber bundle M — S' with
connected fibers. For any even number of points, 1, ..., T2, € S (m > 0),
in cyclic order, and numbers ¢, ..., 29, € R*, with alternate sign, there is
some simple flow ¢ on S! such that Fix(¢) = {x1,..., 22, } and ¢! = ! on
TS ! = R. By Proposition [T1], there is a simple foliated flow ¢ on (M, F)
whose preserved leaves are fibers L1,..., Loy, over x1,...,Toy,. If m > 0,
then ¢ has no closed orbits in M'. If m = 0, then ¢ has no preserved leaves,

and therefore no fixed points. This is of type (@).
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Example 7.5. If F is an R-Lie foliation with dense leaves, X(M,F) is
of dimension 1 and generated by a non-vanishing transverse vector field.
Hence there are simple foliated flows by Proposition [Z], all of them without
preserved leaves. This is of type (),

Example 7.6. Suppose that F is a transversely affine foliation that is not an
R-Lie foliation. Then, according to Section B4l to get (A]), F is elementary,
and we can assume that imD = R and Hol F is a non-trivial group of
homotheties. Then, by Lemma @ and Proposition B12, X(M,F) is
generated by a transverse vector field Z such that the foliated flow ¢ of Z
is transversely simple. By Proposition [.I] there is a simple foliated flow ¢’

with ¢/ = ¢. It also follows from Lemma (@) and Proposition 312 that
there is some » € R such that { s | L € mgM°} = {5}.

Example 7.7. Assume that F is a transversely projective foliation that is
not transversely affine. Then, according to Section B0 to get (Al and (BI),
we can assume that im D = S and Hol F consists of the identity and hy-
perbolic elements with common fixed point set {0,000} and possible elliptic
elements that keep {0,00} invariant. By Lemma and the projective
version of Proposition B.12 to get X(M,F) # 0, there must be no elliptic
element in Hol F. Moreover, in this case, X(M, F) is generated by a trans-
verse vector field Z such that the foliated flow ¢ of Z is transversely simple.
By Proposition [I.I] there is some simple foliated flow ¢’ with ¢’ = ¢. By
Lemma and the projective version of Proposition B.12] there is some
s € RT such that { s | L € mgM°} = {£5¢}.

Example 7.8. In Examples and B.I6l we can consider any transverse
power change of the differentiable structure around M? (Sections[E.4land G.1]).
With the new differentiable structure, the foliation has the same simple fo-
liated flows, but the absolute values |s| can be arbitrary, keeping the same
signs sign(»). Thus {sign(s) | L € moM° } is {1} or {£1} if and only we
have changed the differential structure of Example or 310 respectively.

Examples [[.6HZ.8 can be of type (@) or (d).

Theorem 7.9. For any smooth transversely oriented foliation of codimen-
ston one on a closed manifold, the following conditions are equivalent:
(i) It satisfies (A and (B).
(i1) It is described by one of Examples[T77H7.8
(iii) It admits a transversely simple foliated flow.
(iv) It admits a weakly simple foliated flow (trivial on its preserved leaves).
(v) It admits a simple foliated flow.

Proof. We already know that (i) yields ({l) (Section H)). By Proposition 6.3}
Examples [T AHT.8 cover all cases (@)—(d)), and therefore () yields (). Propo-
sition [T1] states that () yields (@), which was used in Examples [.4H7.g]
showing that () yields (). Proposition [[:3]states that (i) yields (ivl). The

remaining implications are obvious. U
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According to Theorem [T the foliations of Examples B.1 B.I3 B.14]

and B.16H3.T8 admit simple foliated flows.
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