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ABSTRACT

This work proposes an improvement to existing methods based on modal expansions used for the predic-
tion of thermoacoustic instabilities in zero Mach number flow conditions. Whereas the orthogonal basis
made of the acoustic eigenmodes of the domain bounded by rigid walls is classically used, an alternative
method based on a modal expansion onto an over-complete set of acoustic eigenmodes is proposed. This
allows avoiding the misrepresentation of the acoustic velocity field often observed near non rigid-wall
boundaries. A Low Order Model network utilizing a state-space framework is then built upon this novel
type of modal expansion. Several test cases, going from non reacting ducts to a complex geometry with
combustion, are studied to assess the potential of the approach. The methodology not only successfully
mitigates the misrepresentation in the acoustic field in the presence of non-rigid-wall boundaries, but it
also drastically improves the convergence speed. The modularity of the method and its ability to handle
complex geometries are illustrated by considering a configuration featuring an annular chamber, an annu-
lar plenum, as well as multiple burners. This novel technique is expected to bring worthy improvements

to existing Low Order Models using modal expansions for the prediction of combustion instabilities.

1. Introduction

Since their early study by Rayleigh [1], thermoacoustic insta-
bilities have been a subject of primary scientific interest as well
as a major concern for a number of industrial projects. Experi-
ments with increasingly complex setups and advanced diagnostics
were carried out over the years to study this intricate interplay
between flame dynamics and acoustic waves. Progresses in exper-
imental works were accompanied by considerable efforts in both
numerical and theoretical study of thermoacoustic instabilities. Re-
garding the former, Large Eddy Simulation (LES) was proved as the
most accurate tool for the analysis of instabilities in combustors
featuring complex geometries [2]. Yet, the high cost of these full
scale simulations led to a growing popularity of alternative and
cheaper numerical methods relying on a separation of the acoustic
flow and the complex flame dynamics. The acoustic field is solu-
tion of the Helmholtz equation in the frequency domain, while the
flame response to acoustic perturbations is often embedded into a
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Flame Transfer Function (FTF) [3], or a Flame Describing Function
(FDF) representing nonlinear effects [4].

One of the key aspects for the resolution of thermoacoustic
eigenmodes is the ability of the method to accurately account
for complex geometries that are encountered in industrial com-
bustors. One of the most straightforward approaches is the direct
discretization of the Helmholtz equation that is then solved thanks
to a Finite Element Method (FEM) solver. State-of-the-art FEM
Helmholtz solvers are able to solve for thermaoustic eigenmodes
in complex geometries comprising active flames and dissipative
effects [5,6], and can also incorporate the FDF formalism to capture
nonlinear limit-cycle behaviors [7,8]. However, direct discretization
FEM Helmbholtz solvers often result in a large number of Degrees
of Freedom (DoF), synonym of a considerable computational cost,
and only permit little modularity, as any change in the geomet-
rical parameters requires a new geometry and mesh generation.
In order to circumvent these shortcomings, numerous research
groups have opted for the development of Low Order Models
(LOMs) enabling even cheaper resolution of thermoacoustic in-
stabilities. Low Order Modeling resides in two basic ideas: (1)
the number of DoF should be reduced as much as possible in
order to permit fast computations, and (2) the model should be
flexible and highly modular, in the sense that it should allow for
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Fig. 1. Schematic representation of an acoustic network. Hashed lines show rigid walls. Gray dotted lines are opening to the atmosphere. The geometry is split into distinct
subsystems, that are connected together. The subsystem (i) is defined by its volume €2;, its rigid wall boundary S, its boundary opened to the atmosphere Sy, and its
boundaries S; that are to be connected to other subsystems in the acoustic network. The interface S is split into several surface elements ASy; located at the connection

points Xp;. It also contains a volume heat source H;.

the straightforward modification of most geometrical or physical
parameters. The latter point is often achieved thanks to a divide
and conquer strategy, where complex geometries are decomposed
into an acoustic network of simpler subdomains (see Fig. 1). Fast
and modular LOMs have been promisingly applied to intensive
tasks demanding a large number of repeated resolutions, such as
Monte Carlo Uncertainty Quantification [9,10], or passive control
through adjoint geometrical optimization [11].

Existing thermoacoustic LOMs can be classified into four main
categories, according to the method employed to describe the
acoustic field.

1. The first class of LOM is a wave-based 1D network approach,
where the acoustic pressure and velocity are written in func-
tion of the Riemann invariants A* and A~. This method was
first successfully used in the LOTAN tool [12], designed to re-
solve in the frequency domain linearly unstable thermoacoustic
modes in simple configurations. More recently and in a sim-
ilar fashion, the open-source LOM solver Oscilos [13] devel-
oped at Imperial College, London, was used to perform for in-
stance time-domain simulations of thermoacoustic limit cycles
in longitudinal combustors [14,15] comparable to the Rijke tube
[16]. Wave-based low order modeling was also generalized to
more complex cases, including azimuthal modes in configura-
tions comprising an annular combustion chamber linked to an
annular plenum through multiple burners. This procedure al-
lowed Bauerheim et al. to conduct a series of studies based on
a family of analytical solutions for azimuthal modes in annu-
lar combustors [9,17,18]. Even though wave-based LOMs are the
most adequate to deal with networks of longitudinal elements
where acoustic waves can be assumed as planar, they also suf-
fer strict limitations: they are indeed unable to capture non-
planar modes in complex geometries.

2. The second class of LOM relies on modal (or Galerkin) ex-
pansions, to express the acoustic pressure field as a combina-
tion of known acoustic modes. Modal expansion was first in-
troduced and formalized in an acoustic context by Morse and
Ingard in their influential book Theoretical Acoustics [19] dated
from 1968. In the field of thermoacoustics, Zinn et al. [20] and
Culick [21-24] were among the first to use it to study com-
bustion instabilities in liquid fuel rocket engines. Similarly to
the wave-based approach, multiple studies utilizing modal ex-
pansions are dealing with the Rijke tube: for example by Ju-

niper [25], Waugh and Juniper [26], and Balasubramanian and
Sujith [27]. Simplified annular configurations were also ex-
amined thanks to pressure modal expansion: Noiray and co-
workers [28-30]and Ghirardo et al. [31] conducted a se-
ries of theoretical studies in such geometries. More complex
modal expansion-based networks were developed for multi-
burners chamber-plenum geometries, by Stow and Dowling
[32], Schuermans and co-workers [33,34], and Belluci et al. [35].
Their strategy is to perform modal expansions for the pres-
sure in the chamber/plenum and to assume acoustically com-
pact burners that can be lumped and represented by simple
transfer matrices. Unlike wave-based low-order modeling, this
method is not limited to planar acoustic waves, and can re-
solve both azimuthal and longitudinal chamber modes. Even
though their approach does not rely on an acoustic network
decomposition, Bethke et al. [36] showed that arbitrarily com-
plex geometries can be incorporated in a thermoacoustic LOM
by expanding the pressure onto a set of basis functions com-
puted in a preliminary step thanks to a FEM Helmbholtz solver.
Although they appear more general than wave-based LOMs,
modal expansion-based LOMs are also subjected to strict lim-
itations, which mainly resides in the choice of the modal ba-
sis employed to expand the acoustic pressure. This point is the
main object of this paper, and is discussed in more details later.

. The third class of thermoacoustic LOM is a mixed method, that

combines both Riemann invariants and modal expansions. The
former are used to account for longitudinal propagation, while
the latter are used to account for multi-dimensional geome-
tries. This mixed method was employed by Evesque and Polifke
[37] to model azimuthal modes in multi-burners annular cham-
ber/plenum configurations. In more recent works [38,39] the
mixed strategy was further developed to investigate nonlinear
spinning/standing limit cycles in the MICCA annular combustor.
More precisely, in [38] the planar acoustic field in the ducted
burners is represented by Riemann invariants, while it is rep-
resented through modal expansions in the chamber and in the
plenum.

. Finally, the last class of LOMs consists in those based on a di-

rect spatial discretization. For example, Sayadi et al. [40] made
use of a finite difference scheme to build a dynamical sys-
tem representation of a one-dimensional thermoacoustic sys-
tem comprising a volumetric heat source localized within the
domain. A more generic direct discretization LOM is the taX



Low-Order Model developed at Technical University of Munich
[41]. Its modularity lies in the ability to combine in a same
thermoacoustic network one-dimensional elements discretized
by finite difference, geometrically complex elements discretized
through FEM, and other types of elements such as FTFs and
scattering matrices. Since this LOM is built upon direct dis-
cretization of linearized partial differential equations, it can also
potentially incorporate richer physics, including mean flow ef-
fects or acoustic-vortex interactions. However, the price to pay
for this high modularity is a large number of DoF: for instance,
in the taX LOM, about O (10°) DoF were needed to obtain
acoustic eigenmodes of an annular combustor comprising 12
ducted injectors (but no active flame).

Interestingly, most modal expansion LOMs used the same type
of eigenmodes basis, namely the basis composed of the rigid-wall
cavity modes, or in other words acoustic eigenmodes satisfying ho-
mogeneous Neumann boundary conditions (i.e. zero normal veloc-
ity) over the entire boundaries of the domain (and without internal
volume sources). This paper focuses on the nature of the acoustic
eigenmodes basis used to decompose the pressure, and the conver-
gence properties resulting from this expansion. Although the rigid-
wall modal basis presents the huge advantage of being orthogonal,
many actual systems obviously comprise frontiers with far more
complex boundary conditions than just a homogeneous Neumann
condition (for example an inlet or an outlet where the impedance
has a finite value). The use of such basis then appears paradoxical:
how is it possible that a solution expressed as a rigid-wall modes se-
ries converges towards a solution satisfying a non rigid-wall boundary
condition? This singularity in the pressure modal expansion was al-
ready noticed by Morse and Ingard [19], but they did not study
its impact on the convergence of the whole method. Later, Culick
[24] provided more explanations about this singularity: the modal
expansion does not converge uniformly over the domain, but only
in the less restrictive sense of the Hilbert norm (L, norm); as a
result, even though each individual term of the expansion does
not satisfy the appropriate boundary condition, the infinite sum of
these terms may satisfy it. In other words, “the limit of the sum
is not equal to the sum of the limit” in the neighborhood of the
boundary. An interesting examination regarding this singularity is
provided in a recent work by Ghirardo et al. [42], where a projec-
tion onto a mode satisfying a specific non rigid-wall inlet bound-
ary condition was discussed. The convergence issue arising from
rigid-wall modal expansion is even more problematic in the case of
acoustic LOMs where the geometry is decomposed into a network
of subsystems that need to be coupled together at their boundaries
(see Fig. 1). For each individual subdomain, these coupling bound-
aries are not rigid-wall but each term of the basis corresponds to
a rigid-wall: the convergence singularity may arise at each one of
the coupling interfaces. Although Culick [24] proposed an explana-
tion to this singularity based on a local justification, only very few
studies deal with global effects, such as for example convergence
speed of the eigenfrequencies.

The main contribution of this work is a reformulation of the
modal expansion method under the zero Mach number flow as-
sumption, allowing for decompositions of the pressure onto an
over-complete family of modes, gathering rigid-wall (v’ =0) and
pressure release (p’ = 0) modes, instead of the classical rigid-wall
modes basis. This paper is organized as follows: in Section 2, the
original mathematical derivation of pressure expansion onto the
rigid-wall modal basis is recalled. The problem is then reformu-
lated using expansions onto an over-complete set of modes, also
called a frame. In this frame, non rigid-wall conditions are used
for certain elements. Section 3 briefly describes the state-space
formalism proposed in [33,34] to couple subsystems together and
build a modular acoustic LOM network. This state-space formal-

ism is then extended to account for the frame of non-orthogonal
modes. In Section 4, the convergence properties are evaluated and
compared for both types of modal expansions on a canonical case
which consists of a long duct with a sharp cross-section change.
Finally in Section 5, the modularity of the proposed LOM and
its ability to deal with cases involving combustion instabilities in
complex configurations is demonstrated by considering an annular
chamber/plenum configuration featuring multiple burners.

2. Acoustic pressure modal expansion

In acoustic LOM networks for complex configurations, the sys-
tem is split into smaller geometric subsystems. Let us consider a
subsystem (i) as in Fig. 1, defined as a bounded domain €2; delim-
ited by 0Q2; = S,,; US,; US,. The primary variable of interest is the
acoustic pressure p(X,t) expressed in the physical space, but its
frequency-domain counterpart p(X, w) is often introduced to ease
the analysis, especially when dealing with linear acoustics. These
two quantities are related by the (inverse) Fourier transform as fol-
lows:

400 . +oo
PR w) = [ eIt p(E t)dt,  pE.t) = / e B(%, ) dw

For the sake of simplicity, in the following the sound speed field is
assumed uniform and the baseline flow to be at rest. Note however
that these hypotheses are not necessary and could be omitted. The
frequency-domain acoustic pressure p(X, @) in the subsystem €; is
then solution of the following Helmholtz equation:

AV2H(X. 0) — jawp (R w) + * PR w) = (X, w) for XeQ;
Vip=0 for X €Sy, P=0 for X €Sy
Vb = [ (&, w) for % €S,

(2)

where the notation Vsp = Vj(x;).fl; is introduced, X; being a geo-
metrical point belonging to a boundary of the flow domain and s
the normal unity vector pointing outward. In Eq. (2), @ is an acous-
tic loss coefficient, the term E()?, w) is a volume acoustic source,
while f(% w) is a surface forcing term imposed on the connection
boundary S: it is an external input to the acoustic subsystem con-
tained in €; exerted by adjacent subsystems. The pressure verifies
rigid-wall boundary condition on S,; and is null on S,. The volu-
mic source fl(x’, w) represents fluctuations of heat release, and it
may be written as follows:

h(X, @) = —jo(y — 1)ar(X o) = —jo(y - 1DH@Q@)  (3)

where y is the heat capacity ratio and @r (X, ) is the local fluc-
tuating heat release rate resulting from flame dynamics. In Eq. (3),
w7 (X, ) is decomposed into a global heat release rate 0(w) and
a spatial volume density #;(X) representing the flame shape (the
integral of #;(x) over €2; is unity). In the following, only one flame
in the subdomain €; is considered for conciseness, but the reason-
ing can be extended without difficulty to any number of distinct
and independent flames located in a same subdomain €2;.

In modal expansion based LOMs, on each subsystem 2; the
pressure is decomposed onto a family formed of known acoustic
eigenmodes of €2;. The purpose is then to derive a set of governing
equations for the corresponding modal amplitudes. This step usu-
ally makes use of the inner product defined for any functions f(x)
and g(x) as:

(f.8) = // [ r@sw @ (4)

The associated L2 norm is noted || f||, = (f, f)1/2.



2.1. The classical rigid-wall modal expansion

The usual derivation consists in writing the decomposition
of the acoustic pressure onto an orthogonal basis of known
acoustic modes (Yn(X)),>; of the subdomain ;, as p(X, w) =
Y on Pn(@)Pn(x). The set (Yn(X))p»q is classically chosen as the
rigid-wall eigenmodes of the subsystem €; (without volume
sources and acoustic damping). These eigenmodes verify rigid-wall
conditions (i.e. zero normal velocity) over S,,;, but also over the
connection boundary S. In the presence of boundaries that are
known to be opened to the atmosphere (S, in Fig. 1), the eigen-
modes basis can be chosen to satisfy the appropriate condition on
Sqi (i.e. zero pressure), without further difficulty since the expan-
sion basis is still orthogonal. The set (¥n (X)), is solution of the
following eigenvalue problem:

AV2Yy + iy =0 for Xe Q;
Vs =0 for xeS,;, Yn=0 for XeSy (5)
Vs, =0 for X¥e S

where @, is the eigen-pulsation of the n'" eigenmode. By mak-
ing use of the second Green’s identity (reminded in Supplemental
Material A), it can be shown that the set (Yn(X)),-, defined by
Eq. (5) is indeed an orthogonal basis, that is (Y, ¥m) = 0 for any
n#m.

For conciseness, the successive steps required to obtain the
modal amplitudes {,(w) are not detailed here, but the interested
reader is referred to Supplemental Material A, as well as [19,43].
To ease the formalism, the connection surface S, is split into Mg
elements ASy; connecting €2; with the adjacent subdomains €2; at
the boundary points Xp;. Note that the subdomains £2; are not nec-
essarily distinct, since there may exist several connection points
between €2; and a same neighbor (ie. we can have Xpj; # Xpjo.
but ©2j; = Q). An example of such surface splitting is shown in
Fig. 1. After projecting the pressure field onto the orthogonal ba-
sis (Y¥n(X))p>1 thanks to the inner product defined in Eq. (4), the
modal amplitudes y,(w) are found to be solutions of the following
equation:

(* — jowa — w}) ( ;‘/n.(w)> B f: Mﬁ? (%))
jo ) o An
(6)
r —DH"

where A, = ||1pn||%,7-[,.(”) = (H;, V) is the projection of the flame

shape #;(%) onto Y (%), and 4, (Xyj. @) = — (Xo;. @)/ (pojw) is
the normal velocity forcing imposed by adjacent subsystems €2; at
the boundary points Xj;.

Since time derivative in the physical space corresponds to mul-
tiplying by jw in the Fourier domain, it is possible to recast
Eq. (6) into the time-domain. In doing so, it proves useful to in-
troduce [ = n/ (jo) (ie. Ca(t) = ya(t)) and then use the inverse
Fourier transform to obtain:

pE D) =Y PO ¥ (®

n=1

Mg 2 >

.. . C5ASe Y (Xo; .

F(6) =~ (1) — w2Tu(e) = 3 LA 2 e,
n

j=1
L= DA™

Qo

This dynamical system governs the temporal evolution of the
pressure field in the subdomain €2;, under the normal velocity
forcing ust (Xpj, t) imposed by adjacent subsystems €2;, and un-
der the volume forcing Q (t) imposed by fluctuating flames con-
tained within €2;. This set of equations was used for example
in [32,33], where the infinite series was truncated up to a finite
order N. It is also worth noting that the acoustic velocity can be
calculated from the knowledge of the modal amplitudes I';, (t) as
ux,t)y=—>,Tn (t)?wn(x’)/po. A state-space approach can then
be used to couple together the subsystems defining the whole
thermoacoustic system of interest. This formalism will be detailed
in Section 3.

Finally, since the acoustic pressure is a linear combination of
the modal basis vectors ¥/, it necessarily verifies the same bound-
ary conditions, in particular Vip = 0, viz. .is = 0 on S,. Since the
acoustic velocity should not be zero over the boundaries of the
(arbitrarily chosen) sub-domain €2;, this may result in a singular-
ity in the representation of the acoustic velocity field. The impact
of this singularity on the convergence properties of the method is
discussed in Section 4. The following section proposes a mathe-
matical reformulation of the pressure modal expansion to mitigate
this undesirable feature.

2.2. Modal expansion onto an over-complete frame of acoustic
eigenmodes

The purpose is now to introduce a modal expansion of the
acoustic pressure that would allow for satisfying any boundary
condition on S;; (and not Vsp = 0 only). In this matter, it is neces-
sary to retain in the modal expansion an additional degree of free-
dom, such that both acoustic pressure and normal acoustic veloc-
ity at the connection boundary S, remain a priori undetermined.
Let us then introduce two distinct families (§m)m>1 and (k=1
of acoustic eigenmodes of the subsystem €2;, characterized by the
two following eigenproblems:

AV2%n 4+ wiEn =0 for Xe Q;
Viém =0 for Xe Sy, &n=0 for Xe S, (8)
Viém =0 for XeSg

Vi + Wil =0 for XeQ;
Vsé'](:O for Xe Swi §k=0 for Xe Sai (9)
=0 for XeS;

Both eigenmodes families (§m)p>1 and ({y)rs1 verify the same
rigid-wall (resp. open) boundary conditions on S,,; (resp. Sg;). The
eigenmodes family (£)n~1 is similar to the orthogonal basis
(¥n)n=1 used in Section 2.1. Conversely, the eigenmodes family
(¢1)k=1 differs since it verifies open boundary conditions on S;.
Consider now the eigenmodes family (¢n),-1 formed as
the concatenation of (§m)m>1 and (Cile=1" @Dnlnz1 = Emlmz1 U
(Sk)k>1- The eigenpulsations associated to the eigenmodes ¢, are
noted (wn)p>1 = (@m)m>1 U (Wy)k>1- AS a concatenation of two
orthogonal bases, (¢n);>1 is not a basis but is instead an over-
complete set of eigenmodes, also called a frame [44]. The concept
of frame was introduced in the context of nonharmonic Fourier
analysis [45], and later used in a number of fields ranging from
wavelet analysis, to digital image processing and time-series fore-
casting. The use of an over-complete frame to perform modal ex-
pansions is the most crucial element of the proposed method. Let
us precise that the frame (¢n),~ 1 could be built from the concate-
nation of other sets of eigenmodes, as long as those do not a priori
impose any constraint between pressure and velocity at the bound-
ary S.. However, using the concatenation of the rigid-wall basis
(6m)m>1 and the open atmosphere basis ({);~1 has two main ad-
vantages: (1) they are usually the easiest to obtain analytically or



numerically, and (2) the frame (¢,),> formed by their concate-
nation verifies a generalized Perseval’s identity which ensures the
well-posedness of modal expansions [44].

In the following, a compact vectorial notation is introduced
to avoid the use of multiple summation symbols: for any in-
dexed quantity (f;);>; we note f the column-vector such that:
tf=(fo fi f» ..., where {() designates the vector transpose.
For a doubly indexed quantity (fij)ij=1, we note f the matrix whose

coefficients are the f;. Conversely, (f)n is the nth component of the
vector f. Similarly to Section 2.1, the pressure modal expansion is
sought under the form p(X, ®) = Y, Pn(w)@Pn(X), that is, using the
vectorial notation (X, w) =y (w)¢(X). The analytical derivation
of the modal amplitudes P, (w) is rather long and its details are
not necessary to understand the remaining of the paper; it is thus
not included here but made available in Supplemental Material B.
As an outcome of this analytical derivation, the modal amplitudes
Pn(w) are found to be solutions of the following equation:

~ Mg
(@ — jooo wﬁ)(y“("”) = 3" pocr (%o))i (%)
j=1

jw

Ms
- Z PoCE Vs (Xo;) @™ (Xoj)

j=1

~(v - HH$,0(w) (10)

where:

éi (Xoj) = ASy; (éﬁlé(foj))n, Vs (%oj) = ASOJ»(Q”M(%]-))H,
an = (é_lﬁ)n
(11)

As previously the surface S; has been decomposed into Ms plane
surface elements ASg; located at Xg;. In Eq. (11), A = {'¢, ¢) is the
matrix whose coefficients are Amp = (¢m. ¢n). This matrix is the
Gram matrix associated to the over-complete frame (¢n),>1: it re-
duces to a diagonal matrix in the case of an orthogonal basis. The
volume source h(X, w) is expressed according to Eq. (3), and #; is
the column vector containing all the projections of the flame shape
#;(X) onto the elements of the over-complete frame (¢n(X))n>1.
In Eq. (10), ﬁsQf (%p;) is the velocity forcing imposed onto 2; by
the adjacent subsystems €; at the connection points Xp;, while
@Qi (%)) = —p% (Xpj)/(pojw) is an acoustic potential forcing im-
posed onto 2; at these boundary points. One may note that the
second term in the right-hand side of Eq. (10) has no counterpart
in Eq. (6), contrary to the first and third terms.

As in Section 2.1 for Eq. (6), Eq. (10) can then be recast into
the time-domain by introducing I';(t) such that y,(t) = ' (t); this
leads to:

N
P t) =Y Ta(t)pn(®)
n=1

Ms

[a(t) = — al'n(t) = 2T (6) = Y pocd b (Roj)us” (Xoj. )
j=1

Ms
+ ) pocs Vst (Rop) g™ (Roj.t) + (v — DA, QD)
=

(12)

which is an extension of Eq. (7) when the expansion is performed
on the over-complete frame (¢,),~ instead of the orthogonal ba-
sis (Yn)n=1. This dynamical system governs the temporal evolu-
tion of the pressure field in the domain €2;, under normal veloc-
ity forcing u?j (Xps. t) and acoustic potential forcing <pQJ' (Xps, t) im-
posed by adjacent subsystems, as well as the volume forcing Q(t)
due to the presence of active flames within €;. In the case of
the orthogonal modal basis (Yn),~1 used in the previous section,
the terms Vs (Xp;) vanish (since the eigenmodes satisfy rigid-
wall boundary conditions on S;), and we have the simple relations
Vit (%)) = ASoj¥(Xoj)/An and HE, = H™ /Ap.

Because of the use of the over-complete frame (¢;);-1, the
acoustic pressure and velocity are free to evolve independently on
the boundary S, which is the major improvement of the method
compared to classical formalism where the normal acoustic veloc-
ity U.7is is necessarily zero on the connection boundary S;.

The governing dynamical system of Eq. (12) is a projection
of the wave equation (Eq. (2)) onto the modal frame (¢n)n>o.
However, as this frame is over-complete such projection is ill-
conditioned, which constitutes one of the major pitfalls of the
proposed method. The first consequence is a numerical diffi-
culty to compute the inverse of the frame Gram matrix A~!. In
most cases presented in this paper, the condition number C(A) =
[|IA]| 1]A7!| increases with the size N of the expansion, up to
values ranging from 108 to 10'°. The inversion of this poorly
conditioned matrix is achieved thanks to the use of an ade-
quate numerical algorithm, based on extra-precision iterative re-
finement performed in floating-point quadruple precision. Errors
stemming from this inversion are systematically computed a pos-
teriori and verified to remain low. Note that since the modal ba-
sis size remains in practice limited (typically a few dozens el-
ements), the specific inversion procedure used to calculate A™'
does not noticeably increase the computational cost in compar-
ison to the classical rigid-wall modal expansion. Secondly, even
though A is accurately inverted, the frame over-completeness may
still result in poorly conditioned spurious components in Eq. (12).
However, the approach described above produces well-behaved ex-
pansions for the pressure, that is expansions where the terms
with the highest energy are physically meaningful while low en-
ergy terms represent spurious fluctuations. Thus, an energetic cri-
terion for the robust and automatic identification of these spu-
rious components was designed, as discussed in more details in
Appendix C.

3. State-space formalism for subsystems coupling

The dynamical system derived in Section 2.2 allows us to solve
for the acoustic pressure in each individual subdomain €2;. In order
to resolve the acoustic flow in the whole geometry, individual sub-
domains need to be connected together. An elegant formulation to
connect subdomains is to use a state-space approach. This method,
already used in [32-34,41], is adopted in this work but requires to
be adapted. Some implementation details are given below; further
developments relative to state-space representations can be found
in control theory textbooks [46].

For any physical system described by a set of coordinates X(t)
in a phase-space, we call linear state-space representation of this
system a set of equations under the form:

X(t)=AX(t)+BU(t)

(13)
Y(6) =CX(®) +D U(t)



where X(t) is the coordinates vector in the phase-space, also called
state vector, A is the dynamics matrix, B is the input matrix, U(t)
the input vector, Y(t) the output vector, C the output matrix, and D
is the action, or feedthrough matrix. The first equation of the state-
space representation governs the dynamical evolution of the state
vector under the forcing exertedby the input vector. The second
equation defines a way to compute any desired outputsfrom the
knowledge of the state vector and the forcing term. Note that the
output Y(t) depends on the state X(t), but the reverse is not true:
X(t) evolves independently of the selected output Y(t). The state-
space formalism, through the Redheffer star-product [47] (Supple-
mental Material C), provides a direct way to connect two systems
represented by their state-space realizations, by relating their re-
spective inputs and outputs. A simple example of this operation is
given in Section 4.

By considering the dynamical system of Eq. (12), it is straight-
forward to build a state-space representation for a subdomain
Q;. A convenient choice is to build the state-vector X()(t) from
the modal amplitudes [';(t) and their temporal primitives 'j(t).
The input vector U(t) contains the normal acoustic velocities
u? i (Xpj. t) and the acoustic potentials goQJ' (Xp;j, t) imposed by ad-
jacent subdomains ;. The heat release volume source Q(t) is also
included in the input vector. Beside, the computed output vector
YO(t) consists of the pressures p(Xp;,t) and the normal acoustic
velocities us(Xp;, t) at every point Xp; on the connection boundary
S¢- In addition, any quantity of interest that can be computed from
the modal amplitudes contained in the state-vector X()(t) may also
be added in the output vector YO(t). For conciseness, the detailed
expressions of the state-space matrices for a subdomain €2; are not
given here, but can be found in Appendix A.

After iteratively applying the Redheffer star-product to connect
together state-space representations of every subsystems, the full
state-space of the whole geometry is obtained as:

X'y =" X ) +B U/ (0) (14)

where U/(¢) is an external forcing that can be either a surface or a
volume source term. In the former case, coefficients in the exter-
nal input matrix Bf contains terms similar to the first 2Ms columns

B@ in Eq. (A1), while in the latter case it contains terms similar to

the last column of B in Eq. (A.1). Two approaches are then possi-
ble: (1) Eq. (14) can be integrated over time to obtain the temporal
evolution of the acoustic flow under the external forcing U/(t), or
(2) the complex eigenvalues and eigenvectors of the dynamics ma-
trix A can be solved for, yielding the global acoustic eigenfrequen-
cies and eigenmodes of the whole domain. If A,, = 2w oy + j27 f; is
the n™ complex eigenvalue of the matrix A/, then f, is the eigen-

frequency of the n'" acoustic mode of the whole geometry. In
the absence of acoustic losses, volume sources or complex bound-
ary impedances, o, is zero. Conversely, if the system comprises
acoustic sources, then 2w oy, is the growth-rate of the nth acoustic
mode of the whole geometry: o, > 0 (resp. o, <0) implies that the
mode is unstable (resp. stable). The mode shape can also be recon-
structed from the modal components contained in the eigenvector
v associated to the eigenvalue Aj.

4. Convergence properties

In this section both modal expansions presented in
Section 2 are implemented within the LOM state-space frame-
work introduced in Section 3, and used to study a canonical
case, namely a long quasi-one-dimensional tube comprising a
sharp cross-section change. The goal is to show the limits of the
rigid-wall modes decomposition and to prove the performances of
the over-complete frame approach in a case where both types of
modal expansions can be evaluated and compared to an analytical

solution. In the following, superscripts °B(resp. FR) refer to results
obtained with the use of the orthogonal basis (Y1), introduced
in Section 2.1 (resp. the over-complete frame (¢n),~1 introduced
in Section 2.2). Superscripts A designate analytical solutions used
for comparison.

In this example, the long duct with a sudden cross-section
change represented in Fig. 2 is considered. Both ends of the duct
are closed by rigid walls. It is decomposed into 3 subsystems, in-
cluding 2 long ducts (£2; and £2,) with constant cross-sections S;
and S,, and a third subsystem Qg of length Ls. enclosing the re-
gion in the neighborhood of the cross-section variation.

Since both tubes €2; and 2, are long (D1 « L, D; <L), only
plane longitudinal acoustic waves are considered here. The rigid-
wall orthogonal bases of both ducts are then:

(" 60), 0, = (05 (1)),

1

(082 6, = (c0 ("))

(15)

2

where superscript ((resp. (2)) refers to the modal basis in €
(resp. 2;), x; and x, are the longitudinal coordinates in the two
ducts (Fig. 2), and N; (resp. N,) is the number of modes used for
the pressure modal expansion in €2 (resp. £2,). Similarly the over-
complete frames introduced in Section 2.2 for both ducts are given

by:
M B nimx; ))
(¢n (Xl))n<N1 - (COS< Ly n<Ny/2

@2n+ Dmwx ))
cos| ——— 2
U < < 2L n<Ny /2
nmwx
(¢’§2)(x2))n<1v2 = (cos( L 2>)n<Nz/2

. @n+Dmx, ))
sin|[ ————~=
U ( ( 2L, n<Na/2

These orthogonal bases (Eq. (15)) and over-complete frames
(Eq. (16)) are consistent with rigid-wall conditions at both end of
the long duct (x; = 0 and x, = L,). However, the orthogonal bases
also impose zero velocity near the cross section change (at x; = L4
and x, = 0), while the over-complete frames retain an additional
degree of freedom such that both velocity and pressure are a pri-
ori undetermined and free to evolve independently near the cross-
section change. In the following, the same number N of eigen-
modes are used for modal expansions in both ducts (N; = N, = N).
Additionally, all comparisons between orthogonal basis and over-
complete frame expansions are carried out with the same total
numbers of modes N: in other words results from any orthogo-
nal basis containing an even number of vectors N are compared
to results from a frame composed of two subfamilies of size N/2.
Note also that, since only plane longitudinal waves are considered
here, the connection boundaries S.; and S., do not need to be dis-
cretized into several surface elements ASy;: therefore Mg =1 for
each subdomain 2; and €25, and Mg = 2 for Q..

Modal expansion is not performed for the subdomain Q. en-
closing the cross-section change as its exact geometry has only
very little effect on the global eigenmodes of the long duct: in-
stead, volume-averaged conservation equations are used to derive
a state-space representation of this subsystem. More details are
given in Appendix B. The Redheffer star-product (Supplemental
Material C) is then applied recursively to connect state-space rep-
resentations of subsystems €21, Qs and 2,. The state-space real-

(16)
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Fig. 2. A long duct comprising a sharp cross-section change. Hashed lines boundaries are rigid walls. The geometry is decomposed into 3 subsystems. Two of those are long
ducts (27 and ), of respective lengths Ly and L, cross-sections S; and S;, and equivalent diameters Dy and D,. The third subsystem Q. is a small domain (L, «L,, L)
located around the cross-section change. S.; and S, are connection surfaces between 2. and the two tubes.

ization of the full geometry is then obtained as in Eq. (14):

XD () A" B¢t 0 XD ()
— | x5 @) BEOCH A% peaocd | | x6o
dt X () iy Q&)ggc) =ZA(2“) X ()
Yo d
(17)

In this equation, matrices A", B, c® A® B®@ and
C?, are the state-space representations of subdomains Q; and
Q), as defined in Section 3 and Appendix A. Matrices A(O),
B®9 B9 9and C{* are used in the state-space representation
5} the suE(!lomain Qs and are given in Appendix B. The extra-
diagonal blocks of the matrix A represent coupling between the
two ducts ©; and Q5 and the subdomain Qs enclosing the sec-
tion change. In the present case, the matrices A) and A®) share
the same size 2N (see Eq. (A.1)), and from Eq. (B.1), A9 is a 3x 3
matrix. Thus, the dynamical system governing the pressure evolu-
tion in the whole geometry is of size 4N + 3. The corresponding
acoustic eigenfrequencies and eigenmodes are obtained by solving
for the eigenvalues and eigenvectors of A=f Resulting eigenfrequen-
cies are noted fOB(N) if the rigid-wall orthogonal basis is used,
and fFR(N) if the pressure is expanded onto the over-complete
frame of Section 2.2. The corresponding pressure mode shapes are
Y28 (x; N) and TR (x; N), and finally the velocity mode shapes are
Y% (x; N) and YEK (x; N).

In the following example the cross-section change is located at
1/3 of the duct length (L =L,/2 =L), and the cross-section ratio
is such that S; = 25,. Under the compactness assumption (Lsc <« L1,
L, ) the analytical frequency reads:

ncy

f":zf if n = 0 modulo 3,
or fA =191 €0 arctan((2 £ v3)'2) otherwise 18
" =T *7I ' (18)

For the first mode (n = 1), the analytical pressure and velocity
modal shapes write:

1 AX1q .
——cCcos|{ — ), In Q
e () e
TipX) = (19)
cos (22220 g
2L ’ 2
ﬁsin (%) in 2,
h,x) =] V7P (20)
_ 1 sin 2A(x; —2L) in Q
PoCo 2L ’ 2

where A = 2arctan((2 — +/3)/2). Note that for the first mode both
pressure and velocity are non-zero at the cross-section change
(X] =Lx; = 0).

In Fig. 3, the pressure and velocity mode shapes for the first
mode (n = 1) are displayed and compared to the analytical solu-
tions of Eqgs. (19) and (20).

The use of the rigid-wall eigenmodes expansions defined in
Eq. (15) provides numerical solutions for the pressure mode shape
that converge towards the analytical solution when the number N
of modes in the orthogonal basis increases (Fig. 3(a)-(c)). How-
ever, the closeup view on the region near the cross-section change
(Fig. 3(d)-(f)) shows a slight discrepancy in the pressure modal
shape. Fig. 3(g)-(l) support this observation by evidencing a strong
singularity in the velocity mode shape, which results in an er-
roneous representation of the velocity mode over a large region
of the domain. This singularity is the direct consequence of the
use of the rigid-wall eigenmodes expansion: the numerical veloc-
ity T?f‘ (x) is indeed zero at the cross-section change (because the
derivative of {/p in Eq. (15) is zero for x; = L and x; = 0), in con-
tradiction with the analytical solution T{‘,u (x) at this point (see
Eq. (20) for x; =L or x, =0). Most importantly, increasing the
number N of modes in the modal basis fails to suppress this sin-
gularity, but rather results in higher frequency oscillations around
the cross section area change. These spatial fluctuations suggest
a Gibbs-like phenomenon affecting the convergence of the veloc-
ity representation, typical of Fourier series expansions of irregular
functions. These oscillations on the velocity in the vicinity of the
duct contraction may be critical in thermoacoustics, since the ve-
locity is the input of the classical Flame Transfer Function used to
model flame-acoustic coupling.

On the contrary, as shown in Fig. 4, modal expansions onto the
over-complete frames of Eq. (16) accurately represent the analytical
solutions Tf. p(x) and ‘Y‘{u(x), even for a number of modes as low

as N =4, as the local absolute error does not exceed 3 x 10~ for
the pressure, and 5 x 10-6 for the velocity.

The relative error for the nt global eigenfrequency is defined
as (with similar definition for FR):

A _ OB
Eg.B(N) = If"}tig(ml

Figure 5 provides the convergence behavior for the global
eigenfrequencies of modes 1, 9, and 11. It appears that the method
based on orthogonal bases expansions present a relatively slow
convergence speed for eigenfrequencies f; and f;;. This poor con-
vergence is due to the Gibbs phenomenon affecting the numeri-
cal solution for the velocity mode Tﬁﬁ (x) in the vicinity of the
cross-section change. Mode 9 however, is accurately resolved even
for small values of N; this is because it naturally has a velocity
node at the cross-section change (Eq. (20)) and is therefore, by
chance, not subjected to the Gibbs phenomenon. In contrast, the
method relying on modal expansions onto over-complete frames

(21)
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Fig. 3. Pressure mode shape and velocity mode shape of the first mode (n = 1), for N =

' 0.6 0.

X [m]

0.6
X [m]

4,10, 100 vectors in the OB expansion. Computed solutions (gray dashed lines) are

compared to the analytical solutions of Eqs. (19) and (20) (thick dark lines). Closeup views (corresponding to the rectangles) of the pressure and the velocity mode shapes

are given on the second row ((d)-(f)) and the fourth row ((j)—(1)) respectively.

results in low relative errors, ranging between 10~7 and 108
for all modes 1, 9 and 11, even with small values of N. For in-
stance, only about 10 modes in each frames are necessary to
accurately capture the eigenfrequency fi;. The condition number
of the frame Gram matrix, which is an indicator of the expan-
sion over-completeness, is C(A) = 108 for N = 6. It then progres-
sively deteriorates and reaches 10'® at N =50, and saturates to
this value for large N. This deterioration of the frame conditioning
does not result into a degradation of the numerical results. How-
ever, it can be related to a saturation of the error, since increas-
ing the size of the frame beyond N = 20 does not result in smaller
errors.

Finally, it is worth emphasizing that Gibbs fringes have also
been reported in earlier studies employing orthogonal basis modal

expansions, for instance by Sayadi et al. [40]. However, the ori-
gin of these Gibbs oscillations was fundamentally different from
those observed in the present example: in previous works, this
phenomenon was caused by the presence of an infinitely thin re-
gion of fluctuating heat release located in the interior of the do-
main of interest. This assumption results in an exact solution for
the velocity field that is discontinuous at the flame location, and
that cannot be accurately represented by a classical Galerkin de-
composition. The over-complete frame expansion presented in this
work aims at suppressing Gibbs oscillations due to a misrepresen-
tation of the acoustic fields at the boundaries of the subdomains,
and does not have the ability to handle Gibbs fringes produced by
a discontinuity in the interior of the subdomains. Nonetheless, a
simple workaround to handle this latter case is to replace the in-
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Fig. 5. Comparison between the OB and the FR results in terms of frequency rel-
ative error (E?"B/FR), for global modes 1, 9 and 11, in function of the number N of
vectors used in the modal expansions. Dark lines are results obtained with rigid-
wall eigenmodes expansions (Eq. (15)), while gray lines are results obtained with
frames modal expansions (Eq. (16)).

finitely thin flame by a slightly thicker region of heat release: this
yields a solution for the velocity field that has a sharp yet contin-
uous spatial variation in the vicinity of the flame. Note also that
infinitely thin flame are interesting conceptually and from an ana-
lytical perspective; however, physical flames are always finite and
sometimes thick enough to produce non-compact effects on ther-
moacoustic instabilities [48].

5. Application to thermoacoustic instabilities in an annular
combustor

In order to demonstrate its ability to predict thermoacoustic in-
stabilities in complex geometries, the state-space LOM based on
generalized frame modal expansions (FR) is now applied to a more
advanced academic configuration comprising active flames in an
annular chamber. Results obtained with the classical orthogonal
rigid-wall basis (OB) are also provided and compared to those
computed with a 3D Finite Element (FE) solver called AVSP [5].
The geometry studied is displayed in Fig. 6(a), and the correspond-

ing low-order acoustic network is represented in Fig. 6(b). It com-
prises an annular plenum (denoted with the subscript p), an an-
nular chamber (subscript ¢), and four identical ducted burners
(subscript g) of length Lg where the active flames are located.
Rigid-wall boundary conditions are assumed at the plenum back-
plane and the chamber outlet plane.

The AVSP unstructured mesh consists of 3 x 10¢ tetrahedral
cells, while the acoustic network contains 14 subdomains (1
plenum Qp, 1 chamber 2, 4 burners Qp;, and 8 cross-section
changes SZSCI.), with the addition of 4 active flames. The flames
H; are located at the coordinate «Lp within each burner, and
are considered as planar volume source of thickness 8. Note that
the cross-section area Sp of the ducted burners is much smaller
than the area of the plenum exit plane and of the chamber back-
plane. This allows for the simplification of the plenum-burner and
burner-chamber junctions, by only considering discrete point-like
connections. In other words, the chamber (or the plenum) is con-
nected to the burner €25 through the subdomain s at a single
point, implying that Mg =4 for the chamber and the plenum (a
single discrete connection surface ASy; = Sp is used for each one of
the 4 burners). The subdomain Q2 is similar to the cross-section
change described in the previous section, as it essentially en-
forces continuity of pressure and acoustic flux between the burner
end and the backplane of the chamber (or the exit plane of the
plenum). This simplification also allows us to consider rigid-wall
boundary conditions at the chamber backplane and at the plenum
exit plane when defining the eigenmodes for these subdomains
(since the velocity should actually be non-zero only at 4 point-like
locations of infinitely small spatial extent). The Gibbs phenomenon
evidenced in the previous section is then not expected to appear
in the chamber and in the plenum, and it is therefore valid to
employ orthogonal rigid-wall bases in these two subdomains. On
the contrary, boundary conditions at both ends of the burners are
expected to differ from rigid-wall or open atmosphere, and it is
therefore necessary to employ over-complete frame expansions in
these subdomains in order to mitigate the Gibbs phenomenon that
may appear. Thus, the plenum is modeled as a 2D annular subdo-
main of coordinates (xp, 0p), whose orthogonal basis is:

V) (xp, 6p) = (cos (m;x,») cos(mbp), cos (nerPxp) sin(mQP)>
(22)
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Fig. 6. (a) The unstructured mesh used in the AVSP FE solver. (b) The low-order thermoacoustic network representing this system, which consists of an annular plenum €2p,
4 burners Qp,, an annular chamber Q2¢, and a set of 8 subdomains s, containing the cross-section changes. Thick dark lines represent rigid-wall boundary conditions. Gray
area (H;) are the active flames, and the crosses represent the reference points used in the definition of the flame response. The width of the plenum (resp. chamber) in the
radial direction is Wp (resp. Wc). All required numerical values for acoustic and flame parameters are indicated in the table.

Pressure in the chamber could be expanded onto an analogous
analytical modal basis. However, this one is deliberately assumed
analytically unknown, and a modal basis computed thanks to a
preliminary AVSP simulation of the isolated chamber (without the
burners and the plenum) is used instead. Note that it is not nec-
essary to perform an AVSP simulation for each LOM simulation:
it is indeed preferable to generate the chamber modal basis and
all related quantities (including the matrix A™') in a single pre-
liminary AVSP simulation, and to assemble the state-space realiza-
tion of this subdomain, which can then be employed in as many
LOM simulations as desired. In the present example, the use of a
numerically computed modal basis demonstrates the ability of the
present framework to combine in an acoustic network subdomains
of different types and thus to handle efficiently arbitrarily complex
systems.

In the following, the size of the modal bases in the chamber
and in the plenum is fixed to N = 12 modes. For cases where the
rigid-wall basis is used in the ducted burners, this one is the same
as in the previous section (Eq. (15)). If an over-complete frame is
used, it is given by:

(B) (x = (cos (nnx3>> (sin (nan>)
( n ( B))ngN Lg ,,gN/ZU Lg n<N/2

(23)

Note the difference with the over-complete frame of Eq. (16), as
the present one allows pressure and velocity to evolve indepen-
dently from one another at both ends of the duct.

Active flames are located within each burner, and the flame
shape #;(xg) is the rectangular function of thickness § centered
around xg = aLg. The flame response is modeled thanks to a clas-
sical Flame Transfer Function (FTF), relating the fluctuations of heat
release to the fluctuations of acoustic velocity at a reference point
located at xgef ) = BLg. The flame reference point is located in the
burners, near the plenum exit-plane (8 = 0.05). A simple constant-
delay FTF is assumed, such that in the frequency domain the fluc-
tuating heat release rate reads:

Q@) = Qe " <ﬁ("3 =l “”) (24)

u

where Q is the flame power, T is the flame delay, and u is the

mean flow speed through the injector. A state-space realization of

the time-delay e~/®7 is generated thanks to a Multi-Pole expan-

sion:

piot %A% . —Za,fja) ;
- o+ 2 jo — wg,

(25)

where each term in the sum is called a Pole Base Function (PBF).
The coefficients gy, ¢y, wq, are determined thanks to a recursive fit-
ting algorithm recently proposed by Douasbin et al. [49]. By mak-
ing use of the inverse Fourier transform, it is then straightforward
to convert this frequency domain transfer function into a time-
domain state-space realization of size 2Mpgr x 2Mpgr, Whose ex-
pression is provided in Appendix D. This procedure to generate a
state-space realization of a FTF was already used by Ghirardo et al.
[50]. For the flame-delay considered here, 12 PBFs were observed
to be sufficient to accurately fit the term e~/ yielding 24 DoF
for each flame in the state-space representation of the whole sys-
tem. Finally, the 18 state-space representations of the 14 acoustic
subdomains and 4 active flames are connected together.

As mentioned earlier, the Gibbs phenomenon is expected to oc-
cur at both ends of the ducted burners. A particular attention is
therefore paid to the type of modal expansion carried out in these
subdomains. A total of 4 LOM simulations are performed, and re-
sults are compared to the ones computed with the FE solver AVSP,
which are used as reference. Results for 10 of the first modes
of the combustor are summarized in Table 1. First of all, FR and
OB expansions with N =10 modes are both compared to AVSP.
Then these computations are repeated with a number of modes
increased to N =30. Mode 1 is the combustor Helmholtz mode,
and its frequency and growth rate were observed to be very sen-
sitive to the addition of a correction length to the ducted burners.
As the determination of the optimal correction length is out of the
scope of this paper, differences regarding the Helmholtz mode are
not further discussed. The FR expansion with N =10 appears to
successfully resolve the frequencies and growth rates of the modes
considered, with relative errors compared to AVSP below 10%. On
the contrary, the OB expansion onto N = 10 modes largely fails at
resolving the growth rates of all but one of the considered modes,
with relative errors up to 348% (Mode 5). Mode 3 is the first unsta-
ble azimuthal mode of the combustor, and is therefore of particu-
lar interest: FR expansion yields an error of only 6% for the growth
rate of this mode, whereas OB expansion produces an error of 45%.
When the size of the expansion basis/frame is increased, results
are globally improved for both FR and OB cases. Yet, even with
N = 30 the OB approach still fails at achieving an acceptable accu-
racy for Modes 3, 5, and 7. The error on the growth rate of the first
unstable azimuthal mode is of 0.3% in the FR case, while it is still
overestimated by 18% in the OB case. Modes 9 and 10 are mixed
modes, similar to those described by Evesque and Polifke[37]. In
mode 9 the plenum first longitudinal mode prevails, while mode
10 is the mixed 15'-azimuthal-15t-longitudinal plenum mode, cou-
pled with the 5% azimuthal chamber mode. Previous comments
also applies to these mixed modes: the over-complete frame ex-



Table 1

Frequencies (f ) and growth rates ( o) for 10 of the first thermoacoustic eigenmodes of the annular combustor considered. FE
(AVSP) results serve as reference. Low-order simulations are performed with FR/OB expansions, first onto N = 10 modes, and then
onto N = 30 modes. Gray cells indicate frequencies/growth rates for which the relative error in comparison to AVSP is greater
than 10% The corresponding values of the relative errors are written between parentheses.

Mode | FE (AVSP) | FR (N =10) OB (N = 10) FR (N = 30) OB (N = 30)
f(Hz) o (s')|f(Hz) o (s) | f(Hz) o (s1) f(Hz) o (s') |f(Hz) o (s1)
1 375 6.05 | 380 637 | 370 104 (72%) | 38.0 = 7.0 (16%) | 40.3 | 7.7 (27%)
2 56.5 —108 | 564 —111| 573 = =19 (76%) | 56.5 -1.1 56.4 -1.07
3 919 1425 | 917 151 | 86.1 7.9 (46%) 90.6 14.3 91.5  16.8 (18%)
4 | 1116 00 | 1116 00 | 1116 0.0 111.6 0.0 1116 0.0
5 1169 137 | 1170 139 | 1156 = —34.0 (348%) | 117.5 12.7 116.3 = 15.1 (10%)
6 | 1676 037 | 167.6 037 | 167.3 = 047 (27%) | 167.6 0.37 167.6 0.35
7 | 2712 144 | 2714 15 | 2707 2.95 (105%) | 271.4 1.5 271.8 | 1.8 (25%)
8 | 3284 279 | 3302 274 | 3330  0.09 (100%) | 330.0 26.8 329.5 29.8
9 4549 0.02 | 454.8 0.02 | 454.7 = 0.04 (100%) | 454.9 0.02 1549 = 0.03 (50%)
10 | 4583 0.06 | 458.2 0.065 | 4580 ~ 0.09 (50%) | 458.2  0.065 | 458.2 0.064
Pressure Velocity
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N
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Fig. 7. Pressure and velocity mode shapes for Mode 3, plotted over a line extending from the bottom of the plenum to the end of the chamber and passing through a burner.
Thick dark lines are results of AVSP computations. Gray lines with crosses are results of the LOM computations with N = 30 modes. Vertical dashed lines are the separation
between the subdomains in the LOM network. Gray area represent the location of the active flames. First column: (a) pressure mode shape in the FR case; (c) pressure mode
shape in the OB case. Second column: (b) velocity mode shape in the FR case, with a closeup view around the location of the flame reference point, which is represented
by a star; (d) velocity mode shape in the OB case, with the same closeup view.



pansion of size N = 10 yields an excellent agreement with the FE
solver, and outperforms even larger orthogonal basis expansions.
Note that in the FR case, the condition number of the frame Gram
matrix used in the 4 ducted burners is of order 108 for N = 10,
and increases to 10'® for N = 30. It was verified that increasing the
frame size does not further deteriorates its conditioning: it instead
saturates at 10’8 even for large N.

The relatively poor accuracy of the OB expansion LOM is ex-
plained by a closer examination of the modes shapes in the burn-
ers. Figure 7 shows the shape of the first unstable azimuthal
mode of the combustor (Mode 3), plotted over a line starting from
the bottom of the plenum, passing through a burner, and ending
at the chamber outlet plane. With N = 30, both FR and OB pres-
sure mode shapes (Fig. 7(a) and (c)) are relatively close to the AVSP
computation, except for 3D effects in the neighborhood of the sub-
domains connections that cannot be captured. On the contrary,
Fig. 7(d) shows that the OB expansion produces significant Gibbs
oscillations of the velocity at both ends of the burner. Note that
the Gibbs phenomenon is only present at the ends of the burn-
ers, and does not affect the velocity field within the chamber and
the plenum. Conversely, Fig. 7(b) shows that the frame expansion
successfully mitigates this Gibbs phenomenon.

The conjugation of these spurious oscillations with the pres-
ence of active flames responding to velocity fluctuations explains
the large discrepancies observed in the growth rates. Indeed, the
closeup view displayed in Fig. 7(d) reveals that the flame reference
point (represented by a star) lies in a region where the velocity is
strongly affected by Gibbs oscillations. In contrast, the FR expan-
sion (Fig. 7(b)) yields a reference velocity close to the AVSP refer-
ence velocity. As heat release fluctuations are directly proportional
to the reference velocity (Eq. (24)), any misprediction of the ve-
locity in the burner results in a potentially erroneous growth rate.
Thus, should the point of reference lies in a region where numer-
ical oscillations are present, the computed thermoacoustic modes
may strongly depend on unphysical and uncontrolled details such
as the relative position of the point of reference and the Gibbs os-
cillations. Consequently, the orthogonal rigid-wall basis expansion
results in a LOM that is highly sensitive to the location of the flame
reference point, which is a highly undesirable feature of a numeri-
cal model.

This example demonstrates the modularity of the proposed
LOM, which can combine in a same thermoacoustic network active
flames, one-dimensional subdomains (the burners), 2D subdomains
(the plenum), and complex 3D subdomains of arbitrary shape (the
chamber) for which the modal basis is numerically computed. Ob-
viously, the approach is not limited to azimuthal eigenmodes, but
is also able to capture any other form of thermoacoustic eigen-
modes. It is also worth comparing the cost associated to the over-
complete frame expansion LOM to existing Low-Order Models. As
shown above, N = 10 modes were sufficient to achieve a satisfac-
tory resolution (with error below 10%) of the first 20 modes of
the combustors (not all shown in Table 1). The state-space of the
whole system comprises 248 DoF: 2 x 24 for the plenum and the
chamber, 4 x 20 for the straight ducts, 8 x 3 for the cross-section
changes, and 4 x 24 for the active flames. After the preliminary
computation of the chamber modal basis with AVSP (160 CPU sec-
onds for 12 modes), the LOM computation of all the eigenmodes
was performed in a few CPU seconds only. This is comparable to
the 300 DoF necessary to treat a similar annular configuration in
the work of Schuermans and co-workers [33,35]. However, unlike
this latter method, the present example did not assume acousti-
cally compact injectors represented as lumped elements, and the
acoustic field is fully resolved within the burners. LOMs relying on
direct discretization of the flow domain, although more straight-
forward to put into application, appears to result in more DoF and
higher cost: Emmert et al. [41] required 10° DoF and 38 CPUs to

compute 5 eigenmodes of a 12-injectors annular geometry without
any active flames. Finally, in contrast to mixed-method LOMs based
on modal expansions alongside Riemann invariants A*/A~[14], the
proposed Low-Order Model (Eq. (14)) can be directly integrated in
time for temporal simulations of thermoacoustic acoustic instabil-
ities, whereas the time-domain translation of Riemann invariants
appears to be somehow constraining [51].

6. Conclusions

This work addressed a known issue in LOMs for thermoacous-
tics, namely the misrepresentation of the acoustic field arising
from modal expansions onto rigid-wall eigenmodes bases, already
reported by numerous earlier studies [24]. Under the assump-
tion of zero Mach number flow, a reformulation of the classical
modal expansion making use of over-complete frames of eigen-
modes was proposed for the first time. Two major observations
were drawn from the analysis of a simple one-dimensional acous-
tic problem: (1) the modal expansion singularity was clearly iden-
tified as a Gibbs-like phenomenon affecting the acoustic veloc-
ity, resulting in slow convergence speeds and erroneous velocity
values near junctions between subdomains; (2) the over-complete
frame expansion was shown to successfully suppress the Gibbs-
like phenomenon and to yield significantly improved convergence
speeds. The only pitfall stemming from the frame expansion, lies
in its over-completeness that may entail ill-conditioned features,
which may produce spurious, non-physical dynamics of the pres-
sure evolution. Thus, a specific inversion procedure is used to com-
pute A~!, the inverse of the frame Gram matrix. This approach
ensures that these spurious components stay negligible in com-
parison to physically meaningful components. More rigorously, in
Appendix C it is demonstrated that spurious eigenmodes arising
from the frame over-completeness have low energy, and a criterion
is derived to systematically identify them.

In a second example, the generalized modal expansion LOM
was used to predict thermoacoustic instabilities in an annular
combustor. It was shown to yield results close to a finite element
solver, whereas the rigid-wall modal expansions failed at accu-
rately predicting the linear growth rates. This second example also
demonstrates the modularity of the proposed framework, through
its ability to combine in a same acoustic network highly heteroge-
neous classes of elements such as active flames, one-dimensional
ducts, or complex 3D cavities. From a practical point of view,
the implementation of the proposed method only requires min-
imal changes to existing algorithms based on rigid-wall expan-
sions. Namely, apart from the inversion of the Gram matrix and
the identification of spurious eigenmodes, the input/output rela-
tions of each subdomain composing the acoustic network should
be adapted to include both pressure and velocity at the bound-
aries. Thus, this novel method is expected to be potentially useful
in the field of thermoacoutics.
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Appendix A. State-space realization of an acoustic subdomain

The state-space representation for a subdomain €2; belonging to
an acoustic network is given in this section. The dynamical system
of Eq. (12) governing the evolution of the acoustic pressure in the



subdomain €2; yields the following state-space realization:
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In this equation, the state vector X()(t) is of size 2N, where Nis
the number of eigenmodes used in the modal expansion. The dy-
namics matrix A is block-diagonal of size 2N x 2N. The first 2Ms

columns of the input matrix B and 2Ms elements of the input

vector UY)(t) correspond to surface source terms imposed by adja-
cent subdomains €2;. The last column of E(’) and the last element of

UW(t) correspond to the volumetric heat release forcing. For clar-
ity reason, a single source of heat release is considered here, but
the input can easily be extended to any number of independent
flames.

In the state-space framework that is presented here, any sub-
system £€2; outputs both the normal velocity us(Xp;) = t(Xp;).s and
the pressure p(Xy;) at each one of the Ms connection surface ele-
ments ASy. In addition, it is also possible to incorporate in the
output vector (not detailed here) pressure and velocity at any point
within €;, such that those can then be passed as reference pres-
sure/velocity to an active flame. Thus, the following equation is
used to compute the output vector for the subdomain €2;:
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Note that the feedthrough matrix D is zero. At the end, the
state-space representation of the acoustics in the subdomain €; is
defined by Eqgs. (A.1) and (A.2). It is a 2Mg-input 2Ms-output sys-

tem (in the absence of heat release source terms), whose dynamics
are described by a 2N x 2N matrix.

Appendix B. State-space representation for the domain g
enclosing the cross-section change

In this section, the state-space representation for the acousti-
cally compact subdomain Qg enclosing the cross-section change
between the two ducts is given. It is obtained by volume-averaging
the linearized Euler equations in g, neglecting any acoustic con-
version to the vortical mode. The interested reader may consult
Supplemental Material D for further details regarding the deriva-
tion. The final state-space realization of the subdomain Qg is:
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The state-vector X(¢)(t) contains the volume-averaged velocity
u(t), pressure p(t), and acoustic potential @(t) = — [p(t")dt'/po.
The first two components of the input vector USS)(t) are imposed
by the duct €21, while the last two are imposed by the duct 2,. We
then note B (resp. B™) the matrix consisting of the first two

columns (resp. last two columns) of B®), In Eq. (B.1), the first two
lines essentially impose acoustic momentum and acoustic volume
flux conservation. For low frequencies, these conservation relations
reduce to the classical quasi-static jump relations p$1 = p$2 and
S1 u?l = —Szu?Z. The third equation of the dynamical system is a
time-integrator that facilitates the computation of the output vec-
tor, as the two ducts 2; and €2, require normal acoustic velocity
and acoustic potential as inputs. Outputs for the state-space rep-
resentation of Qg are computed thanks to first-order approxima-
tions:
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In Eq. (B.2), the feedthrough matrix D is zero. The first two lines
are outputs that are to be imposed to the first duct £, at the con-
nection boundary S.q, while the last two lines are outputs that are
to be imposed to the second duct 2, at the connection boundary
Sco- We then note C'*°) (resp. () the matrix formed with the first

two rows (resp. last two rows) of C(s),
Appendix C. Spurious eigenmodes identification

As mentioned in Section 2.2, the over-completeness of the
frame expansion may result in poorly conditioned spurious com-
ponents of the governing dynamical system (Eq. (12)). It is there-
fore primordial to distinguish these spurious components from
the physically meaningful ones. The interested reader is reported
to [52] for further discussion regarding spurious components
identification. The simplest method to achieve it is the brute
force approach: after obtaining the eigenmodes of the full-system



with an expansion of size N, the computation is repeated with
a different value of N. Eigenmodes that are very sensitive to
the number of DoF are then considered as spurious. However,
the over-complete frame expansion presented in Section 2.2 was
observed to produce only low energy spurious components.
Therefore, a more efficient identification procedure based on
an energetic criterion was implemented. This one is described
below.

Let us consider an eigenvector v="!(... a; by ... ay by ...)
of the whole system dynamics matrix A’ (see Eq. (14) and
Appendix A), where the coefficients ay, ..., ay are the state vari-
ables involved in the velocity mode shape in the subdomain €;
(they correspond to the time-dependent modal amplitudes I'j, (t)),
and the coefficients by, ..., by are the state variables associated to
the pressure mode shape in the subdomain €2; (they correspond
to the time-dependent modal amplitudes I",(t)). Then, the eigen-
mode pressure in the subdomain €; is reconstructed as Y (x) =
> nbndn(X) ='b ¢(X). The L-2 norm of the full system’s eigenmode
Yp(X), or equivalently its energy, is given by:

5113 = (Tp (), Yp(X)) = ‘b (¢(X).'¢(X)) b="bADb  (C1)

where A is the Gram matrix of the over-complete frame (¢n(X))
for the subdomain €2;. Therefore, an eigenmode Y, of the whole
system has a small energy, say lower than a threshold ¢, if and
only if:

1 th

ATmep 2Ab<e

(C.2)

>

where the left-hand side has been non-dimensionalized by the eu-
clidean norm of the Gram matrix |A|, and the euclidean norm of
the eigenvector |b|2. Eq. (C.2) shows that low energy eigenmodes
of the full system are directly related to the poor conditioning of
the Gram matrix A. Indeed, if an orthogonal basis is used for the
modal expansion, A is well-conditioned (it is in fact diagonal), and
no eigenmodes can possibly satisfy Eq. (C.2): there is therefore no
spurious eigenmodes in this case. On the contrary, if an overcom-
plete frame is used, A becomes ill-conditioned, and vectors b lying
in singular regions of the spectrum of the quadratic form associ-
ated to A can exist. Those satisfy the relation of Eq. (C.2) and are
then considered as spurious eigenmodes. The threshold was empir-
ically fixed to & = 10~4. However, the procedure showed little sen-
sitivity to this parameter: changing the value of & to 10~ or 10-3
did not affect the modes identified as spurious. This methodology
was validated on a number of cases with available reference solu-
tions. It is however not formally proved that it is able to differenti-
ate spurious modes for any given system; if it happens to misiden-
tify those for a particular case, the brute force method should be
preferred.

Appendix D. State-space representation for an active flame
approximated by a Multi-Pole expansion

For a given active flame, fluctuations of heat release rate Q(t)
are governed by the FTF of Eq. (24), and the Multi-Pole expansion
approximation of the time-delay e~/®7(Eq. (25)). Recasting each
Pole Base Function into the time-domain leads to the state-space
realization of the flame:
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In Eq. (D.1), the flame input vector UFTF(¢) has a single entry,
the reference fluctuating speed u"e) (t) = u(xz = BLg. t). Note that
other formulations including a pressure value as reference are also
possible. The state-vector X(TF)(t) contains abstract variables that
serve as intermediates in the calculation of heat release rate. The
state variable Z,(t) can be interpreted as the proportion of normal-
ized heat release fluctuating at frequencies contained in the band
of width 2¢; centered around wg,. This state-space realization is
completed by the following output equation:

Zy(t)

Zy(¢)
(Q®)=(0 -2Qa; ... 0 -2Qay, ) :
YT (1) C(FTF) Z_Mpgp (t)
N - ZMPBF (t)

(D.2)

The flame output vector YFTF)(t) only comprises the heat re-
lease rate Q(t), which is reconstructed from a linear combination
of the individual components Z;(t) contained in the state-vector.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.combustflame.2019.05.
010.
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