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This work proposes an improvement to existing methods based on modal expansions used for the predic- 

tion of thermoacoustic instabilities in zero Mach number flow conditions. Whereas the orthogonal basis

made of the acoustic eigenmodes of the domain bounded by rigid walls is classically used, an alternative

method based on a modal expansion onto an over-complete set of acoustic eigenmodes is proposed. This

allows avoiding the misrepresentation of the acoustic velocity field often observed near non rigid-wall

boundaries. A Low Order Model network utilizing a state-space framework is then built upon this novel

type of modal expansion. Several test cases, going from non reacting ducts to a complex geometry with

combustion, are studied to assess the potential of the approach. The methodology not only successfully

mitigates the misrepresentation in the acoustic field in the presence of non-rigid-wall boundaries, but it

also drastically improves the convergence speed. The modularity of the method and its ability to handle

complex geometries are illustrated by considering a configuration featuring an annular chamber, an annu- 

lar plenum, as well as multiple burners. This novel technique is expected to bring worthy improvements

to existing Low Order Models using modal expansions for the prediction of combustion instabilities.
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1. Introduction

Since their early study by Rayleigh [1] , thermoacoustic insta-

bilities have been a subject of primary scientific interest as well

as a major concern for a number of industrial projects. Experi-

ments with increasingly complex setups and advanced diagnostics

were carried out over the years to study this intricate interplay

between flame dynamics and acoustic waves. Progresses in exper-

imental works were accompanied by considerable efforts in both

numerical and theoretical study of thermoacoustic instabilities. Re-

garding the former, Large Eddy Simulation (LES) was proved as the

most accurate tool for the analysis of instabilities in combustors

featuring complex geometries [2] . Yet, the high cost of these full

scale simulations led to a growing popularity of alternative and

cheaper numerical methods relying on a separation of the acoustic

flow and the complex flame dynamics. The acoustic field is solu-

tion of the Helmholtz equation in the frequency domain, while the

flame response to acoustic perturbations is often embedded into a
∗ Corresponding author.
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lame Transfer Function (FTF) [3] , or a Flame Describing Function

FDF) representing nonlinear effects [4] . 

One of the key aspects for the resolution of thermoacoustic

igenmodes is the ability of the method to accurately account

or complex geometries that are encountered in industrial com-

ustors. One of the most straightforward approaches is the direct

iscretization of the Helmholtz equation that is then solved thanks

o a Finite Element Method (FEM) solver. State-of-the-art FEM

elmholtz solvers are able to solve for thermaoustic eigenmodes

n complex geometries comprising active flames and dissipative

ffects [5,6] , and can also incorporate the FDF formalism to capture

onlinear limit-cycle behaviors [7,8] . However, direct discretization

EM Helmholtz solvers often result in a large number of Degrees

f Freedom (DoF), synonym of a considerable computational cost,

nd only permit little modularity, as any change in the geomet-

ical parameters requires a new geometry and mesh generation.

n order to circumvent these shortcomings, numerous research

roups have opted for the development of Low Order Models

LOMs) enabling even cheaper resolution of thermoacoustic in-

tabilities. Low O rder M odeling resides in two basic ideas: (1)

he number of DoF should be reduced as much as possible in

rder to permit fast computations, and (2) the model should be

exible and highly modular, in the sense that it should allow for



Fig. 1. Schematic representation of an acoustic network. Hashed lines show rigid walls. Gray dotted lines are opening to the atmosphere. The geometry is split into distinct

subsystems, that are connected together. The subsystem ( i ) is defined by its volume �i , its rigid wall boundary S wi , its boundary opened to the atmosphere S ai , and its

boundaries S ci that are to be connected to other subsystems in the acoustic network. The interface S ci is split into several surface elements �S 0 j located at the connection

points � x 0 j . It also contains a volume heat source H i .
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he straightforward modification of most geometrical or physical

arameters. The latter point is often achieved thanks to a divide

nd conquer strategy, where complex geometries are decomposed

nto an acoustic network of simpler subdomains (see Fig. 1 ). Fast

nd modular LOMs have been promisingly applied to intensive

asks demanding a large number of repeated resolutions, such as

onte Carlo Uncertainty Quantification [9,10] , or passive control

hrough adjoint geometrical optimization [11] . 

Existing thermoacoustic LOMs can be classified into four main

ategories, according to the method employed to describe the

coustic field. 

1. The first class of LOM is a wave-based 1D network approach,

where the acoustic pressure and velocity are written in func-

tion of the Riemann invariants A 

+ and A 

−. This method was

first successfully used in the LOTAN tool [12] , designed to re-

solve in the frequency domain linearly unstable thermoacoustic

modes in simple configurations. More recently and in a sim-

ilar fashion, the open-source LOM solver Oscilos [13] devel-

oped at Imperial College, London, was used to perform for in-

stance time-domain simulations of thermoacoustic limit cycles

in longitudinal combustors [14,15] comparable to the Rijke tube

[16] . Wave-based low order modeling was also generalized to

more complex cases, including azimuthal modes in configura-

tions comprising an annular combustion chamber linked to an

annular plenum through multiple burners. This procedure al-

lowed Bauerheim et al. to conduct a series of studies based on

a family of analytical solutions for azimuthal modes in annu-

lar combustors [9,17,18] . Even though wave-based LOMs are the

most adequate to deal with networks of longitudinal elements

where acoustic waves can be assumed as planar, they also suf-

fer strict limitations: they are indeed unable to capture non-

planar modes in complex geometries. 

2. The second class of LOM relies on modal (or Galerkin) ex-

pansions, to express the acoustic pressure field as a combina-

tion of known acoustic modes. Modal expansion was first in-

troduced and formalized in an acoustic context by Morse and

Ingard in their influential book Theoretical Acoustics [19] dated

from 1968. In the field of thermoacoustics, Zinn et al. [20] and

Culick [21–24] were among the first to use it to study com-

bustion instabilities in liquid fuel rocket engines. Similarly to

the wave-based approach, multiple studies utilizing modal ex-

pansions are dealing with the Rijke tube: for example by Ju-
niper [25] , Waugh and Juniper [26] , and Balasubramanian and

Sujith [27] . Simplified annular configurations were also ex-

amined thanks to pressure modal expansion: Noiray and co-

workers [28–30] and Ghirardo et al. [31] conducted a se-

ries of theoretical studies in such geometries. More complex

modal expansion-based networks were developed for multi-

burners chamber-plenum geometries, by Stow and Dowling

[32] , Schuermans and co-workers [33,34] , and Belluci et al. [35] .

Their strategy is to perform modal expansions for the pres-

sure in the chamber/plenum and to assume acoustically com-

pact burners that can be lumped and represented by simple

transfer matrices. Unlike wave-based low-order modeling, this

method is not limited to planar acoustic waves, and can re-

solve both azimuthal and longitudinal chamber modes. Even

though their approach does not rely on an acoustic network

decomposition, Bethke et al. [36] showed that arbitrarily com-

plex geometries can be incorporated in a thermoacoustic LOM

by expanding the pressure onto a set of basis functions com-

puted in a preliminary step thanks to a FEM Helmholtz solver.

Although they appear more general than wave-based LOMs,

modal expansion-based LOMs are also subjected to strict lim-

itations, which mainly resides in the choice of the modal ba-

sis employed to expand the acoustic pressure. This point is the

main object of this paper, and is discussed in more details later.

3. The third class of thermoacoustic LOM is a mixed method, that

combines both Riemann invariants and modal expansions. The

former are used to account for longitudinal propagation, while

the latter are used to account for multi-dimensional geome-

tries. This mixed method was employed by Evesque and Polifke

[37] to model azimuthal modes in multi-burners annular cham-

ber/plenum configurations. In more recent works [38,39] the

mixed strategy was further developed to investigate nonlinear

spinning/standing limit cycles in the MICCA annular combustor.

More precisely, in [38] the planar acoustic field in the ducted

burners is represented by Riemann invariants, while it is rep-

resented through modal expansions in the chamber and in the

plenum. 

4. Finally, the last class of LOMs consists in those based on a di-

rect spatial discretization. For example, Sayadi et al. [40] made

use of a finite difference scheme to build a dynamical sys-

tem representation of a one-dimensional thermoacoustic sys-

tem comprising a volumetric heat source localized within the

domain. A more generic direct discretization LOM is the taX
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Low-Order Model developed at Technical University of Munich

[41] . Its modularity lies in the ability to combine in a same

thermoacoustic network one-dimensional elements discretized

by finite difference, geometrically complex elements discretized

through FEM, and other types of elements such as FTFs and

scattering matrices. Since this LOM is built upon direct dis-

cretization of linearized partial differential equations, it can also

potentially incorporate richer physics, including mean flow ef-

fects or acoustic–vortex interactions. However, the price to pay

for this high modularity is a large number of DoF: for instance,

in the taX LOM, about O (10 5 ) DoF were needed to obtain

acoustic eigenmodes of an annular combustor comprising 12

ducted injectors (but no active flame). 

Interestingly, most modal expansion LOMs used the same type

of eigenmodes basis, namely the basis composed of the rigid-wall

cavity modes , or in other words acoustic eigenmodes satisfying ho-

mogeneous Neumann boundary conditions ( i.e. zero normal veloc-

ity) over the entire boundaries of the domain (and without internal

volume sources). This paper focuses on the nature of the acoustic

eigenmodes basis used to decompose the pressure, and the conver-

gence properties resulting from this expansion. Although the rigid-

wall modal basis presents the huge advantage of being orthogonal,

many actual systems obviously comprise frontiers with far more

complex boundary conditions than just a homogeneous Neumann

condition (for example an inlet or an outlet where the impedance

has a finite value). The use of such basis then appears paradoxical:

how is it possible that a solution expressed as a rigid-wall modes se-

ries converges towards a solution satisfying a non rigid-wall boundary

condition? This singularity in the pressure modal expansion was al-

ready noticed by Morse and Ingard [19] , but they did not study

its impact on the convergence of the whole method. Later, Culick

[24] provided more explanations about this singularity: the modal

expansion does not converge uniformly over the domain, but only

in the less restrictive sense of the Hilbert norm ( L 2 norm); as a

result, even though each individual term of the expansion does

not satisfy the appropriate boundary condition, the infinite sum of

these terms may satisfy it. In other words, “the limit of the sum

is not equal to the sum of the limit” in the neighborhood of the

boundary. An interesting examination regarding this singularity is

provided in a recent work by Ghirardo et al. [42] , where a projec-

tion onto a mode satisfying a specific non rigid-wall inlet bound-

ary condition was discussed. The convergence issue arising from

rigid-wall modal expansion is even more problematic in the case of

acoustic LOMs where the geometry is decomposed into a network

of subsystems that need to be coupled together at their boundaries

(see Fig. 1 ). For each individual subdomain, these coupling bound-

aries are not rigid-wall but each term of the basis corresponds to

a rigid-wall: the convergence singularity may arise at each one of

the coupling interfaces. Although Culick [24] proposed an explana-

tion to this singularity based on a local justification, only very few

studies deal with global effects, such as for example convergence

speed of the eigenfrequencies. 

The main contribution of this work is a reformulation of the

modal expansion method under the zero Mach number flow as-

sumption, allowing for decompositions of the pressure onto an

over-complete family of modes , gathering rigid-wall ( u ′ = 0 ) and

pressure release ( p ′ = 0 ) modes, instead of the classical rigid-wall

modes basis. This paper is organized as follows: in Section 2 , the

original mathematical derivation of pressure expansion onto the

rigid-wall modal basis is recalled. The problem is then reformu-

lated using expansions onto an over-complete set of modes, also

called a frame . In this frame, non rigid-wall conditions are used

for certain elements. Section 3 briefly describes the state-space

formalism proposed in [33,34] to couple subsystems together and

build a modular acoustic LOM network. This state-space formal-
sm is then extended to account for the frame of non-orthogonal

odes. In Section 4 , the convergence properties are evaluated and

ompared for both types of modal expansions on a canonical case

hich consists of a long duct with a sharp cross-section change.

inally in Section 5 , the modularity of the proposed LOM and

ts ability to deal with cases involving combustion instabilities in

omplex configurations is demonstrated by considering an annular

hamber/plenum configuration featuring multiple burners. 

. Acoustic pressure modal expansion

In acoustic LOM networks for complex configurations, the sys-

em is split into smaller geometric subsystems. Let us consider a

ubsystem (i) as in Fig. 1 , defined as a bounded domain �i delim-

ted by ∂�i = S wi ∪ S ai ∪ S ci . The primary variable of interest is the

coustic pressure p( � x , t) expressed in the physical space, but its

requency-domain counterpart ˆ p ( � x , ω) is often introduced to ease

he analysis, especially when dealing with linear acoustics. These

wo quantities are related by the (inverse) Fourier transform as fol-

ows: 

ˆ p ( � x , ω) = 

∫ + ∞ 

−∞ 

e − jωt p( � x , t ) dt , p( � x , t ) = 

∫ + ∞ 

−∞ 

e jωt ˆ p ( � x , ω) dω 

(1)

or the sake of simplicity, in the following the sound speed field is

ssumed uniform and the baseline flow to be at rest. Note however

hat these hypotheses are not necessary and could be omitted. The

requency-domain acoustic pressure ˆ p ( � x , ω) in the subsystem �i is

hen solution of the following Helmholtz equation: 

 

 

 

c 2 0 ∇ 

2 ˆ p ( � x , ω) − jαω ̂

 p ( � x , ω) + ω 

2 ˆ p ( � x , ω) = 

ˆ h ( � x , ω) for �
 x ∈ �i

∇ s ̂  p = 0 for �
 x s ∈ S wi , ˆ p = 0 for �

 x s ∈ S ai

∇ s ̂  p = 

ˆ f ( � x s , ω) for �
 x s ∈ S ci

(2)

here the notation ∇ s ̂  p = 

�
 ∇ ̂  p ( � x s ) . � n s is introduced, � x s being a geo-

etrical point belonging to a boundary of the flow domain and 

�
 n s 

he normal unity vector pointing outward. In Eq. (2) , α is an acous-

ic loss coefficient, the term 

ˆ h ( � x , ω) is a volume acoustic source,

hile ˆ f ( � x , ω) is a surface forcing term imposed on the connection

oundary S ci : it is an external input to the acoustic subsystem con-

ained in �i exerted by adjacent subsystems. The pressure verifies

igid-wall boundary condition on S wi and is null on S ai . The volu-

ic source ˆ h ( � x , ω) represents fluctuations of heat release, and it

ay be written as follows: 

ˆ 
 ( � x , ω) = − jω ( γ − 1 ) ̂  ω T ( � x , ω) = − jω ( γ − 1 ) H i ( � x ) ̂  Q (ω) (3)

here γ is the heat capacity ratio and ˆ ω T ( � x , ω) is the local fluc-

uating heat release rate resulting from flame dynamics. In Eq. (3) ,

ˆ  T ( � x , ω) is decomposed into a global heat release rate ˆ Q (ω) and

 spatial volume density H i ( � x ) representing the flame shape (the

ntegral of H i ( � x ) over �i is unity). In the following, only one flame

n the subdomain �i is considered for conciseness, but the reason-

ng can be extended without difficulty to any number of distinct

nd independent flames located in a same subdomain �i . 

In modal expansion based LOMs, on each subsystem �i the

ressure is decomposed onto a family formed of known acoustic

igenmodes of �i . The purpose is then to derive a set of governing

quations for the corresponding modal amplitudes. This step usu-

lly makes use of the inner product defined for any functions f ( � x )

nd g( � x ) as: 

 f, g〉 = 

∫ ∫ ∫ 
�

f ( � x ) g( � x ) d 3 �x (4)

he associated L 2 norm is noted || f || = 〈 f, f 〉 1 / 2 .
2 
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.1. The classical rigid-wall modal expansion 

The usual derivation consists in writing the decomposition

f the acoustic pressure onto an orthogonal basis of known

coustic modes ( ψ n ( � x ) ) n � 1 of the subdomain �i , as ˆ p ( � x , ω) =
 

n ˆ γn (ω) ψ n ( � x ) . The set ( ψ n ( � x ) ) n � 1 is classically chosen as the

igid-wall eigenmodes of the subsystem �i (without volume

ources and acoustic damping). These eigenmodes verify rigid-wall

onditions ( i.e. zero normal velocity) over S wi , but also over the

onnection boundary S ci . In the presence of boundaries that are

nown to be opened to the atmosphere ( S ai in Fig. 1 ), the eigen-

odes basis can be chosen to satisfy the appropriate condition on

 ai ( i.e. zero pressure), without further difficulty since the expan-

ion basis is still orthogonal. The set ( ψ n ( � x ) ) n � 1 is solution of the

ollowing eigenvalue problem: 

 

 

c 2 0 ∇ 

2 ψ n + ω 

2 
n ψ n = 0 for �

 x ∈ �i

∇ s ψ n = 0 for �
 x ∈ S wi , ψ n = 0 for �

 x ∈ S ai 

∇ s ψ n = 0 for �
 x ∈ S ci

(5) 

here ω n is the eigen-pulsation of the n th eigenmode. By mak-

ng use of the second Green’s identity (reminded in Supplemental

aterial A), it can be shown that the set ( ψ n ( � x ) ) n � 1 defined by

q. (5) is indeed an orthogonal basis, that is 〈 ψ n , ψ m 

〉 = 0 for any

 
 = m . 

For conciseness, the successive steps required to obtain the

odal amplitudes ˆ γn (ω) are not detailed here, but the interested

eader is referred to Supplemental Material A, as well as [19,43] .

o ease the formalism, the connection surface S ci is split into M S 

lements �S 0 j connecting �i with the adjacent subdomains �j at

he boundary points � x 0 j . Note that the subdomains �j are not nec-

ssarily distinct, since there may exist several connection points

etween �i and a same neighbor ( i.e. we can have �
 x 0 j1 
 = 

�
 x 0 j2 ,

ut � j1 = � j2 ). An example of such surface splitting is shown in

ig. 1 . After projecting the pressure field onto the orthogonal ba-

is ( ψ n ( � x ) ) n � 1 thanks to the inner product defined in Eq. (4) , the

odal amplitudes ˆ γn (ω) are found to be solutions of the following

quation: 

(ω 

2 − jωα − ω 

2 
n )

(
ˆ γn (ω) 

jω 

)
= 

M S ∑ 

j=1

ρ0 c 
2 
0 �S 0 j ψ n ( � x 0 j ) 


n 
ˆ u 

� j 

s ( � x 0 j )

− ( γ − 1 ) H 

(n ) 
i 


n 

ˆ Q (ω) 

(6) 

here 
n = || ψ n || 2 2 
, H 

(n ) 
i

= 〈H i , ψ n 〉 is the projection of the flame

hape H i ( � x ) onto ψ n ( � x ) , and ˆ u 
� j 
s ( � x 0 j , ω) = − ˆ f ( � x 0 j , ω ) / (ρ0 jω ) is

he normal velocity forcing imposed by adjacent subsystems �j at

he boundary points � x 0 j . 

Since time derivative in the physical space corresponds to mul-

iplying by j ω in the Fourier domain, it is possible to recast

q. (6) into the time-domain. In doing so, it proves useful to in-

roduce ˆ �n = ˆ γn / ( jω) ( i.e. ˙ �n (t) = γn (t) ) and then use the inverse

ourier transform to obtain: 

 

 

 

p( � x , t) = 

∞ ∑ 

n =1

˙ �n (t) ψ n ( � x ) 

�̈n (t) = −α ˙ �n (t) − ω 

2 
n �n (t) −

M S ∑ 

j=1

ρ0 c 
2 
0 �S 0 j ψ n ( � x 0 j ) 


n 
u 

� j 

s ( � x 0 j , t)

+ 

( γ − 1 ) H 

(n ) 
i 


n 
Q(t) 

(7) 
v  
This dynamical system governs the temporal evolution of the

ressure field in the subdomain �i , under the normal velocity

orcing u 
� j 
s ( � x 0 j , t) imposed by adjacent subsystems �j , and un-

er the volume forcing Q ( t ) imposed by fluctuating flames con-

ained within �i . This set of equations was used for example

n [32,33] , where the infinite series was truncated up to a finite

rder N . It is also worth noting that the acoustic velocity can be

alculated from the knowledge of the modal amplitudes �n ( t ) as

�
  (x, t) = −∑ 

n �n (t) � ∇ ψ n ( � x ) /ρ0 . A state-space approach can then

e used to couple together the subsystems defining the whole

hermoacoustic system of interest. This formalism will be detailed

n Section 3 . 

Finally, since the acoustic pressure is a linear combination of

he modal basis vectors ψ n , it necessarily verifies the same bound-

ry conditions, in particular ∇ s p = 0 , viz. � u . � n s = 0 on S ci . Since the

coustic velocity should not be zero over the boundaries of the

arbitrarily chosen) sub-domain �i , this may result in a singular-

ty in the representation of the acoustic velocity field. The impact

f this singularity on the convergence properties of the method is

iscussed in Section 4 . The following section proposes a mathe-

atical reformulation of the pressure modal expansion to mitigate

his undesirable feature. 

.2. Modal expansion onto an over-complete frame of acoustic 

igenmodes 

The purpose is now to introduce a modal expansion of the

coustic pressure that would allow for satisfying any boundary

ondition on S ci (and not ∇ s p = 0 only). In this matter, it is neces-

ary to retain in the modal expansion an additional degree of free-

om, such that both acoustic pressure and normal acoustic veloc-

ty at the connection boundary S ci remain a priori undetermined.

et us then introduce two distinct families ( ξm 

) m ≥ 1 and ( ζ k ) k ≥ 1 

f acoustic eigenmodes of the subsystem �i , characterized by the

wo following eigenproblems: 

 

 

c 2 0 ∇ 

2 ξm 

+ ω 

2 
m 

ξm 

= 0 for �
 x ∈ �i

∇ s ξm 

= 0 for �
 x ∈ S wi , ξm 

= 0 for �
 x ∈ S ai

∇ s ξm 

= 0 for �
 x ∈ S ci

(8) 

 

 

c 2 0 ∇ 

2 ζk + ω 

2 
k ζk = 0 for �

 x ∈ �i 

∇ s ζk = 0 for �
 x ∈ S wi , ζk = 0 for �

 x ∈ S ai

ζk = 0 for �
 x ∈ S ci 

(9) 

oth eigenmodes families ( ξm 

) m ≥ 1 and ( ζ k ) k ≥ 1 verify the same

igid-wall (resp. open) boundary conditions on S wi (resp. S ai ). The

igenmodes family ( ξm 

) m ≥ 1 is similar to the orthogonal basis

 ψ n ) n ≥ 1 used in Section 2.1 . Conversely, the eigenmodes family

 ζ k ) k ≥ 1 differs since it verifies open boundary conditions on S ci . 

Consider now the eigenmodes family ( φn ) n ≥ 1 formed as

he concatenation of ( ξm 

) m ≥ 1 and ( ζ k ) k ≥ 1 : (φn ) n � 1 = (ξm 

) m � 1 ∪
(ζk ) k � 1 . The eigenpulsations associated to the eigenmodes φn are

oted (ω n ) n � 1 = (ω m 

) m � 1 ∪ (ω k ) k � 1 . As a concatenation of two

rthogonal bases, ( φn ) n ≥ 1 is not a basis but is instead an over-

omplete set of eigenmodes, also called a frame [44] . The concept

f frame was introduced in the context of nonharmonic Fourier

nalysis [45] , and later used in a number of fields ranging from

avelet analysis, to digital image processing and time-series fore-

asting. The use of an over-complete frame to perform modal ex-

ansions is the most crucial element of the proposed method. Let

s precise that the frame ( φn ) n ≥ 1 could be built from the concate-

ation of other sets of eigenmodes, as long as those do not a priori

mpose any constraint between pressure and velocity at the bound-

ry S ci . However, using the concatenation of the rigid-wall basis

 ξm 

) m ≥ 1 and the open atmosphere basis ( ζ k ) k ≥ 1 has two main ad-

antages: (1) they are usually the easiest to obtain analytically or
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numerically, and (2) the frame ( φn ) n ≥ 1 formed by their concate-

nation verifies a generalized Perseval’s identity which ensures the

well-posedness of modal expansions [44] . 

In the following, a compact vectorial notation is introduced

to avoid the use of multiple summation symbols: for any in-

dexed quantity ( f i ) i ≥ 1 we note f the column-vector such that:
 f = ( f 0 f 1 f 2 . . . ) , where t () designates the vector transpose.

For a doubly indexed quantity ( f ij ) i,j ≥ 1 , we note f the matrix whose

coefficients are the f ij . Conversely, ( f ) n is the n th component of the

vector f . Similarly to Section 2.1 , the pressure modal expansion is

sought under the form ˆ p ( � x , ω) = 

∑ 

n ˆ γn (ω) φn ( � x ) , that is, using the

vectorial notation ˆ p ( � x , ω) = 

t ˆ γ (ω) φ( � x ) . The analytical derivation

of the modal amplitudes ˆ γn (ω) is rather long and its details are

not necessary to understand the remaining of the paper; it is thus

not included here but made available in Supplemental Material B.

As an outcome of this analytical derivation, the modal amplitudes

ˆ γn (ω) are found to be solutions of the following equation: 

(ω 

2 − jωα − ω 

2 
n )

(
ˆ γn (ω) 

jω 

)
= 

M S ∑ 

j=1

ρ0 c 
2 
0 φ

⊥ 
n ( � x 0 j ) ̂  u 

� j 

s ( � x 0 j )

−
M S ∑ 

j=1

ρ0 c 
2 
0 ∇ s φ

⊥ 
n ( � x 0 j ) ̂  ϕ 

� j ( � x 0 j ) 

−( γ − 1 ) H 

⊥ 
i,n 

ˆ Q (ω) (10)

where: 

φ⊥ 
n ( � x 0 j ) = �S 0 j

(

−1 φ( � x 0 j )

)
n
, ∇ s φ

⊥ 
n ( � x 0 j ) = �S 0 j

(

−1 ∇ s φ( � x 0 j )

)
n

H 

⊥ 
i,n = 

(

−1 H i

)
n

(11)

As previously the surface S ci has been decomposed into M S plane

surface elements �S 0 j located at � x 0 j . In Eq. (11) , 
 = 〈 t φ, φ〉 is the

matrix whose coefficients are 
mn = 〈 φm 

, φn 〉 . This matrix is the

Gram matrix associated to the over-complete frame ( φn ) n ≥ 1 : it re-

duces to a diagonal matrix in the case of an orthogonal basis. The

volume source ˆ h ( � x , ω) is expressed according to Eq. (3) , and H i is

the column vector containing all the projections of the flame shape

H i ( � x ) onto the elements of the over-complete frame (φn ( � x )) n � 1 .

In Eq. (10) , ˆ u 
� j 
s ( � x 0 j ) is the velocity forcing imposed onto �i by

the adjacent subsystems �j at the connection points �
 x 0 j , while

ˆ ϕ 

� j ( � x 0 j ) = − ˆ p � j ( � x 0 j ) / (ρ0 jω) is an acoustic potential forcing im-

posed onto �i at these boundary points. One may note that the

second term in the right-hand side of Eq. (10) has no counterpart

in Eq. (6) , contrary to the first and third terms. 

As in Section 2.1 for Eq. (6) , Eq. (10) can then be recast into

the time-domain by introducing �n ( t ) such that γn (t) = 

 �n (t) ; this

leads to: 

⎧⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p( � x , t) = 

N ∑ 

n =1

˙ �n (t) φn ( � x ) 

�̈n (t) = − α ˙ �n (t) − ω 

2 
n �n (t) −

M S ∑ 

j=1

ρ0 c 
2 
0 φ

⊥ 
n ( � x 0 j ) u 

� j 

s ( � x 0 j , t)

+ 

M S ∑ 

j=1

ρ0 c 
2 
0 ∇ s φ

⊥ 
n ( � x 0 j ) ϕ 

� j ( � x 0 j , t) + (γ − 1) H 

⊥
i,n Q(t) 

(12)
hich is an extension of Eq. (7) when the expansion is performed

n the over-complete frame ( φn ) n ≥ 1 instead of the orthogonal ba-

is ( ψ n ) n ≥ 1 . This dynamical system governs the temporal evolu-

ion of the pressure field in the domain �i , under normal veloc-

ty forcing u 
� j 
s ( � x 0 s , t) and acoustic potential forcing ϕ 

� j ( � x 0 s , t) im-

osed by adjacent subsystems, as well as the volume forcing Q ( t )

ue to the presence of active flames within �i . In the case of

he orthogonal modal basis ( ψ n ) n ≥ 1 used in the previous section,

he terms ∇ s ψ 

⊥ 
n ( � x 0 j ) vanish (since the eigenmodes satisfy rigid-

all boundary conditions on S ci ), and we have the simple relations

 

⊥ 
n ( � x 0 j ) = �S 0 j ψ n ( � x 0 j ) / 
n and H 

⊥ 
i,n 

= H 

(n ) 
i 

/ 
n .

Because of the use of the over-complete frame ( φn ) n ≥ 1 , the

coustic pressure and velocity are free to evolve independently on

he boundary S ci , which is the major improvement of the method

ompared to classical formalism where the normal acoustic veloc-

ty � u . � n s is necessarily zero on the connection boundary S ci . 

The governing dynamical system of Eq. (12) is a projection

f the wave equation ( Eq. (2) ) onto the modal frame ( φn ) n ≥ 0 .

owever, as this frame is over-complete such projection is ill-

onditioned, which constitutes one of the major pitfalls of the

roposed method. The first consequence is a numerical diffi-

ulty to compute the inverse of the frame Gram matrix 
−1 . In

ost cases presented in this paper, the condition number C( 
) =
| 
|| || 
−1 || increases with the size N of the expansion, up to

alues ranging from 10 18 to 10 19 . The inversion of this poorly

onditioned matrix is achieved thanks to the use of an ade-

uate numerical algorithm, based on extra-precision iterative re-

nement performed in floating-point quadruple precision. Errors

temming from this inversion are systematically computed a pos-

eriori and verified to remain low. Note that since the modal ba-

is size remains in practice limited (typically a few dozens el-

ments), the specific inversion procedure used to calculate 
−1 

oes not noticeably increase the computational cost in compar-

son to the classical rigid-wall modal expansion. Secondly, even

hough 
 is accurately inverted, the frame over-completeness may

till result in poorly conditioned spurious components in Eq. (12) .

owever, the approach described above produces well-behaved ex-

ansions for the pressure, that is expansions where the terms

ith the highest energy are physically meaningful while low en-

rgy terms represent spurious fluctuations. Thus, an energetic cri-

erion for the robust and automatic identification of these spu-

ious components was designed, as discussed in more details in

ppendix C . 

. State-space formalism for subsystems coupling

The dynamical system derived in Section 2.2 allows us to solve

or the acoustic pressure in each individual subdomain �i . In order

o resolve the acoustic flow in the whole geometry, individual sub-

omains need to be connected together. An elegant formulation to

onnect subdomains is to use a state-space approach. This method,

lready used in [32–34,41] , is adopted in this work but requires to

e adapted. Some implementation details are given below; further

evelopments relative to state-space representations can be found

n control theory textbooks [46] . 

For any physical system described by a set of coordinates X ( t )

n a phase-space, we call linear state-space representation of this

ystem a set of equations under the form: 

˙ X (t) = A X (t) + B U (t) 

Y (t) = C X (t) + D U (t) 
(13)
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here X ( t ) is the coordinates vector in the phase-space, also called

tate vector, A is the dynamics matrix, B is the input matrix, U ( t )

he input vector, Y ( t ) the output vector, C the output matrix, and D

s the action, or feedthrough matrix. The first equation of the state-

pace representation governs the dynamical evolution of the state

ector under the forcing exertedby the input vector. The second

quation defines a way to compute any desired outputsfrom the

nowledge of the state vector and the forcing term. Note that the

utput Y ( t ) depends on the state X ( t ), but the reverse is not true:

 ( t ) evolves independently of the selected output Y ( t ). The state-

pace formalism, through the Redheffer star-product [47] (Supple-

ental Material C), provides a direct way to connect two systems

epresented by their state-space realizations, by relating their re-

pective inputs and outputs. A simple example of this operation is

iven in Section 4 . 

By considering the dynamical system of Eq. (12) , it is straight-

orward to build a state-space representation for a subdomain

i . A convenient choice is to build the state-vector X 

( i ) ( t ) from

he modal amplitudes ˙ �n (t) and their temporal primitives �n ( t ).

he input vector U 

( i ) ( t ) contains the normal acoustic velocities

 

� j 
s ( � x 0 j , t) and the acoustic potentials ϕ 

� j ( � x 0 j , t) imposed by ad-

acent subdomains �j . The heat release volume source Q ( t ) is also

ncluded in the input vector. Beside, the computed output vector

 

( i ) ( t ) consists of the pressures p( � x 0 j , t) and the normal acoustic

elocities u s ( � x 0 j , t) at every point � x 0 j on the connection boundary

 ci . In addition, any quantity of interest that can be computed from

he modal amplitudes contained in the state-vector X 

( i ) ( t ) may also

e added in the output vector Y 

( i ) ( t ). For conciseness, the detailed

xpressions of the state-space matrices for a subdomain �i are not

iven here, but can be found in Appendix A . 

After iteratively applying the Redheffer star-product to connect

ogether state-space representations of every subsystems, the full

tate-space of the whole geometry is obtained as: 

˙ 
 

f 
(t) = A 

f X 

f (t) + B 

f U 

f (t) (14)

here U 

f ( t ) is an external forcing that can be either a surface or a

olume source term. In the former case, coefficients in the exter-

al input matrix B 

f contains terms similar to the first 2 M S columns

 

( i ) in Eq. (A.1) , while in the latter case it contains terms similar to

he last column of B 

( i ) in Eq. (A.1) . Two approaches are then possi-

le: (1) Eq. (14) can be integrated over time to obtain the temporal

volution of the acoustic flow under the external forcing U 

f ( t ), or

2) the complex eigenvalues and eigenvectors of the dynamics ma-

rix A 

f can be solved for, yielding the global acoustic eigenfrequen-

ies and eigenmodes of the whole domain. If λn = 2 πσn + j2 π f n is

he n th complex eigenvalue of the matrix A 

f , then f n is the eigen-

requency of the n th acoustic mode of the whole geometry. In

he absence of acoustic losses, volume sources or complex bound-

ry impedances, σ n is zero. Conversely, if the system comprises

coustic sources, then 2 πσ n , is the growth-rate of the n th acoustic

ode of the whole geometry: σ n > 0 (resp. σ n < 0) implies that the

ode is unstable (resp. stable). The mode shape can also be recon-

tructed from the modal components contained in the eigenvector

 n associated to the eigenvalue λn . 

. Convergence properties

In this section both modal expansions presented in

ection 2 are implemented within the LOM state-space frame-

ork introduced in Section 3 , and used to study a canonical

ase, namely a long quasi-one-dimensional tube comprising a

harp cross-section change. The goal is to show the limits of the

igid-wall modes decomposition and to prove the performances of

he over-complete frame approach in a case where both types of

odal expansions can be evaluated and compared to an analytical
olution. In the following, superscripts OB (resp. FR ) refer to results

btained with the use of the orthogonal basis ( ψ n ) n ≥ 1 introduced

n Section 2.1 (resp. the over-complete frame ( φn ) n ≥ 1 introduced

n Section 2.2 ). Superscripts A designate analytical solutions used

or comparison. 

In this example, the long duct with a sudden cross-section

hange represented in Fig. 2 is considered. Both ends of the duct

re closed by rigid walls. It is decomposed into 3 subsystems, in-

luding 2 long ducts ( �1 and �2 ) with constant cross-sections S 1 
nd S 2 , and a third subsystem �sc of length L sc enclosing the re-

ion in the neighborhood of the cross-section variation. 

Since both tubes �1 and �2 are long ( D 1 
 L 1 , D 2 
 L 2 ), only

lane longitudinal acoustic waves are considered here. The rigid-

all orthogonal bases of both ducts are then: 

 

 

 

 

 

(
ψ 

(1) 
n (x 1 ) 

)
n � N 1 

= 

(
cos 

(
nπx 1

L 1 

))
n � N 1 (

ψ 

(2) 
n (x 2 ) 

)
n � N 2 

= 

(
cos 

(
nπx 2

L 2 

))
n � N 2 

(15) 

here superscript (1) (resp. (2) ) refers to the modal basis in �1 

resp. �2 ), x 1 and x 2 are the longitudinal coordinates in the two

ucts ( Fig. 2 ), and N 1 (resp. N 2 ) is the number of modes used for

he pressure modal expansion in �1 (resp. �2 ). Similarly the over-

omplete frames introduced in Section 2.2 for both ducts are given

y: 

 

 

 

 

 

 

 

(
φ(1) 

n (x 1 ) 
)

n � N 1 
= 

(
cos 

(
nπx 1

L 1 

))
n � N 1 / 2 ⋃ 

(
cos 

(
(2 n + 1) πx 1 

2 L 1 

))
n � N 1 / 2 (

φ(2) 
n (x 2 ) 

)
n � N 2 

= 

(
cos 

(
nπx 2

L 2 

))
n � N 2 / 2 ⋃ 

(
sin 

(
(2 n + 1) πx 2 

2 L 2 

))
n � N 2 / 2 

(16) 

These orthogonal bases ( Eq. (15) ) and over-complete frames

 Eq. (16) ) are consistent with rigid-wall conditions at both end of

he long duct ( x 1 = 0 and x 2 = L 2 ). However, the orthogonal bases

lso impose zero velocity near the cross section change (at x 1 = L 1 
nd x 2 = 0 ), while the over-complete frames retain an additional

egree of freedom such that both velocity and pressure are a pri-

ri undetermined and free to evolve independently near the cross-

ection change. In the following, the same number N of eigen-

odes are used for modal expansions in both ducts ( N 1 = N 2 = N).

dditionally, all comparisons between orthogonal basis and over-

omplete frame expansions are carried out with the same total

umbers of modes N : in other words results from any orthogo-

al basis containing an even number of vectors N are compared

o results from a frame composed of two subfamilies of size N /2.

ote also that, since only plane longitudinal waves are considered

ere, the connection boundaries S c 1 and S c 2 do not need to be dis-

retized into several surface elements �S 0 j : therefore M S = 1 for

ach subdomain �1 and �2 , and M S = 2 for �sc . 

Modal expansion is not performed for the subdomain �sc en-

losing the cross-section change as its exact geometry has only

ery little effect on the global eigenmodes of the long duct: in-

tead, volume-averaged conservation equations are used to derive

 state-space representation of this subsystem. More details are

iven in Appendix B . The Redheffer star-product (Supplemental

aterial C) is then applied recursively to connect state-space rep-

esentations of subsystems � , �sc , and � . The state-space real-
1 2 





Fig. 3. Pressure mode shape and velocity mode shape of the first mode ( n = 1 ), for N = 4 , 10 , 100 vectors in the OB expansion. Computed solutions (gray dashed lines) are 

compared to the analytical solutions of Eqs. (19) and (20) (thick dark lines). Closeup views (corresponding to the rectangles) of the pressure and the velocity mode shapes

are given on the second row ((d)–(f)) and the fourth row ((j)–(l)) respectively.
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esults in low relative errors, ranging between 10 −7 and 10 −8 

or all modes 1, 9 and 11, even with small values of N . For in-

tance, only about 10 modes in each frames are necessary to

ccurately capture the eigenfrequency f 11 . The condition number

f the frame Gram matrix, which is an indicator of the expan-

ion over-completeness, is C( 
) = 10 8 for N = 6 . It then progres-

ively deteriorates and reaches 10 19 at N = 50 , and saturates to

his value for large N . This deterioration of the frame conditioning

oes not result into a degradation of the numerical results. How-

ver, it can be related to a saturation of the error, since increas-

ng the size of the frame beyond N = 20 does not result in smaller

rrors. 

Finally, it is worth emphasizing that Gibbs fringes have also

een reported in earlier studies employing orthogonal basis modal
xpansions, for instance by Sayadi et al. [40] . However, the ori-

in of these Gibbs oscillations was fundamentally different from

hose observed in the present example: in previous works, this

henomenon was caused by the presence of an infinitely thin re-

ion of fluctuating heat release located in the interior of the do-

ain of interest. This assumption results in an exact solution for

he velocity field that is discontinuous at the flame location, and

hat cannot be accurately represented by a classical Galerkin de-

omposition. The over-complete frame expansion presented in this

ork aims at suppressing Gibbs oscillations due to a misrepresen-

ation of the acoustic fields at the boundaries of the subdomains,

nd does not have the ability to handle Gibbs fringes produced by

 discontinuity in the interior of the subdomains. Nonetheless, a

imple workaround to handle this latter case is to replace the in-



Fig. 4. Pressure mode shape (a) and velocity mode shape (b) of the first mode ( n = 1 ) for N = 4 vectors in the frame. Numerical solutions (gray lines with × ) are compared 

to the analytical solutions of Eqs. (19) and (20) (thick dark lines). The local absolute errors for the mode shapes with N = 4 are also plotted (dashed line), with values 

indicated on the right axis.

Fig. 5. Comparison between the OB and the FR results in terms of frequency rel- 

ative error ( E OB/FR 

f n
), for global modes 1, 9 and 11, in function of the number N of 

vectors used in the modal expansions. Dark lines are results obtained with rigid- 

wall eigenmodes expansions ( Eq. (15) ), while gray lines are results obtained with

frames modal expansions ( Eq. (16) ).
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finitely thin flame by a slightly thicker region of heat release: this

yields a solution for the velocity field that has a sharp yet contin-

uous spatial variation in the vicinity of the flame. Note also that

infinitely thin flame are interesting conceptually and from an ana-

lytical perspective; however, physical flames are always finite and

sometimes thick enough to produce non-compact effects on ther-

moacoustic instabilities [48] . 

5. Application to thermoacoustic instabilities in an annular

combustor

In order to demonstrate its ability to predict thermoacoustic in-

stabilities in complex geometries, the state-space LOM based on

generalized frame modal expansions (FR) is now applied to a more

advanced academic configuration comprising active flames in an

annular chamber. Results obtained with the classical orthogonal

rigid-wall basis (OB) are also provided and compared to those

computed with a 3D Finite Element (FE) solver called AVSP [5] .

The geometry studied is displayed in Fig. 6 (a), and the correspond-
ng low-order acoustic network is represented in Fig. 6 (b). It com-

rises an annular plenum (denoted with the subscript P ), an an-

ular chamber (subscript C ), and four identical ducted burners

subscript B ) of length L B where the active flames are located.

igid-wall boundary conditions are assumed at the plenum back-

lane and the chamber outlet plane. 

The AVSP unstructured mesh consists of 3 × 10 6 tetrahedral

ells, while the acoustic network contains 14 subdomains (1

lenum �P , 1 chamber �C , 4 burners �Bi , and 8 cross-section

hanges �sc i ), with the addition of 4 active flames. The flames

 i are located at the coordinate αL B within each burner, and

re considered as planar volume source of thickness δ. Note that

he cross-section area S B of the ducted burners is much smaller

han the area of the plenum exit plane and of the chamber back-

lane. This allows for the simplification of the plenum-burner and

urner-chamber junctions, by only considering discrete point-like

onnections. In other words, the chamber (or the plenum) is con-

ected to the burner �B i 
through the subdomain �sc i at a single

oint, implying that M S = 4 for the chamber and the plenum (a

ingle discrete connection surface �S 0 j = S B is used for each one of

he 4 burners). The subdomain �sc i is similar to the cross-section

hange described in the previous section, as it essentially en-

orces continuity of pressure and acoustic flux between the burner

nd and the backplane of the chamber (or the exit plane of the

lenum). This simplification also allows us to consider rigid-wall

oundary conditions at the chamber backplane and at the plenum

xit plane when defining the eigenmodes for these subdomains

since the velocity should actually be non-zero only at 4 point-like

ocations of infinitely small spatial extent). The Gibbs phenomenon

videnced in the previous section is then not expected to appear

n the chamber and in the plenum, and it is therefore valid to

mploy orthogonal rigid-wall bases in these two subdomains. On

he contrary, boundary conditions at both ends of the burners are

xpected to differ from rigid-wall or open atmosphere, and it is

herefore necessary to employ over-complete frame expansions in

hese subdomains in order to mitigate the Gibbs phenomenon that

ay appear. Thus, the plenum is modeled as a 2D annular subdo-

ain of coordinates ( x P , θP ), whose orthogonal basis is: 

 

(P) 
n,m 

(x P , θP ) = 

(
cos 

(
nπx P

L P 

)
cos (mθP ) , cos 

(
nπx P

L P 

)
sin (mθP ) 

)
(22)



Fig. 6. (a) The unstructured mesh used in the AVSP FE solver. (b) The low-order thermoacoustic network representing this system, which consists of an annular plenum �P ,

4 burners �B i , an annular chamber �C , and a set of 8 subdomains �sc i containing the cross-section changes. Thick dark lines represent rigid-wall boundary conditions. Gray 

area ( H i ) are the active flames, and the crosses represent the reference points used in the definition of the flame response. The width of the plenum (resp. chamber) in the

radial direction is W P (resp. W C ). All required numerical values for acoustic and flame parameters are indicated in the table.
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a  
ressure in the chamber could be expanded onto an analogous

nalytical modal basis. However, this one is deliberately assumed

nalytically unknown, and a modal basis computed thanks to a

reliminary AVSP simulation of the isolated chamber (without the

urners and the plenum) is used instead. Note that it is not nec-

ssary to perform an AVSP simulation for each LOM simulation:

t is indeed preferable to generate the chamber modal basis and

ll related quantities (including the matrix 
−1 ) in a single pre-

iminary AVSP simulation, and to assemble the state-space realiza-

ion of this subdomain, which can then be employed in as many

OM simulations as desired. In the present example, the use of a

umerically computed modal basis demonstrates the ability of the

resent framework to combine in an acoustic network subdomains

f different types and thus to handle efficiently arbitrarily complex

ystems. 

In the following, the size of the modal bases in the chamber

nd in the plenum is fixed to N = 12 modes. For cases where the

igid-wall basis is used in the ducted burners, this one is the same

s in the previous section ( Eq. (15) ). If an over-complete frame is

sed, it is given by: 

φ(B ) 
n (x B ) 

)
n � N

= 

(
cos 

(
nπx B

L B 

))
n � N/ 2

⋃ 

(
sin 

(
nπx B

L B 

))
n � N/ 2

(23) 

ote the difference with the over-complete frame of Eq. (16) , as

he present one allows pressure and velocity to evolve indepen-

ently from one another at both ends of the duct. 

Active flames are located within each burner, and the flame

hape H i (x B ) is the rectangular function of thickness δ centered

round x B = αL B . The flame response is modeled thanks to a clas-

ical Flame Transfer Function (FTF), relating the fluctuations of heat

elease to the fluctuations of acoustic velocity at a reference point

ocated at x 
(re f ) 
B 

= βL B . The flame reference point is located in the

urners, near the plenum exit-plane ( β = 0 . 05 ). A simple constant-

elay FTF is assumed, such that in the frequency domain the fluc-

uating heat release rate reads: 

ˆ 
 (ω) = Q e − jωτ

(
ˆ u (x B = βL B , ω) 

u 

)
(24) 

here Q is the flame power, τ is the flame delay, and u is the

ean flow speed through the injector. A state-space realization of

he time-delay e − jωτ is generated thanks to a Multi-Pole expan-

ion: 

 

− jωτ ≈
M PBF ∑ 

k =1 

−2 a k jω

ω 

2 + 2 c k jω − ω 

2 
0 k

(25) 
here each term in the sum is called a Pole Base Function (PBF).

he coefficients a k , c k , w 0 k are determined thanks to a recursive fit-

ing algorithm recently proposed by Douasbin et al. [49] . By mak-

ng use of the inverse Fourier transform, it is then straightforward

o convert this frequency domain transfer function into a time-

omain state-space realization of size 2 M PBF × 2 M PBF , whose ex-

ression is provided in Appendix D . This procedure to generate a

tate-space realization of a FTF was already used by Ghirardo et al.

50] . For the flame-delay considered here, 12 PBFs were observed

o be sufficient to accurately fit the term e − jωτ , yielding 24 DoF

or each flame in the state-space representation of the whole sys-

em. Finally, the 18 state-space representations of the 14 acoustic

ubdomains and 4 active flames are connected together. 

As mentioned earlier, the Gibbs phenomenon is expected to oc-

ur at both ends of the ducted burners. A particular attention is

herefore paid to the type of modal expansion carried out in these

ubdomains. A total of 4 LOM simulations are performed, and re-

ults are compared to the ones computed with the FE solver AVSP,

hich are used as reference. Results for 10 of the first modes

f the combustor are summarized in Table 1 . First of all, FR and

B expansions with N = 10 modes are both compared to AVSP.

hen these computations are repeated with a number of modes

ncreased to N = 30 . Mode 1 is the combustor Helmholtz mode,

nd its frequency and growth rate were observed to be very sen-

itive to the addition of a correction length to the ducted burners.

s the determination of the optimal correction length is out of the

cope of this paper, differences regarding the Helmholtz mode are

ot further discussed. The FR expansion with N = 10 appears to

uccessfully resolve the frequencies and growth rates of the modes

onsidered, with relative errors compared to AVSP below 10%. On

he contrary, the OB expansion onto N = 10 modes largely fails at

esolving the growth rates of all but one of the considered modes,

ith relative errors up to 348% (Mode 5). Mode 3 is the first unsta-

le azimuthal mode of the combustor, and is therefore of particu-

ar interest: FR expansion yields an error of only 6% for the growth

ate of this mode, whereas OB expansion produces an error of 45%.

hen the size of the expansion basis/frame is increased, results

re globally improved for both FR and OB cases. Yet, even with

 = 30 the OB approach still fails at achieving an acceptable accu-

acy for Modes 3, 5, and 7. The error on the growth rate of the first

nstable azimuthal mode is of 0.3% in the FR case, while it is still

verestimated by 18% in the OB case. Modes 9 and 10 are mixed

odes, similar to those described by Evesque and Polifke [37] . In

ode 9 the plenum first longitudinal mode prevails, while mode

0 is the mixed 1 st -azimuthal–1 st -longitudinal plenum mode, cou-

led with the 5 th azimuthal chamber mode. Previous comments

lso applies to these mixed modes: the over-complete frame ex-
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o  
ansion of size N = 10 yields an excellent agreement with the FE

olver, and outperforms even larger orthogonal basis expansions.

ote that in the FR case, the condition number of the frame Gram

atrix used in the 4 ducted burners is of order 10 8 for N = 10 ,

nd increases to 10 18 for N = 30 . It was verified that increasing the

rame size does not further deteriorates its conditioning: it instead

aturates at 10 18 even for large N . 

The relatively poor accuracy of the OB expansion LOM is ex-

lained by a closer examination of the modes shapes in the burn-

rs. Figure 7 shows the shape of the first unstable azimuthal

ode of the combustor (Mode 3), plotted over a line starting from

he bottom of the plenum, passing through a burner, and ending

t the chamber outlet plane. With N = 30 , both FR and OB pres-

ure mode shapes ( Fig. 7 (a) and (c)) are relatively close to the AVSP

omputation, except for 3D effects in the neighborhood of the sub-

omains connections that cannot be captured. On the contrary,

ig. 7 (d) shows that the OB expansion produces significant Gibbs

scillations of the velocity at both ends of the burner. Note that

he Gibbs phenomenon is only present at the ends of the burn-

rs, and does not affect the velocity field within the chamber and

he plenum. Conversely, Fig. 7 (b) shows that the frame expansion

uccessfully mitigates this Gibbs phenomenon. 

The conjugation of these spurious oscillations with the pres-

nce of active flames responding to velocity fluctuations explains

he large discrepancies observed in the growth rates. Indeed, the

loseup view displayed in Fig. 7 (d) reveals that the flame reference

oint (represented by a star) lies in a region where the velocity is

trongly affected by Gibbs oscillations. In contrast, the FR expan-

ion ( Fig. 7 (b)) yields a reference velocity close to the AVSP refer-

nce velocity. As heat release fluctuations are directly proportional

o the reference velocity ( Eq. (24) ), any misprediction of the ve-

ocity in the burner results in a potentially erroneous growth rate.

hus, should the point of reference lies in a region where numer-

cal oscillations are present, the computed thermoacoustic modes

ay strongly depend on unphysical and uncontrolled details such

s the relative position of the point of reference and the Gibbs os-

illations. Consequently, the orthogonal rigid-wall basis expansion

esults in a LOM that is highly sensitive to the location of the flame

eference point, which is a highly undesirable feature of a numeri-

al model. 

This example demonstrates the modularity of the proposed

OM, which can combine in a same thermoacoustic network active

ames, one-dimensional subdomains (the burners), 2D subdomains

the plenum), and complex 3D subdomains of arbitrary shape (the

hamber) for which the modal basis is numerically computed. Ob-

iously, the approach is not limited to azimuthal eigenmodes, but

s also able to capture any other form of thermoacoustic eigen-

odes. It is also worth comparing the cost associated to the over-

omplete frame expansion LOM to existing Low-Order Models. As

hown above, N = 10 modes were sufficient to achieve a satisfac-

ory resolution (with error below 10%) of the first 20 modes of

he combustors (not all shown in Table 1 ). The state-space of the

hole system comprises 248 DoF: 2 × 24 for the plenum and the

hamber, 4 × 20 for the straight ducts, 8 × 3 for the cross-section

hanges, and 4 × 24 for the active flames. After the preliminary

omputation of the chamber modal basis with AVSP (160 CPU sec-

nds for 12 modes), the LOM computation of all the eigenmodes

as performed in a few CPU seconds only. This is comparable to

he 300 DoF necessary to treat a similar annular configuration in

he work of Schuermans and co-workers [33,35] . However, unlike

his latter method, the present example did not assume acousti-

ally compact injectors represented as lumped elements, and the

coustic field is fully resolved within the burners. LOMs relying on

irect discretization of the flow domain, although more straight-

orward to put into application, appears to result in more DoF and

igher cost: Emmert et al. [41] required 10 5 DoF and 38 CPUs to
ompute 5 eigenmodes of a 12-injectors annular geometry without

ny active flames. Finally, in contrast to mixed-method LOMs based

n modal expansions alongside Riemann invariants A 

+ /A 

−[14] , the

roposed Low-Order Model ( Eq. (14) ) can be directly integrated in

ime for temporal simulations of thermoacoustic acoustic instabil-

ties, whereas the time-domain translation of Riemann invariants

ppears to be somehow constraining [51] . 

. Conclusions

This work addressed a known issue in LOMs for thermoacous-

ics, namely the misrepresentation of the acoustic field arising

rom modal expansions onto rigid-wall eigenmodes bases, already

eported by numerous earlier studies [24] . Under the assump-

ion of zero Mach number flow, a reformulation of the classical

odal expansion making use of over-complete frames of eigen-

odes was proposed for the first time. Two major observations

ere drawn from the analysis of a simple one-dimensional acous-

ic problem: (1) the modal expansion singularity was clearly iden-

ified as a Gibbs-like phenomenon affecting the acoustic veloc-

ty, resulting in slow convergence speeds and erroneous velocity

alues near junctions between subdomains; (2) the over-complete

rame expansion was shown to successfully suppress the Gibbs-

ike phenomenon and to yield significantly improved convergence

peeds. The only pitfall stemming from the frame expansion, lies

n its over-completeness that may entail ill-conditioned features,

hich may produce spurious, non-physical dynamics of the pres-

ure evolution. Thus, a specific inversion procedure is used to com-

ute 
−1 
, the inverse of the frame Gram matrix. This approach

nsures that these spurious components stay negligible in com-

arison to physically meaningful components. More rigorously, in

ppendix C it is demonstrated that spurious eigenmodes arising

rom the frame over-completeness have low energy, and a criterion

s derived to systematically identify them. 

In a second example, the generalized modal expansion LOM

as used to predict thermoacoustic instabilities in an annular

ombustor. It was shown to yield results close to a finite element

olver, whereas the rigid-wall modal expansions failed at accu-

ately predicting the linear growth rates. This second example also

emonstrates the modularity of the proposed framework, through

ts ability to combine in a same acoustic network highly heteroge-

eous classes of elements such as active flames, one-dimensional

ucts, or complex 3D cavities. From a practical point of view,

he implementation of the proposed method only requires min-

mal changes to existing algorithms based on rigid-wall expan-

ions. Namely, apart from the inversion of the Gram matrix and

he identification of spurious eigenmodes, the input/output rela-

ions of each subdomain composing the acoustic network should

e adapted to include both pressure and velocity at the bound-

ries. Thus, this novel method is expected to be potentially useful

n the field of thermoacoutics. 
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ppendix A. State-space realization of an acoustic subdomain 

The state-space representation for a subdomain �i belonging to

n acoustic network is given in this section. The dynamical system

f Eq. (12) governing the evolution of the acoustic pressure in the
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subdomain �i yields the following state-space realization: 

d
dt 

⎛ 

⎜ ⎜ ⎜ ⎜⎜ ⎜ ⎝ 

�1 (t) 
˙ �1 (t) 

.

.

.

�N (t) 
˙ �N (t) 

⎞ 

⎟⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

︸ ︷︷ ︸ 
X (i ) (t) 

= 

⎛ 

⎜ ⎜ ⎜ ⎜⎜ ⎜ ⎝ 

0 1

−ω 

2
1 −α

. . .

0 1 

−ω 

2
N −α

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

︸ ︷︷ ︸ 
A (i)

⎛ 

⎜ ⎜ ⎜ ⎜⎜ ⎜ ⎝ 

�1 (t) 
˙ �1 (t) 

.

.

.

�N (t) 
˙ �N (t) 

⎞ 

⎟⎟ ⎟ ⎟⎟ ⎟ ⎠ 

+ ρ0 c 
2 
0 

⎛ 

⎜ ⎜ ⎜ ⎜⎜⎜⎜ ⎝ 

0 0 . . . 0 0 0

−φ⊥ 
1 ( � x 1 ) ∇ s φ⊥ 

1 ( � x 1 ) . . . −φ⊥ 
1 ( � x M S ) ∇ s φ⊥ 

1 ( � x M S ) 
γ −1 

ρ0 c 
2 
0

H 

⊥
i, 1 

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

0 0 . . . 0 0 0

−φ⊥ 
N ( � x 1 ) ∇ s φ⊥ 

N ( � x 1 ) . . . −φ⊥ 
N ( � x M S ) ∇ s φ⊥ 

N ( � x M S ) 
γ −1 

ρ0 c 
2 
0

H 

⊥ 
i,N

⎞ 

⎟⎟ ⎟ ⎟⎟⎟⎟ ⎠ 

︸ ︷︷ ︸ 
B (i)

×

⎛ 

⎜ ⎜ ⎜ ⎜⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

u �1 
s ( � x 1 , t)

ϕ �1 ( � x 1 , t) 

.

.

.

u 
�M S 
s ( � x M S , t) 

ϕ �M S ( � x M S , t) 

Q(t)

⎞ 

⎟⎟ ⎟ ⎟⎟ ⎟ ⎟⎟ ⎟ ⎠ 

︸ ︷︷ ︸ 
U (i ) (t)

(A.1)

In this equation, the state vector X 

( i ) ( t ) is of size 2 N , where N is

the number of eigenmodes used in the modal expansion. The dy-

namics matrix A 

( i ) is block-diagonal of size 2 N × 2 N . The first 2 M S 

columns of the input matrix B 

( i ) and 2 M S elements of the input

vector U 

( i ) ( t ) correspond to surface source terms imposed by adja-

cent subdomains �j . The last column of B 

( i ) and the last element of

U 

( i ) ( t ) correspond to the volumetric heat release forcing. For clar-

ity reason, a single source of heat release is considered here, but

the input can easily be extended to any number of independent

flames. 

In the state-space framework that is presented here, any sub-

system �i outputs both the normal velocity u s ( � x 0 j ) = 

�
 u ( � x 0 j ) . � n s and

the pressure p( � x 0 j ) at each one of the M S connection surface ele-

ments �S 0 j . In addition, it is also possible to incorporate in the

output vector (not detailed here) pressure and velocity at any point

within �i , such that those can then be passed as reference pres-

sure/velocity to an active flame. Thus, the following equation is

used to compute the output vector for the subdomain �i : ⎛ 

⎜⎜ ⎜ ⎜⎜ ⎜ ⎝ 

u s ( � x 1 , t)

p( � x 1 , t)

.

.

.

u s ( � x M S , t) 

p( � x M S , t)

⎞ 

⎟⎟ ⎟ ⎟⎟ ⎟ ⎠ 

︸ ︷︷ ︸ 
Y (i ) (t)

= 

⎛ 

⎜⎜ ⎜ ⎜⎜⎜ ⎜ ⎝ 

− 1 
ρ0 

∇ s φ1 ( � x 1 ) 0 . . . − 1 
ρ0 

∇ s φN ( � x 1 ) 0

0 φ1 ( � x 1 ) . . . 0 φN ( � x 1 ) 

.

.

.
.
.
.

. . .
.
.
.

.

.

.

− 1 
ρ0 

∇ s φ1 ( � x M S ) 0 . . . − 1 
ρ0 

∇ s φN ( � x M S ) 0

0 φ1 ( � x M S ) . . . 0 φN ( � x M S ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

︸ ︷︷ ︸ 
C (i)

⎛ 

⎜ ⎜ ⎜ ⎜⎜ ⎜ ⎝ 

�1 (t) 
˙ �1 (t) 

.

.

.

�N (t) 
˙ �N (t) 

⎞ 

⎟⎟ ⎟ ⎟⎟ ⎟ ⎠ 

︸ ︷︷ ︸ 
X (i ) (t)

(A.2)

Note that the feedthrough matrix D is zero. At the end, the

state-space representation of the acoustics in the subdomain �i is

defined by Eqs. (A.1) and (A.2) . It is a 2 M -input 2 M -output sys-
S S 
em (in the absence of heat release source terms), whose dynamics

re described by a 2 N × 2 N matrix. 

ppendix B. State-space representation for the domain �sc 

nclosing the cross-section change 

In this section, the state-space representation for the acousti-

ally compact subdomain �sc enclosing the cross-section change

etween the two ducts is given. It is obtained by volume-averaging

he linearized Euler equations in �sc , neglecting any acoustic con-

ersion to the vortical mode. The interested reader may consult

upplemental Material D for further details regarding the deriva-

ion. The final state-space realization of the subdomain �sc is: 

d 

dt 

( 

u (t)
p (t) 
ϕ (t) 

)
︸ ︷︷ ︸

X (sc) (t)

= 

( 

0 0 0 

0 0 0 

0 −1 /ρ0 0

) 

︸ ︷︷ ︸
A (sc)

( 

u (t)
p (t) 
ϕ (t) 

)

+ 

⎛
⎝ 0 

1
ρ0 L sc

0 − 1
ρ0 L sc

2 S 1 c 
2 
0 ρ0

L sc (S 1 + S 2 ) 0 

2 S 2 c 
2 
0 ρ0

L sc (S 1 + S 2 ) 0 

0 0 0 0 

⎞ 

⎠ 

︸ ︷︷ ︸ 
B (sc)

⎛
⎜ ⎝ 

u 

�1 
s (t) 

p �1 (t) 

u 

�2 
s (t) 

p �2 (t) 

⎞
⎟⎠

︸ ︷︷ ︸
U (sc) (t)

(B.1)

The state-vector X 

( sc ) ( t ) contains the volume-averaged velocity

 (t) , pressure p (t) , and acoustic potential ϕ (t) = − ∫ 
p (t ′ ) dt ′ /ρ0 .

he first two components of the input vector U 

( sc ) ( t ) are imposed

y the duct �1 , while the last two are imposed by the duct �2 . We

hen note B (sc) 
1

(resp. B (sc) 
2

) the matrix consisting of the first two

olumns (resp. last two columns) of B 

( sc ) . In Eq. (B.1) , the first two

ines essentially impose acoustic momentum and acoustic volume

ux conservation. For low frequencies, these conservation relations

educe to the classical quasi-static jump relations p �1 = p �2 and

 1 u 
�1 
s = −S 2 u 

�2 
s . The third equation of the dynamical system is a

time-integrator that facilitates the computation of the output vec-

or, as the two ducts �1 and �2 require normal acoustic velocity

nd acoustic potential as inputs. Outputs for the state-space rep-

esentation of �sc are computed thanks to first-order approxima-

ions: 

 

u s (0 , t)
ϕ(0 , t) 

u s (L sc , t) 
ϕ(L sc , t) 

⎞
⎟ ⎠ 

 ︷︷ ︸
Y (sc) (t)

= 

⎛
⎜⎝ 

1 
2 
(1 + 

S 2 
S 1

) 0 0 

0 0 1 

− 1 
2 
(1 + 

S 1 
S 2

) 0 0 

0 0 1 

⎞ 

⎟⎠
︸ ︷︷ ︸

C (sc)

( 

u (t)
p (t) 
ϕ (t) 

)
(B.2)

n Eq. (B.2) , the feedthrough matrix D is zero. The first two lines

re outputs that are to be imposed to the first duct �1 at the con-

ection boundary S c 1 , while the last two lines are outputs that are

o be imposed to the second duct �2 at the connection boundary

 c 2 . We then note C (sc) 
1 

(resp. C (sc) 
2

) the matrix formed with the first

wo rows (resp. last two rows) of C 

( sc ) . 

ppendix C. Spurious eigenmodes identification 

As mentioned in Section 2.2 , the over-completeness of the

rame expansion may result in poorly conditioned spurious com-

onents of the governing dynamical system ( Eq. (12) ). It is there-

ore primordial to distinguish these spurious components from

he physically meaningful ones. The interested reader is reported

o [52] for further discussion regarding spurious components

dentification. The simplest method to achieve it is the brute

orce approach: after obtaining the eigenmodes of the full-system
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ith an expansion of size N , the computation is repeated with

 different value of N . Eigenmodes that are very sensitive to

he number of DoF are then considered as spurious. However,

he over-complete frame expansion presented in Section 2.2 was

bserved to produce only low energy spurious components.

herefore, a more efficient identification procedure based on

n energetic criterion was implemented. This one is described

elow. 

Let us consider an eigenvector v = 

t ( . . . a 1 b 1 . . . a N b N . . . )

f the whole system dynamics matrix A 

f (see Eq. (14) and

ppendix A ), where the coefficients a 1 , . . . , a N are the state vari-

bles involved in the velocity mode shape in the subdomain �i 

they correspond to the time-dependent modal amplitudes �n ( t )),

nd the coefficients b 1 , . . . , b N are the state variables associated to

he pressure mode shape in the subdomain �i (they correspond

o the time-dependent modal amplitudes ˙ �n (t) ). Then, the eigen-

ode pressure in the subdomain �i is reconstructed as ϒp ( � x ) =
 

n b n φn ( � x ) = 

t b φ( � x ) . The L -2 norm of the full system’s eigenmode

p ( � x ) , or equivalently its energy, is given by: 

| ϒp || 22 = 〈 ϒp ( � x ) , ϒp ( � x ) 〉 = 

t b 〈 φ( � x ) , t φ( � x ) 〉 b = 

t b 
 b (C.1) 

here 
 is the Gram matrix of the over-complete frame (φn ( � x ))

or the subdomain �i . Therefore, an eigenmode ϒp of the whole

ystem has a small energy, say lower than a threshold ε, if and

nly if: 

1 

| 
| | b| 2 
t b 
 b < ε (C.2) 

here the left-hand side has been non-dimensionalized by the eu-

lidean norm of the Gram matrix | 
|, and the euclidean norm of

he eigenvector | b | 2 . Eq. (C.2) shows that low energy eigenmodes

f the full system are directly related to the poor conditioning of

he Gram matrix 
. Indeed, if an orthogonal basis is used for the

odal expansion, 
 is well-conditioned (it is in fact diagonal), and

o eigenmodes can possibly satisfy Eq. (C.2) : there is therefore no

purious eigenmodes in this case. On the contrary, if an overcom-

lete frame is used, 
 becomes ill-conditioned, and vectors b lying

n singular regions of the spectrum of the quadratic form associ-

ted to 
 can exist. Those satisfy the relation of Eq. (C.2) and are

hen considered as spurious eigenmodes. The threshold was empir-

cally fixed to ε = 10 −4 . However, the procedure showed little sen-

itivity to this parameter: changing the value of ε to 10 −5 or 10 −3 

id not affect the modes identified as spurious. This methodology

as validated on a number of cases with available reference solu-

ions. It is however not formally proved that it is able to differenti-

te spurious modes for any given system; if it happens to misiden-

ify those for a particular case, the brute force method should be

referred. 

ppendix D. State-space representation for an active flame 

pproximated by a Multi-Pole expansion 

For a given active flame, fluctuations of heat release rate Q ( t )

re governed by the FTF of Eq. (24) , and the Multi-Pole expansion

pproximation of the time-delay e − jωτ ( Eq. (25) ). Recasting each

ole Base Function into the time-domain leads to the state-space

ealization of the flame: 
d 

dt 

⎛
⎜ ⎜⎜⎜⎜ ⎜ ⎝ 

Z 1 (t) 
˙ Z 1 (t) 

.. . 
Z M PBF 

(t) 
˙ Z M PBF 

(t) 

⎞
⎟⎟⎟⎟ ⎟⎟⎠

︸ ︷︷ ︸
X (F TF ) (t)

= 

⎛
⎜⎜⎜⎜⎜⎝

0 1 

−ω 

2
01 2 c 1 

. . .

0 1 

−ω 

2
0 M PBF

2 c M PBF 

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A (F TF )

×

⎛
⎜ ⎜⎜⎜⎜ ⎜ ⎝ 

Z 1 (t) 
˙ Z 1 (t) 

.. . 
Z M PBF 

(t) 
˙ Z M PBF 

(t) 

⎞
⎟⎟⎟⎟ ⎟⎟⎠

+ 

⎛
⎜⎜⎜⎜⎜⎝

0 

−1 / u 

...
0

−1 / u

⎞
⎟ ⎟ ⎟⎟⎟ ⎠ 

︸ ︷︷ ︸
B (F TF )

(
u 

(re f ) (t)
)

︸ ︷︷ ︸
U (F TF ) (t)

(D.1) 

In Eq. (D.1) , the flame input vector U 

( FTF ) ( t ) has a single entry,

he reference fluctuating speed u (re f ) (t) = u (x B = βL B , t) . Note that

ther formulations including a pressure value as reference are also

ossible. The state-vector X 

( FTF ) ( t ) contains abstract variables that

erve as intermediates in the calculation of heat release rate. The

tate variable ˙ Z k (t) can be interpreted as the proportion of normal-

zed heat release fluctuating at frequencies contained in the band

f width 2 c k centered around ω 0 k . This state-space realization is

ompleted by the following output equation: 

(
Q(t) 

)︸ ︷︷ ︸
Y (F TF ) (t)

= 

(
0 −2 Q a 1 . . . 0 −2 Q a M PBF

)︸ ︷︷ ︸ 
C (F TF )

⎛
⎜ ⎜⎜⎜⎝ 

Z 1 (t) 
˙ Z 1 (t) 

.. . 
Z M PBF 

(t) 
˙ Z M PBF 

(t) 

⎞
⎟⎟⎟⎟⎠

(D.2) 

The flame output vector Y 

( FTF ) ( t ) only comprises the heat re-

ease rate Q ( t ), which is reconstructed from a linear combination

f the individual components ˙ Z k (t) contained in the state-vector. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.combustflame.2019.05.

10 . 
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