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Abstract 40 
Prevention of pathogen colonization of medical implants is a major medical and financial 

issue since infection by microorganisms constitutes one of the most serious complications 

after surgery or critical care. Immobilization of antimicrobial molecules on biomaterials 

surfaces is an efficient approach to prevent biofilm formation. To the best of our knowledge, 

we developed herein the first self-defensive coating against both bacteria and yeasts where the 45 

release of the antimicrobial peptide is triggered by enzymatic degradation of the film due to 

the pathogens themselves. Biocompatible and biodegradable polysaccharide multilayer films 

based on functionalized hyaluronic acid by cateslytin (CTL), an endogenous host-defensive 

antimicrobial peptide, and chitosan (HA-CTL-C/CHI) were deposited on a planar surface with 

the aim of designing both antibacterial and antifungal coating. After 24 h of incubation, HA-50 

CTL-C/CHI films fully inhibit the development of Gram-positive Staphylococcus aureus 

bacteria and Candida albicans yeasts, which are common and virulent pathogens agents 

encountered in care-associated diseases. Hyaluronidase, secreted by the pathogens, leads to 

the film degradation and the antimicrobial action of the peptide. Furthermore, the limited 

fibroblasts adhesion on HA-CTL-C/CHI films, without cytotoxicity, highlights a medically 55 

relevant application to prevent infections on catheters or tracheal tubes where fibrous tissue 

encapsulation is undesirable. 
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1. Introduction 

Implantable medical devices are widely used in surgery not only to replace altered or lost 60 

tissues but also in critical care for fluid or gas administration using catheters or tracheal tube, 

respectively. These devices constitute an open gate for pathogens invasion.[1] Prevention of 

pathogen colonization of medical implants constitutes a major medical and financial issue 

since nosocomial infection represents one of the most serious complications after surgery or 

critical care. Indeed each year in Europe, 5% of patients admitted to hospitals suffer from 65 

hospital-acquired infections leading to a mortality of 10%.[2] Staphylococcus aureus (S. 

aureus), a Gram-positive bacterium, is responsible for hospital-acquired infections especially 

in immunocompromized patients. It is one of the most virulent bacteria leading to high rates 

of device-related systemic infections and mortality.[3] A recent study has genetically 

characterized the strains of S. aureus responsible of catheter-related infections and 70 

demonstrated that 82% of these strains are methicillin resistant and contain numerous genes 

involved in biofilm formation and bacterial dispersion.[4] Candida albicans (C. albicans), the 

most common human yeast pathogen, possesses the ability to form biofilms that are sources 

of local and systemic infection. Moreover C. albicans biofilms allow the formation of S. 

aureus microcolonies on their surface and even enhanced S. aureus resistance to antibiotics.[5] 75 

When associated with bacterial infections, fungal proliferation induces an increased frequency 

or severity of diseases.[6-8] The recent resistance of C. albicans to antifungal therapies[9, 10] and 

of S. aureus to antibiotics points out the need of multifunctional coatings that prevent 

infections of both yeast and bacteria. 

Various approaches based on immobilization or release of bactericidal substances, 80 

using self-assembled monolayers or grafting of polymers have been explored and extensively 

reviewed.[11, 12] Polyelectrolyte multilayer (PEM) films, based on an alternated deposition of 

polycations and polyanions onto a solid surface, emerged as a simple and efficient approach 
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to functionalize surfaces in a controlled way.[13, 14] The first antibacterial PEM films were 

designed by insertion of silver nanoparticles.[15-20] Later on, hydrophobic bactericide using 85 

dendritic block copolymer[21] and silver ion containing liposomes[22] were inserted in PEM 

films to obtain efficient bactericidal coatings. Chitosan based PEM films were demonstrated 

to be antibacterial against Escherichia coli and Enterococcus faecalis.[16, 23, 24] Antibiotics, 

like gentamicin, have been inserted in hydrolysable[25] or crosslinked PEM films[26] to be later 

released. Despite of an improvement of the antibacterial activity of the films, the use of 90 

antibiotics or silver particles have serious drawbacks because of their limited efficiency, their 

toxicity or their role in the emergence of multi-resisting pathogens.[27, 28] 

Natural antimicrobial peptides (AMPs), secreted by numerous living organisms 

against pathogens, gain increased attention due to their broad spectrum of antimicrobial 

activity and their low cytotoxicity[12]. They predominantly cause disruption of the membrane 95 

integrity of pathogen agents and thus unlikely initiate the development of resistance.[12] 

Positively charged AMPs were already used as a part of the PEM architecture to obtain 

antibacterial effect by contact[29] or by release.[26, 30] Guyomard et al. succeeded in embedding 

in PEM films a complex of poor water soluble AMPs and amphiphilic polyelectrolytes. They 

obtained antibacterial activity against Gram-positive bacteria.[31] Active PEM films with 100 

embedded antifungal peptides were also reported.[32, 33]  Yet, it would be of high interest to 

design coatings bearing both antibacterial and antifungal properties. Up to now, only few 

systems share both properties. They are mainly based on silver coating[34] or quaternary 

ammonium cationic molecules as surfactant,[35] synthetic polymer[36] or silane.[37]  

To our knowledge, no coating based on AMP peptides possessing both properties has 105 

been reported so far. To achieve this goal, we used bovine cateslytin (CTL), a Chromogranin 

A (CGA) derived peptide, an endogenous protein, secreted with its numerous natural derived 

peptides by nervous, endocrine and immune cells during infection[38] acting in the innate 
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immunity system[39]. CTL, an AMP corresponding to CGA344-358, acts in the micromolar 

range with a wide spectrum of antimicrobial activities against Gram-positive bacteria, yeasts 110 

and filamentous fungi, without cytotoxic effect on mammalian cells.[40, 41] Moreover, it is very 

stable against bacterial proteases.[42] We used polysaccharide multilayer films based on CTL-

C-functionalized hyaluronic acid as polyanion and chitosan as polycation, (HA-CTL-C/CHI), 

that were deposited on a planar surface with the aim of designing a self-defensive coating 

against both bacteria and yeasts (Scheme 1). A cystein residue (C) was added at the C-115 

terminal end of the CTL sequence to allow its grafting to HA. HA and CHI are biodegradable 

by enzymatic hydrolysis with hyaluronidase[43] and chitosanase[44] respectively. Both 

polysaccharides are already widely used in biomedical applications due to their interesting 

intrinsic properties.[45, 46] The ability of Staphylococcus,[47] Candida species[48] and M. luteus 

to degrade HA, by producing hyaluronidase, allows the CTL-C to be released from PEM 120 

films only in the presence of the pathogens. Release of antibacterial compounds (AMPs or 

classical antibiotics) are usually obtained by passive diffusion from the films at physiological 

pH[31, 32] or by pH-induced degradation of the films[25, 30]. Pavlukhina et al. reported the 

release of antimicrobial agents using pH variations associated with growth of bacteria as an 

internal trigger to release.[26] This coating can thus be named as self-defensive as it is related 125 

to a local change of the environment of the coating due to the pathogens themselves. This was 

the first system developed based on this idea. We developed herein a new self-defensive 

coating where the release of the antimicrobial peptide is triggered by enzymatic degradation 

of the film due to the pathogens themselves. Polysaccharides adsorbed mass was determined 

by Surface Plasmon Resonance (SPR). The buildup and the topography of the films were 130 

characterized by Atomic Force Microscopy (AFM). Antibacterial and antifungal activities of 

HA-CTL-C in solution and HA-CTL-C/CHI films were tested against two strains Gram-

positive bacteria, i.e. S. aureus and M. luteus and one strain of yeast strain C. albicans, 
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respectively, by using microdilution assays.[49] Confocal laser scanning microscopy (CLSM) 

allowed following the penetration of the fluorescently labeled HAFITC-CTL-C, diluted in 135 

solution or embedded in a PEM film, into the cell membrane of C. albicans. Finally, the 

cytotoxicity of HA-CTL-C/CHI films was tested through Human gingival fibroblasts (HGFs) 

viability. 

2. Result and discussion 

2.1 Physical-chemical characterization of HA-CTL-C/CHI films 140 

CTL-C peptide was covalently coupled to HA in two steps using successively the 

carbodiimide chemistry to graft maleimide functions on HA and the thiol-maleimide coupling 

reaction to graft CTL-C on the modified HA. Synthetic procedures of CTL-C peptide and its 

conjugation to HA are described in Supporting Information (SI). After dialysis and freeze-

drying, a coupling ratio of 5% was determined by 1H-NMR, corresponding to the grafting of 145 

approximately 5 CTL-C peptides for 100 HA dimer units (Figure 1a). The antimicrobial and 

antifungal activities of CTL and modified CTL were tested in solution against two bacterial 

strains M. luteus and S. aureus (ATCC 25923) and a yeast C. albicans. Minimal inhibitory 

concentration (MIC) in peptide of CTL, CTL-C and HA-CTL-C were determined using 

bacterial and fungal assays described in SI. CTL-C remains antimicrobial at micromolar 150 

concentration (< 100 µM) and displays an even better activity against M. luteus compared to 

the cystein free CTL peptide. In comparison with the non-grafted CTL-C peptide, MIC value 

of HA-CTL-C increases from 35 to 45 µM for S. aureus and from 20 to 25 µM for C. 

albicans (Table 1). In the case of M. luteus, the MIC of HA-CTL-C (5 µM) is five times 

higher than that of free CTL-C (1 µM). In spite of this decrease in efficiency, the CTL-C 155 

peptide covalently linked to HA polymer can still be considered as antimicrobial, acting in the 

micromolar range. The buildup of HA-CTL-C/CHI film was monitored by SPR. A linear 

increase of the mass adsorbed is observed at each deposited layer of polysaccharide indicating 
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the buildup of the film (Figure 1b). We investigated the topography and the roughness of HA-

CTL-C/CHI films at different numbers of deposition steps by means of AFM in dry state 160 

(Figure S-1 in SI). It was difficult to obtain good quality AFM images in the wet state due to 

the viscoelasticity of the films as we found for HA/CHI films in our previous work.[50] AFM 

imaging allows measuring film thickness after scratching. Table S-1 in SI summarizes the 

thicknesses and roughnesses measured by AFM. With 5 bilayers, the surface is already 

entirely covered with a 5 nm thick film with a roughness of 1.6 nm. As the buildup process 165 

goes on, the film thickness increases up to 52 nm at 30 bilayers. The film grows linearly up to 

30 bilayers (Figure S-2 in SI) and the film roughness increases up to 16.5 nm (for 30 pairs of 

layers). 

2.2 Bacterial and fungal assays of HA-CTL-C/CHI films 

After characterization of HA-CTL-C/CHI multilayers buildup, the antibacterial and antifungal 170 

activities of the functionalized films were evaluated against two strains of bacteria M. luteus 

and S. aureus and one of yeast strain C. albicans, respectively. The influence of the number of 

embedded functionalized layers was studied by monitoring pathogen growth for different 

films with increasing number of HA-CTL-C/CHI bilayers. To this aim, PEI-(HA/CHI)15-n-

(HA-CTL-C/CHI)n films, with n = 0, 5, 10 and 15, and PEI-(HA-CTL-C/CHI)30 films were 175 

built. Pathogens were incubated for 24 h in contact with HA-CTL-C/CHI films at 37°C for 

bacteria strains and at 30°C for C. albicans. For each pathogen, the microbial growth was 

measured at different times (1 h, 4 h, 6 h and 24 h) by determination of the optical density at 

620 nm (OD620) of the bacterial suspension in contact with the film. The data were normalized 

to OD620 value obtained in similar conditions in the absence of films and are expressed as a 180 

percentage of growth (Figure 2a-c). For each tested pathogen, we observed that by increasing 

the number of HA-CTL-C/CHI bilayers the normalized microbial growth decreases. An 

important decrease of microbial growth is obtained for at least 5 bilayers for M. luteus and C. 
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albicans and 15 bilayers for S. aureus. After 6 h of incubation, at least 70% of inhibition is 

obtained with 15 bilayers for all tested pathogens. After 24 h of incubation, the growth of M. 185 

luteus, C. albicans and S. aureus are fully inhibited with 5, 15 and 30 HA-CTL-C/CHI 

bilayers, respectively. These results are in agreement with the MIC values of HA-CTL-C in 

solution (Table 1) that follow the same trend towards the different pathogens. In order to 

check if the films can be reused several times as antimicrobial coatings, the growth of the 

three pathogens was monitored when incubated for 24 h in contact with reused PEI-(HA-190 

CTL-C/CHI)15 films for M. luteus and C. albicans and PEI-(HA-CTL-C/CHI)30 film for S. 

aureus. To this aim, a fresh pathogen suspension was brought in contact with the 

functionalized film. After an incubation of 24 h, the supernatant was withdrawn and replaced 

by a fresh pathogen suspension. After each withdrawal, the OD620 of the supernatant was 

measured to determine pathogen growth after 24h of incubation. When M. luteus and C. 195 

albicans suspensions in contact with (HA-CTL-C/CHI)15 film are renewed every 24 h, a 

complete inhibition was observed at least for two and three cycles of use respectively. A 

significant decrease in efficiency of (HA-CTL-C/CHI)15 film is detectable after the following 

renewal of pathogens suspension (Figure 2d). S. aureus growth is only inhibited by 40% for 

the second use of the (HA-CTL-C/CHI)30 film and becomes fully inefficient in the third cycle. 200 

In parallel, the supernatants withdrawn were incubated with fresh pathogen suspensions for 

24 h and the OD620 was also measured (Figure S-3 in SI). No inhibition of growth was 

observed showing that there is no or a weak amount (quite less than the MIC) of CTL-C 

released in solution. 

2.3 Mechanism of pathogen growth inhibition of HA-CTL-C/CHI 205 

To clarify the mechanism of HA-CTL-C inhibition, we synthesized fluorescently labelled 

HAFITC-CTL-C and HAFITC to analyze the films after contact with the pathogens. S. aureus 

and C. albicans are known to secrete hyaluronidase, a class of enzymes able to hydrolyze 
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HA.[47, 48] The cutting of one constitutive partner of the film should lead to its degradation as 

it was observed by Etienne et al.[51] We were then interested in imaging PEI-(HAFITC/CHI)15 210 

films, by CLSM, before and after 24 h of contact with the pathogens. The three of pathogens 

induce the degradation of HA/CHI films with, however, some differences in the resulting film 

morphologies (Figure 3). After 24h of incubation with S. aureus, HAFITC/CHI films were 

almost totally degraded (Figure 3a). The film appears inhomogeneous with fluorescent dots 

after incubation with M. luteus (Figure 3b). C. albicans induces the formation of honeycombs 215 

in the film due to the degradation of HA (Figure 3c). Degradation of HA should release CTL-

C in the supernatant and promote the contact between CTL-C peptides and the pathogens. To 

check this hypothesis, we built hyaluronidase resistant films functionalized by CTL-C. CTL-

C grafted on poly(allylamine hydrochloride) was thus synthesized and used to build 

poly(acrylic acid)/CTL-C functionalized poly(allylamine hydrochloride) (PAA/PAH-CTL-C) 220 

film. After 24h of incubation, (PAA/PAH-CTL-C)15 films show no inhibition against C. 

albicans (data not shown). This emphasizes the fact that the antimicrobial activity of the HA-

CTL-C/CHI film is due to its degradation by the pathogens. This property renders the film 

specifically active in the presence of hyaluronidase secreted by the pathogens. Pathogens thus 

initiate their own death when brought in contact with the HA-CTL-C/CHI film. Even though 225 

the film is degraded with time in the presence of pathogens, it can be reused at least two and 

three times without losing its activity against M. luteus and C. albicans. 

Using fluorescently labelled CTL-C, a previous study showed that the peptides penetrate into 

cell membranes and accumulate inside yeasts.[40, 41] The interactions of HAFITC-CTL-C and 

HAFITC with C. albicans was thus studied when solubilized in solution or embedded in 230 

multilayer films. After 45 min of incubation at 30°C with HAFITC or HAFITC-CTL-C in 

solution, C. albicans were observed by CLSM. The fluorescent HAFITC-CTL-C was detectable 

in cytoplasm without inducing cell lysis (Figure 4a). On the contrary, HAFITC is clearly 
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observed all around the yeast cells, stacking probably on the membranes and leading to a 

honeycomb structure (Figure 4b). This suggests that CTL-C can cross the cell membrane, 235 

even when it is coupled to HA, leading to an accumulation of HA inside the cytoplasm. To 

image them by CLSM, the films were treated by paraformaldehyde (PFA) to fix the pathogen 

in contact. This treatment was first applied on the films to evaluate its effect. PFA treatment 

induces no change in the case of HAFITC/CHI films in contrary to HAFITC-CTL-C/CHI films 

(Figure S-4 in SI) where heterogeneities appear. C. albicans were incubated for 45 min at 240 

30°C in contact with PEI-(HAFITC-CTL-C/CHI)15 film and then observed by CLSM. Among 

the heterogeneities due to PFA treatment, a strong green fluorescence is observed mainly 

inside the yeast (Figure 4c). In the case of HAFITC/CHI films, a little fluorescence is localized 

inside the yeasts and only few of them are strongly fluorescent (Figure 4d). In spite of its 

insertion into the PEM films, CTL-C allows the penetration of HAFITC-CTL-C inside the 245 

yeasts explaining the activity of the films. 

 

2.4 Biocompatibility tests of HA-CTL-C/CHI films 

Finally, it is important to ensure that the film is not cytotoxic to healthy wound healing cells. 

Fibroblasts are one of the first anchorage-dependent cells to come at an implant surface 250 

during the wound healing process. The viability of human gingival fibroblasts (HGFs) 

cultivated on PEI-(HA-CTL-C/CHI)15 films, compared to PEI-(HA/CHI)15 films and glass 

substrate, has been evaluated through their mitochondrial activity, monitored by Alamar 

blue™ assays. Already after one day, the metabolic cell activity measured on HA-CTL-

C/CHI films is lower compared to HA/CHI films and non-coated glass substrate (Figure 5a). 255 

The good biocompatibility of HA/CHI films towards HGFs, mediated via CD44 receptor, was 

already reported in our previous work.[50] After 7 days of culture, the number of viable HGFs 
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on HA-CTL-C/CHI films represents 25% of viable HGFs on HA/CHI films. The 

functionalization of HA by CTL-C peptide induces a lower adhesion of HGFs which seems to 

slow down the proliferation of cells. Knowing that HA-CTL-C in solution at 100 µM did not 260 

show any cytotoxicity (data not shown), such behavior would suggest that the multilayers are 

not cytotoxic. To discriminate between cytotoxic or low initial adhesion properties of HA-

CTL-C/CHI, we performed two experiments. First after 24 h of contact, suspended cells 

harvested from HA-CTL-C/CHI film supernatant were passed to fresh culture plates. After 

24 h of culture, many cells readily attached and spread as fresh cells. Second, we analyzed the 265 

biocompatibility of films by a complementary assay based on cell spreading via cytoskeleton 

arrangement when the cells are seeded on a glass substrate half coated by (HA-CTL-

C/CHI)15. After 24 h, HGFs adhere on the glass substrate (Figure 5b, zone II), but to a lesser 

degree on (HA-CTL-C/CHI)15 film (Figure 5b, zone I). After 24 h of culture, a confluent 

layer with a typical fibroblastic cell shape and with polymerized F-actin fibers is observed on 270 

the glass substrate (Figure S-5a in SI). On the HA-CTL-C/CHI film, cells appear less 

elongated and have a peripheral actin distribution (Figure S-5b in SI). This indicates that 

(HA-CTL-C/CHI)15 films are not cytotoxic but seem rather anti-adherent towards HGFs. It is 

know that persistent excessive functions of fibroblasts have been linked to detrimental fibrous 

tissue formation which may cause implant failure. The present results of decreased fibroblast 275 

adhesion on functionalized substrate with HA-CTL-C/CHI films shows promise for implant 

applications. 

3. Conclusions 

In conclusion, we designed a new surface coating based on polysaccharide multilayer films 

containing a functionalized HA with 5% of CTL-C, a peptide possessing both antibacterial 280 

and antifungal properties. Antimicrobial properties of CTL-C were preserved when grafted on 

HA either in solution or when embedded into PEM films. After 24 h of incubation, HA-CTL-
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C/CHI films fully inhibit the development of S. aureus and C. albicans, which are common 

and virulent pathogens agents encountered in care-associated diseases. The presence of CTL-

C peptides on HA allows the penetration of the modified polysaccharide inside C. albicans 285 

after 45 min of contact. The secretion of hyaluronidase by all tested pathogens seems to be 

responsible for HA-CTL-C release from the film and for its activity. The film can keep its 

activity during 3 cycles of use against fresh incubated C. albicans suspension. Furthermore, 

the limited fibroblasts adhesion, without cytotoxicity, on HA-CTL-C/CHI films highlights a 

medically relevant application to prevent infections on catheters or tracheal tubes where 290 

fibrous tissue encapsulation is undesirable. 

4. Experimental 

Polysaccharide solutions. Chitosan (CHI, PROTASAN Ultrapure Chitosan CL213, 

260 000 g/mol, DA 83 %) was purchased by Novamatrix (Sandvika, Norway). Dried Sodium 

Hyaluronate (HA, 420 000 g/mol) was purchased by Lifecore (Chaska, USA). Poly(ethylene 295 

imine) (PEI, 60 000 g/mol, 50% in water), sodium chloride, sodium dodecyl sulfate (SDS), 

HCl and NaOH were purchased by Sigma-Aldrich (Quentin-Fallavier, France). All products 

were used without further purification. 150 mM NaCl solution was prepared with Ultrapure 

Milli-Q® water having a resistivity of 18.2 MΩ.cm. CHI and HA solutions were prepared at 

0.3 mg/mL in 150 mM NaCl adjusted at pH 4 with NaOH or HCl solutions. HA-CTL-C and 300 

HAFITC-CTL-C solutions were prepared at 0.2 mg/mL and 0.1 mg/mL, respectively. PEI 

solution was prepared at 0.5 mg/mL in 150 mM NaCl solution adjusted at pH 7.5 with NaOH 

or HCl solutions. 

Film buildup. Before PEM buildup, glass coverslips (Ø = 14 mm; VWR, Strasbourg, 

France) were cleaned in a SDS solution at 0.01 M, ultrasonicated for 5 min and then 305 

submitted to a hot 0.1 M HCl solution for 10 min and finally rinsed with ultrapure Milli-Q® 

water. The precursor PEI layer and CHI/HA films were deposited using an automated 



  Submitted to  

13 

 

spraying device described in a previous work[50]. CHI/HA-CTL-C and CHI/HAFITC-CTL-C 

films have been prepared in 24-well plates on PEI precoated glass substrates. 300 µL of the 

polycation solution were deposited for 5 min on glass coverslips followed by a rinsing step 310 

(500 µL) with ultra Milli Q water. Then, 300 µL of polyanion solution were deposited for 5 

min followed by a rinsing step (500 µL) with ultra Milli Q water. To test the antimicrobial 

activity of PEM films versus the number of HA-CTL-C layers, PEI-[HA/CHI]15-n[HA-CTL-

C/CHI]n with n equal to 0, 5, 10 and 15 and PEI-[HA-CTL-C/CHI]30 films were built. 

Surface Plasmon Resonance. Surface plasmon resonance (SPR)[53, 54] as some other 315 

detection techniques (optical waveguide lightmode spectroscopy, quartz crystal 

microbalance), provides a label-free, in situ method to monitor the buildup of e.g. a polymer 

film on a solid surface. When a beam of light passes from a material of refractive index, n1, 

into a material with a lower refractive index, n2, some light is reflected from the interface. 

When the angle of incidence of the light, , on the interface is greater than TIR = 320 

arcsin(n2 / n1), the light is completely reflected (total internal reflection). In the case of the 

SPR instrument used here (SPR NaviTM 200, Bionavis, Finland), the most refractive medium 

is a BK7-glass prism. Because the bottom surface of the prism is coated with a thin film of a 

noble metal (gold), this reflection is not total; some of the light is 'lost' into the metallic film. 

There then exists a second angle, SPR > TIR, at which the intensity of the reflected light goes 325 

through a minimum. In addition, an evanescent electrical field travels for a short distance into 

the medium (e.g. film) from the metallic film. The probing distance reaches generally a few 

hundreds of nm depending on the refractive index of the probed medium and SPR is sensitive 

to the optical characteristics of the deposited film. The reflection curves, i.e. the variation of 

the intensity of the reflected light with , corresponding to the successive polymer deposition 330 

steps have been analyzed with a home-made software based on Maxwell's equations. The 

parameters involved are the refractive indices of the prism, the chromium and gold layers, the 
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polymer film (nfilm) and the buffer solution (nsol), as well as the thickness of the chromium and 

gold layers and of the film (dfilm). From nfilm, nsol and dfilm, we derive the mass of film per unit 

area: 335 

cn

dnn
m

/dd

)( filmsolfilm 
           (1) 

where dn/dc is the change in refractive index with concentration and is equal to 0.197 cm3/g 

for polyelectrolytes[55]. The SPR experiment was performed under a continuous flow rate of 

100 µL/min of 150 mM NaCl solution adjusted at pH 4. The time of deposition and of rinsing 

of polyelectrolytes was fixed at 5 min. 340 

Atomic Force Microscopy (AFM). Atomic force microscopy (AFM) images were 

obtained in contact mode in dry state with the Nanoscope IV from Veeco (Santa Barbara, 

CA). The images were carried out with silicon nitride cantilevers, spring constant 0.03 N/m 

(model MSCTAUHW, Veeco, CA). Several scans were performed over a given surface area. 

These scans had to give reproducible images to ascertain that there is no sample damage 345 

induced by the tip. Deflection and height mode images are scanned simultaneously at a fixed 

scan rate (2 Hz) with a resolution of 512×512 pixels. Data evaluation was performed with the 

NanoScope software version 5.31r1 (Digital Instruments, Veeco). The buildup of the film was 

made on glass substrate and the film thickness was measured by using the “scratch” method. 

Profilometric section analyses of a scratched film allowed us to determine precisely the 350 

quality of the film and its thickness over the scanned area. The scratches were achieved with a 

plastic cone tip and were always imaged perpendicular to the fast scan axis. The profiles 

correspond to a cross section along this axis. The mean thickness of the scratched film was 

determined by measuring the thickness at least on three areas. 

Confocal Laser Scanning Microscopy (CLSM). Confocal laser scanning microscopy 355 

(CLSM) observations were carried out with a Zeiss LSM-510 microscope using a 40×/1.31 oil 
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immersion objective and a 0.43 µm z-section interval. FITC fluorescence was detected upon 

excitation at 488 nm, through a cut-off dichroic mirror and an emission bandpass filter of 

505–530 nm (green). 

Bacterial and fungal growth. To determine the antibacterial activity, microdilution 360 

assay was used on two bacterial strains M. luteus (A270) and S. aureus (ATCC25923). The 

antifungal activity was tested against one yeast strain C. albicans. Bacteria were precultured 

aerobically in Mueller-Hinton (MH) broth (Merck, Darmstadt, Germany) with agitation at 

37°C for 18 h. C. albicans preculture was carried out on a Sabouraud broth (SB) medium 

(BioMérieux S.A., Marcy l’Etoile, France) with agitation at 30°C for 24 h. The antimicrobial 365 

activity was tested using a mid-logarithmic-phase culture of bacteria or yeast with an initial 

optical density at 620 nm (OD620) of 0.001. For the tests performed in solution, aqueous 

solutions of CTL, CTL-C and HA-CTL-C were prepared in bacterial or yeast medium. 

Aliquots of CTL-C or HA-CTL-C (10 µL) were incubated in 96-well microplates (Falcon, 

Becton Dickinson, USA) with 90 µL of bacteria or yeast at final concentrations of 100 µM to 370 

2 µM of peptide. After 24 h of incubation at 37°C under gentle stirring, the OD620 of the 96-

well plate was measured by a microplate reader.[56, 57] MIC100, the minimal inhibitory 

concentration, is the lowest concentration that is able to completely inhibit the growth of 

bacterial or fungi after 24 h of contact. To test the antibacterial and antifungal properties of 

the multilayer films, PEI-(HA/CHI)15-n-(HA-CTL-C/CHI)n with n = 0, 5, 10 and 15 and PEI-375 

(HA-CTL-C/CHI)30 films were prepared. 400 µL of a mid-logarithmic-phase culture of 

bacteria or yeast with OD620 of 0.001 were placed in 24-well plate containing multilayer 

films. For each tested film, 100 µL of the supernatant was taken to measure its OD620 by a 

microplate reader. The withdrawn volume was compensated with the appropriated fresh 

bacteria or yeast solution of the same measured OD620. Intermittent controls were performed 380 

by inoculating the culture medium on MH (resp. SB) agar plates by spreading method and 



  Submitted to  

16 

 

counting colonies for verification at different steps. Several controls were used: a fresh 

medium without inoculation of pathogens was used to ensure sterility, a mixture of 

Tetracycline (10 µg/mL) and Cefotaxime (0.1 µg/mL) was used as positive control (90 µL of 

culture and 10 µL of antibiotics) and a fresh inoculated culture medium without any addition 385 

was taken as negative control. For the bacterial and yeast quantification, a conversion factor 

was devised to convert OD into bacterial and yeast counting, respectively. Briefly, OD of 

fresh bacteria (resp. yeast) culture was measured at 620 nm and was plated to MH (resp. SB) 

agar for 24 h at 37°C (resp. 30°C). Colony count was performed and plotted versus the OD620 

and the slope of the linear curve was taken as conversion factor. Pathogen quantification 390 

(colony forming unit (CFU) per mL) was performed at time zero and then at each hour for 6 h 

and then finally at 24 h. For quantification, conversion factors were determined for each strain 

used separately.[58] Each assay was performed in triplicate and the experiments were repeated 

at least three times. The normalized growth of pathogens (in %) was estimated by comparing 

the OD620 values in the presence of multilayer films and the positive and the negative controls. 395 

The OD620 value of control cultures growing in the absence of films and antibiotics was taken 

as 100% growth (negative control) and the OD620 value of cultures growing in the presence of 

antibiotics (Tetracycline and Cefotaxime) was taken as 0% growth (positive control). To this 

aim, the following equation was used: 

100
)(

)(
(%)

,620,620

,620,620







controlpositivecontrolnegative

controlpositivesample

ODOD

ODOD
growthpathogenNormalized  400 

To follow the interaction of fluorescently labeled HAFITC-CTL-C in solution and HAFITC-

CTL-C/CHI films with C. albicans, CLSM was used based on a protocol previously described 

with few modifications.[59] Briefly, for experiments done with HAFITC-CTL-C in solution, 

poly-L-Lysine coated microscopic slides were covered with fresh medium containing C. 

albicans (OD620 = 0.001) in SB culture medium and incubated for 24 h at 30°C without 405 
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agitation. The medium was then removed and replaced by 50 µM (in peptide) of HAFITC-

CTL-C. After an incubation period of 45 min, the slides were washed with fresh culture 

medium and subsequently treated for 30 min with 4% paraformaldehyde in phosphate buffer 

saline (PBS) at pH 7.3. After several rinsing steps with PBS, slides were covered with Moviol 

4-88 (Aldrich, Steinheim, Germany). For experiments performed with HAFITC-CTL-C/CHI, 410 

fresh C. albicans medium, previously incubated at OD620 =0.001 in SB culture medium for 

24 h at 30°C without agitation, was put in contact with PEI-(HAFITC-CTL-C/CHI)15 films for 

45 min at 30°C without agitation. HAFITC in solution and HAFITC/CHI films were used as 

control. C. albicans were subjected to optical serial sectioning (0.2 - 0.3 µm) to produce 

images in the x-y plane. Each optical section was scanned several times to obtain an average 415 

image. Images were recorded digitally in a 768 × 576 pixel format. 

Human gingival fibroblasts viability assays. The biocompatibility of films was tested 

using human gingival fibroblasts (HGFs). HGFs were extracted from human gingival 

connective tissue of healthy individuals according to a protocol approved by the ethics 

committee for patient protection of CPP Strasbourg Hospitals. Cells were grown in DMEM 420 

containing 1 g/L of glucose and supplemented with 10% fetal bovine serum and 100 IU/mL 

penicillin-streptomycin (all from Gibco®). Cells were cultured at 37°C in 5% CO2 in 75 cm2 

flasks. HGFs were used between the 6th and the 9th passage. Before cell seeding, glass 

coverslips (Ø = 14 mm) coated with different architectures were irradiated by UV for 15 min. 

Then HGFs were seeded at 3  104 cells per cm2 and cultivated at 37°C under a 5% CO2 425 

humidified atmosphere for different culture times (Day 1, Day 2 and Day 7). Cell viability 

was assessed by Alamar BlueTM assay (Biosource International). This assay is based on the 

reduction of the blue, non-fluorescent resazurin dye to the pink and fluorescent resorufin dye 

by living cells.[60] The overall conversion rate is proportional to the metabolic activity of 

living cells.[61] Viability was assessed for different times 1, 2 and 7 days. After rinsing with 430 
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PBS, cells were incubated with 10% reagent in complete medium for 2 h. After incubation 

optical density (OD) at 570 nm and 630 nm were determined with a microplate reader. The 

percentage of reduction of Alamar BlueTM was calculated according to the procedure provided 

by the manufacturer. The experiments were performed in triplicate. Actin filament staining 

with tetramethylrhodamine B isothiocyanate coupled phalloidin® (Sigma-Aldrich) and DAPI 435 

(Invitrogen) nuclei counterstaining were performed as follows: cells were fixed with 3.7% 

paraformaldehyde for 10 min at 4°C, permeabilized in 0.25% Triton X-100 in PBS for 10 

min, and blocked in 1% BSA-PBS for 30 min. Thereafter, cells were incubated for 30 min at 

room temperature with 5 × 10-5 mg/mL mL phalloidin® followed by nuclear counterstaining 

with DAPI (50 ng/mL) incubated for 2 min at room temperature. Washed slides were 440 

mounted on blades with DAKO fluorescent mounting medium and fluorescence distribution 

was examined by means of an inverse fluorescence microscope (Axiovert, Zeiss). 
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Scheme 1. Schematic representation of CHI/HA multilayers functionalized by an 

antimicrobial peptide (AMP) and its activity towards bacteria and yeasts based on the 

degradation of the film. 585 
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Figure 1. (a) Formula of CTL-C functionalized hyaluronic acid, HA-CTL-C, at 5% in 

grafting ratio (b) Evolution of the mass adsorbed, measured by SPR, (black disks) for the 

buildup of PEI-(HA-CTL-C/CHI) multilayer film as a function of the number of deposited 

pairs of layers. The straight line serves to guide the eye. 

 605 

 

Table 1. Minimal inhibitory concentration (MIC100 in µM) of CTL, CTL-C and HA-CTL-C 

measured in solution leading to a complete inhibition of pathogens. In the case of HA-CTL-C, 

the MIC values given correspond to the concentration in CTL-C. 

 610 

Pathogens 

MIC100 (µM in peptide) 

CTL CTL-C HA-CTL-C 

S. aureus 30 35 45 

M. luteus 5 1 5 

C. albicans 20 20 25 
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Figure 2. Normalized growth of (a) S. aureus, (b) M. luteus and (c) C. albicans incubated for 615 

1 to 24 h in contact with PEI-(HA/CHI)15-n-(HA-CTL-C/CHI)n with n = 0 to 15 and (HA-

CTL-C/CHI)30 multilayer films. (d) Normalized growth of S. aureus incubated on PEI-(HA-

CTL-C/CHI)30 and M. luteus and C. albicans incubated on PEI-(HA-CTL-C/CHI)15 films, as 

a function of the number of uses. The film was brought in contact with a fresh pathogen 

suspension for 24 h. Every 24 h, the supernatant is removed and replaced by a fresh 620 

suspension and its OD620 is measured. The films were built in 150 mM NaCl at pH 4. The 

normalization was performed with respect to OD620 measured in the absence of film and 

antibiotics taken as 100% growth and in the presence of antibiotic taken as 0% growth. ND 

means not determined. 
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Figure 3. CLSM images of PEI-(HAFITC/CHI)15 after 24 h of incubation with (a) S. aureus, 

(b) M. luteus and (c) C. albicans. All the films underwent a PFA treatment. The scale bars 

represent 20 µm. 
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Figure 4. CLSM images of C. albicans, after 45 min of incubation, (a) in the presence of 

HAFITC-CTL-C in solution (50 µM in peptide), (b) in the presence of HAFITC in solution, (c) in 

contact with PEI-(HAFITC-CTL-C/CHI)15 and (d) in contact with PEI-(HAFITC/CHI)15 

multilayer films. The scale bars represent 20 µm. 
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2D Graph 1
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Figure 5. (a) Viability of HGFs, evaluated by metabolic activity of cells, cultured on PEI-

(HA/CHI)15, named HA/CHI and PEI-(HA-CTL-C/CHI)15, named HA-CTL-C/CHI, films 655 

built on glass substrates. Cell viability was determined by Alamar BlueTM assays after 1, 2 

and 7 days of culture. The values represent the mean and the standard deviation of three films. 

(b) Cytoskeleton visualization by actin filament immunofluorescent staining with phalloidin® 

(red labeling) and DAPI nuclei counterstaining (blue labeling) of HGFs after 24 h of culture 

on half coated glass substrate by PEI-(HA-CTL-C/CHI)15: the areas represent (I) the HA-660 

CTL-C/CHI film and (II) the bare glass substrate, respectively. 

 

a 
b 

(II) (I) 
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as polyanion and chitosan as polycation, is deposited on a planar surface with the aim of 665 
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Abbreviations: AMP = antimicrobial peptides, CGA344-358 = chromogranin A 344-358; CTL 

= cateslytin; CHI = chitosan; CTL-C = cateslytin with a cystein in C terminal; HA = 

hyaluronic acid; EDC = N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride; 695 

sulfo-NHS = N-Hydroxysulfosuccinimide sodium salt; HEPES = 4-(2-

hydroxyethyl)piperazine-1-ethanesulfonic acid; TCEP = tris(2-carboxyethyl)phosphine 

hydrochloride; Da = Dalton; tBuOH = tertio-butanol; DS = degree of substitution; NMR = 

nuclear magnetic resonance; MHz = megahertz; ppm = parts per million ; br = broad; s = 

singlet; d = doublet; m = multiplet. 700 

 

1. Preparation and analysis of synthetic antimicrobial peptides.  
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The synthetic peptide corresponding to bovine CGA (Uniprot P05059), named CTL, (CGA344-

358: RSMRLSFRARGYGFR) was synthesized with a cystein at the C-terminal end (CTL-C) 705 

on a phase approach with 9-fluorenylmethoxycarbonyl (Fmoc) chemistry.[1] After purification 

by a Dionex HPLC system (Ultimate 3000; Sunnyvale, CA USA) on a Macherey Nagel 

Nucleosil RP 300-5C18 column (10 × 250 mm; particle size 5 µm and pore size 100 nm), the 

peptide was analyzed by mass spectrometry (MALDI-TOF) and automated Edman 

sequencing on an Applied Sequencing System Procise (Applied Biosystems, Foster City, 710 

USA).[2] MALDI mass measurements were carried out on an Ultraflex™ TOF/TOF 

(BrukerDaltonics, USA) to perform a rapid control of synthetic peptides according to the 

procedure previously reported.[3] 

CTL-C 
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2. Preparation of modified HA and PAH. 

Peptide and FITC functionalized HA, i.e. HA-CTL-C, HAFITC and HAFITC-CTL-C, and 715 

peptide modified PAH have been prepared according to the general synthetic pathway 

described below. 

2.1. Preparation of HA-CTL-C 

Hyaluronic acid (HA) 420 000 Da, was functionalized with maleimide group according to 

previously reported method.[4] HA (100.9 mg) was dissolved in 15 mL of 0.01M HEPES 720 

buffer (pH 6). EDC (35.2 mg) and sulfo-NHS (10.2 mg) were added to this solution and the 

resulting mixture was stirred 2 h at room temperature. Afterwards, N-(2-aminoethyl) 

maleimide trifluoroacetate salt (6.7 mg) was added to the reaction mixture and let stirred for 

20 h. The mixture was dialyzed (cut-off 12 000-14 000 Da) first against 0.5 M NaCl for one 

day and MilliQ water for 6 days. Water was changed every day. HA-Mal (86 mg) was 725 

obtained as a white solid after freeze-drying. The degree of substitution (DS) of HA-Mal, 

defined as the number of maleimide groups per 100 disaccharide unit of HA, was determined 

by 1H NMR (D2O, 400 MHz). All spectra were realized in D2O containing 5% of tBuOH: the 

singlet of the t-butyl group of tBuOH was calibrated at δ 1.24 ppm and thus used as internal 

reference. The singulet at δ 7.1 ppm was assigned to the two symmetric protons on the double 730 

bond of the maleimide group. By comparing the integration of this signal with the singlet at δ 

2.0 ppm, assigned to the methyl protons of the acetamide group, the DS was determined 

equivalent to 5%. 

1H NMR (D2O, 400MHz, δ ppm): δ 6.9 (s, maleimide), 4.5 (br d, HA), 3.5 (m), 2.0 (s, acetyl 

group of HA). 735 

The coupling reaction between HA-Mal 5% (80 mg) and CTL-C (10.1 mg) was 

performed at 4°C for 20°h in 16mL of 0.01M HEPES buffer (pH 6) and 50 µM of TCEP. 

Then, the mixture was dialyzed (cut-off 50 000Da) against 0.5 M NaCl for one day and 

MilliQ water for 6 days. Water was changed every day. Peptide-conjugated HA, named HA-

CTL-C, was freeze-dried to provide a white solid with 80-85% of overall yield ( 79 mg). 740 

The DS, defined as the number of CTL-C peptide per 100 disaccharide units of HA, was 

determined by 1H NMR (D2O, 400 MHz). All aromatic signals between δ 7.0 and 7.5 ppm 

corresponding to the protons of the aminoacids Phe and Tyr were compared to the singlet at δ 

2.0 ppm (assigned as the methyl group of the acetamide). A DS of 5% is determined. 

 745 
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1H NMR (D2O, 400MHz, δ ppm): 7.35 (br s, Ar aminoacid of CTL-C), 7.25 (br s, Ar 770 

aminoacid of CTL-C), 7.10 (br s, Ar aminoacid of CTL-C), 6.85 (br s, Ar aminoacid of CTL-

C), 4.50 (br s, HA), 4.40 (br s, CTL-C), 3.10 (br s, CTL-C), 2.50 (br s, CTL-C), 2.00 (s, 

methyl from acetyl group of HA), 1.75 (br s, CTL-C), 0.95 (br s, CTL-C). 

2.2. Preparation of HAFITC 

Fluorescein Isothiocyanate (FITC) has been covalently attached to HA according to the 775 

following procedure: a solution of FITC (41 µmol dissolved in 2 mL of DMSO) and a 

solution of HA (0.31 µmol dissolved in 18 mL of deionized water) were mixed. The resulting 

solution was then adjusted at pH 9 by using a 0.01M NaOH solution. The reaction mixture 
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was stirred for 12 h at room temperature. Then, 40 mL of deionized water was added and this 

final mixture was dialyzed (cut-off: 12 000 – 14 000 Da) against deionized water until no 780 

absorbance was detected in the water (λ = 494 nm). The obtained compound is a yellowish 

solid and corresponds to functionalized HA by 1% of fluorescein. The 1H NMR (D2O) 

spectra of HAFITC is identical to the non-modified HA. Because of the very low loading of 

fluorescein on HA, the 1H NMR (D2O) spectra of HAFITC is identical to the non-modified HA. 

 785 

 

 

 

 

 790 

The fluorescein moiety may also be linked through the secondary alcohol groups. 

2.3. Preparation of HAFITC-CTL-C 
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The fluorescein moiety may also be linked through the secondary alcohol groups. 

HAFITC-CTL-C polymer has been prepared from HA-Mal. This polymer was labeled with 1% 

FITC as described above to provide HAFITC-Mal. Then, CTL-C peptide reacted with free 805 

maleimide group to lead to HAFITC-CTL-C as a yellow solid. The procedure used to get 
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HAFITC-CTL-C was identical to the one described above to prepare HA-CTL-C. 1H NMR 

(D2O) spectra of HAFITC-CTL-C was identical to the spectra of HA-CTL-C. 

2.4. Preparation of PAH-CTL-C  

All the following reactions were carried out in NMR tube and monitored by 1H NMR (D2O). 810 

To a solution of PAH (22.16 mg) in D2O (0.6 mL) was added Mal-OSu (15 mg). The 

resulting mixture was stirred mechanically at room temperature until RMN monitoring 

indicated total consumption of the reagent (48 h). Evaporation of solvent provided the desired 

PAH-Mal (27 mg) as a white solid which was used without further purification. The DS of 

PAH-Mal was determined by 1H NMR (400MHz, D2O) and defined as the number of 815 

maleimide groups per 100 allylamine units of PAH. NMR Spectrum was realized in D2O and 

calibrated at δ 4.79 ppm (residual water). The singulet at δ 6.9 ppm was assigned to the two 

symmetric protons on the double bond of the maleimide group. By comparing the integration 

of this signal with the singlet at δ 3.1 ppm, assigned to the CH2-NH protons of the allylamine 

group, the DS was determined equivalent to 10%. 820 

1H NMR (D2O, 400MHz, δ ppm): δ 6.9 (s, maleimide), 3.8 (t, Mal-CH2-CH2-CO), 3.1 (br s, 

CH2 of PAH), 2.7 (t,  Mal-CH2-CH2-CO), 2.1 (br s, CH of PAH), 1.6 (br s, CH2 of PAH). 
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The coupling reaction between PAH-Mal 10% (1.5 mg) and CTL-C (15.6 mg) was performed 

overnight at room temperature in 0.6 mL of 10 mM HEPES buffer solution in D2O (pH 6). 

Then, the mixture was dialyzed (cut-off: 12 000 – 14 000 Da) against MilliQ water for 6 days 

(water was changed every day). Peptide-conjugated PAH, named PAH-CTL-C, was freeze 

dried to provide a white solid (17 mg). This quantitative yield and the 1H NMR described 840 

below allowed us to define a 10% DS (number of CTL-C peptide per 100 allylamine units of 

PAH).  

1H NMR (D2O, 400MHz, δ ppm): 7.35 (br s, Ar aminoacid of CTL-C), 7.25 (br s, Ar 

aminoacid of CTL-C), 7.13 (br s, Ar aminoacid of CTL-C), 6.86 (br s, Ar aminoacid of CTL-

C), 3.67-4.68 (m, CTL-C), 3.10 (br m, PAH and CTL-C), 2.50-2.68 (br m, CTL-C), 1.34-2.18 845 

(br m, PAH and CTL-C), 0.96 (br s, CTL-C). 
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4. Supplementary Figures 
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Figure S-1: AFM images of non-scratched and 3D images and their profilometric sections of scratched PEI-

(HA-CTL-C/CHI)n films built at (a) 5, (b) 10, (c) 15 and (d) 30 bilayers obtained in height mode in dry state. 860 
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Table S-1. Thicknesses and roughnesses of PEI-(HA-CTL-C/CHI)n films built at different number of deposited 

pair of layers, n. The errors on the thickness values measured by AFM were obtained from the measurement of 

three different areas. 

n dAFM (nm) RMS (nm) 

5 5 ± 1 1.6 ± 0.1 

10 17 ± 2 4.2 ± 0.8 

15 28 ± 3 4.6 ± 0.9 

30 52 ± 9 16.5 ± 2.8 

 865 
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Figure S-2: Evolution of the thickness of (HA-CTL-C/CHI) films, measured by AFM in dry state after 

scratching, at different number n of pairs of layers. 870 
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Figure S-3: Normalized growth of S. aureus, M. luteus and C. albicans, incubated for 24 h in contact with the 

supernatant withdrawn from HA-CTL-C/CHI films used in Figure 2d. Every 24 h, the film was put in contact 

with a fresh pathogen suspension. After 24 h of incubation with the film, the supernatant was withdrawn and 875 

incubated for 24 h with a fresh pathogen suspension. The normalization was performed with respect to OD620 

measured in the absence of film and antibiotics taken as 100% growth and in the presence of antibiotic taken as 

0% growth. ND means not determined. 
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Figure S-4: CLSM images of PEI-(HAFITC/CHI)15 (a) before and (b) after paraformaldehyde (PFA) treatment 

and of PEI-(HAFITC-CTL-C/CHI)15 (c) before and (d) after PFA treatment. PFA treatment was performed to 

allow the observation of polysaccharide multilayer films after contact with pathogens. The films are put into 

contact for 30 min with 4% paraformaldehyde in phosphate buffer saline (PBS) at pH 7.3 and, after several 885 

rinsing with PBS, were covered with Moviol 4-88 (Aldrich, Steinheim, Germany). The scale bars represent 20 

µm. 

a b 

c d 
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Figure S-5: Immunolabeling of HGFs after 24 h of culture on (a) a glass substrate and (b) on PEI-(HA-CTL-895 

C/CHI)15 film. The cytoskeleton was visualized by actin filament immunochemistry staining with phalloidin® 

(red labeling) and the nuclei with DAPI counterstaining (blue labeling) of HGFs. The scale bars represent 

10 µm. 
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