
HAL Id: hal-02163976
https://hal.science/hal-02163976

Submitted on 24 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Function Chaining with Anycast Routing
Adrien Wion, Mathieu Bouet, Luigi Iannone, Vania Conan

To cite this version:
Adrien Wion, Mathieu Bouet, Luigi Iannone, Vania Conan. Distributed Function Chaining
with Anycast Routing. Symposium on SDN research, Apr 2019, San Jose, United States.
�10.1145/3314148.3314355�. �hal-02163976�

https://hal.science/hal-02163976
https://hal.archives-ouvertes.fr

Distributed Function Chaining with Anycast
Routing

Adrien Wion
Thales/Telecom ParisTech

Mathieu Bouet
Thales

Luigi Iannone
Telecom ParisTech

Vania Conan
Thales

ABSTRACT
Current networks more and more rely on virtualized middle-
boxes to flexibly provide security, protocol optimization, and
policy compliance functionalities. As such, delivering these
services requires that the traffic be steered through the desired
sequence of virtual appliances. Current solutions introduce
a new logically centralized entity, often called orchestrator,
needing to build its own holistic view of the whole network
so to decide where to direct the traffic.

We advocate that such a centralized orchestration is not
necessary and that, on the contrary, the same objectives can
be achieved by augmenting the network layer routing so to
include the notion of service and its chaining.

In this paper, we support our claim by designing such a
system called NFV Router. We also present an implementa-
tion and an early evaluation, showing that we can easily steer
traffic through available resources. The proposed approach
offers as well valuable features such as incremental deploya-
bility, multi-domain service chaining, failure resiliency, and
easy maintenance.

CCS CONCEPTS
• Networks → Network architectures; Routing protocols;

KEYWORDS
Service chaining; IGP; NSH; NFV; Distributed orchestration
1 INTRODUCTION
Network services used to be built as an ordered set of physi-
cally wired hardware appliances that processed traffic for se-
curity or optimization purpose. With Network Functions Vir-
tualization (NFV), middleboxes are more and more software-
based running on top of virtualization-enabled equipment,
thus allowing cost reduction and network flexibility. Never-
theless, with this new paradigm, new challenges have arisen.
Indeed, the service function chains are completely separated
from the physical topology, and virtual functions are more

ACM acknowledges that this contribution was authored or co-authored by
an employee, contractor or affiliate of a national government. As such, the
Government retains a nonexclusive, royalty-free right to publish or reproduce
this article, or to allow others to do so, for Government purposes only.
SOSR ’19, April 3–4, 2019, San Jose, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6710-3/19/04. . . $15.00
https://doi.org/10.1145/3314148.3314355

ephemeral and dynamic in nature. Steering traffic through
these sparsely located virtual entities, without compromising
end-users’ sessions and Quality of Service (QoS), is therefore
a complex challenge.

Even though Internet Service Providers critically rely on
middleboxes for security and policy compliance [30], most
of existing NFV management solutions rely on an omnipo-
tent logically centralized entity, generally named orchestrator.
Such centralized approaches, as they require a holistic view
of the whole network to perform service chaining, introduce
control reactivity and resiliency (e.g., single point of failure)
issues. Also, this may be quite costly for operators, since it
requires the deployment of a whole new management and
control infrastructure. In addition, the control part, which is
meant to modify the configuration so to accommodate the
orchestrator decisions, tend to be poorly interoperable with
legacy appliances and is thus hard to deploy incrementally.

We believe that centralizing every orchestration decision
for service function chaining is not necessary. Indeed, dif-
ferent decisions (e.g., in time scale or complexity) call for
different control loops. Sporadic long-term configuration can
afford a remote central controller. Local event-driven deci-
sions (e.g., depending on flow arrival) gain from a distributed
design. To that extent we propose to augment the network
routing layer to make it service-aware. In particular, we argue
in this paper that it is possible to leverage on any Interior
Gateway Protocol (IGP), anycast addressing, and any service
chaining encapsulation, to construct a distributed service-
aware control plane . We propose a modular architecture
that we name NFV Router (NFV-R). We show that it does
not require complex elements and remains interoperable with
legacy appliances. We also implemented such architecture,
and early evaluation shows that our system successfully steers
traffic through the intended service chain, distributing it over
different instances according to available resources.

The reminder of this paper is organized as follows. First,
we overview related work in Sec. 2. Then, we introduce in
Sec. 3 the main concept of our proposal: namely the service
plane topology. We detail the system architecture in Sec. 4
and the implementation in Sec. 5. Early results supporting
our proposal are presented in Sec. 6, while Sec. 7 provides an
agenda about research worth to be performed with respect to
our proposal. Sec. 8 concludes the paper.

https://doi.org/10.1145/3314148.3314355

SOSR ’19, April 3–4, 2019, San Jose, CA, USA A. Wion et al.

2 RELATED WORK
So far, NFV frameworks have been built on top of central-
ized cloud-based management system, which has simplified
the use and implementation of resource allocation algorithms
[12, 16, 19, 25]. For instance, Ghaznavi et al. [17] propose a
centralized VNF (Virtual Network Functions) splitting and
placement algorithm. Some solutions, such as Slick [10], go
further proposing a programming language to define, on a
central control point, high level policies, which drive service
chaining and VNF placement. Even if such centralized system
provides simple and flexible VNF and path management, it
increases its fragility (e.g., single point of failure, control loop
delay). In addition, such a coupling between flow and VNF
placement is prone to costly remapping in case of bursty traf-
fic. Once more, these coupled decisions are taken at different
timescale, hence we propose to decouple them: service chains
should be steered in a fast loop so to enforce traffic engineer-
ing policies on existing VNFs, while a slower decision loop
should adapt VNF provisioning to traffic changes.

Several traffic steering techniques have been proposed to
tackle service chaining. Early work proposes to use fine-
grained forwarding rules populated on every network appli-
ance along a flow path [34]. This approach encounters several
limitations. First, forwarding state is limited by costly mem-
ory, hardening deployment in large networks [18]. Second,
forwarding rules become more complex when middleboxes
modify packet headers (e.g., NAT – Network Address Transla-
tion) [14, 16, 26]. To reduce flow state on network appliances
without losing path flexibility, recent works propose to lever-
age on waypoint routing and encapsulation. These approaches
see service function chains as an ordered set of waypoints
(encoded in packet headers) and rely on a distributed routing
protocol so to ensure waypoint reachability [8, 18, 33]. Our
proposal follows this line of thought to build robust service
function chains while distributing the chaining decision. Sev-
eral encapsulation formats have been proposed for service
chains [8, 27, 33]. In Segment Routing v6 [8] and Dysco [33],
an ingress node is in charge of setting a list of locations to
reach before being delivered using IPv6 and TCP extensions
respectively. Recent work at the Internet Engineering Task
Force (IETF) proposes Network Service Header (NSH) as
a dedicated encapsulation header for service chaining [27].
These protocols are generally used in a centralized approach.

3 DISTRIBUTED ORCHESTRATION VIA
NETWORK LAYER ROUTING
AUGMENTATION

While so far service function chaining has relied on a holis-
tic centralized orchestration to steer the traffic through a se-
quence of virtual appliances, we believe that it can be done at
the network layer routing in a distributed way.

Indeed, any network Interior Gateway Protocol (IGP) can
be directly leveraged to convey the location, the type, and the
necessary information associated to a virtual appliance and
build an augmented network view.

Such a view, which we call the service plane topology, is
formed by two different types of nodes. The first type is NFV
Routers (NFV-R): physical appliances that run the IGP and
host virtual middleboxes (i.e., VNFs). These IGP-speaking
machines can be normal IP routers with VNF hosting capabil-
ities, Points of Presence, or even datacenters. The second type
of node, named virtual Service Function (vSF), corresponds
to the VNF instances themselves. vSFs can provide different
types of service: Deep Packet Inspection (DPI), Firewalling,
NAT, stream encoding etc. These virtual functions run on top
of NFV-R. Since NFV-R, hosting vSF, also run the IGP, they
can directly inject information on their vSF instances into
the IGP. This way, the vSFs are present in the IGP topology
too. Consequently, each NFV-R has a service plane topology
that not only take chaining decisions, but may as well decide
about VNF instantiation, scaling, or deletion decisions. Note
that regular routers, which do not host VNFs, see NFV-R
nodes as classical router and vSFs as network stubs in the
IGP topology.

The main feature of vSFs instances is the service they
provide. We thus propose to leverage on anycast addressing to
announce instances providing the same service on the network.
Thus, different vSF instances that are potentially hosted on
different NFV-R, but that provide the same service, will be
announced by the same anycast address. In this way, each
specific service function (e.g., Firewall, IDS) can be mapped
to a specific anycast address.1 A link between two NFV-R
represents a topological distance (network cost), while a link
to a service function (i.e., the anycast address) describes some
state of the vSF providing the service on the NFV-R (vSF
cost). The weight that each NFV-R associate to the announced
prefix, i.e. the IGP cost to reach such an address, can be based
on the vSF state, its available capacities, its load, or any other
relevant information.2 A routing decision makes a tradeoff
among these metrics and can be designed so as to balance the
load, differentiate nodes or chains implementations (e.g., for
different traffic pattern optimization), etc.

A routing decision maps vSF on NFV-R IP location, thus
building a vSF routing table and ensuring that a flow always
goes through the same vSF instances. New incoming flows
are matched against this table to get the next(s) NFV-R(s).
This decision is then cached to be consistent for all packets

1Note that, we are not proposing to use BGP anycast. While it would be
definitely possible, this is left as future work. In this paper the focus is on an
intra-domain distributed orchestration.
2In Sec. 7, we discuss more about how to calculate such a metric in a
meaningful and rigorous way, so to guarantee loop-free routing convergence.

Distributed Function Chaining with Anycast Routing SOSR ’19, April 3–4, 2019, San Jose, CA, USA

IDS @IPFW

@IPFW

@IPIDS

FW

FW

(a) Network topology.

FWIDS

(b) IGP logical view.

Figure 1: Network topology composed of 6 NFV-R, with
3 hosting a vSF instance (Fig. 1a). The IGP views the two
FW instances as a single entity, since they announce the
same anycast IP address (Fig. 1b). A first flow (plain red
line) is routed through the IDS and the top FW instance.
A second flow (dashed blue line) is routed through the
IDS and the bottom FW instance as the top FW instance
is already loaded with the first flow.

in a flow. Path between NFV-R could be chosen so to fulfill
additional constraints. This topic is further discussed in Sec. 7

Figure 1 illustrates with a toy example the approach we pro-
pose. Figure 1a represents the network topology constituted
of NFV-Rs. Each vSF instance of a given type is announced
on the network with the same anycast address. In particular
the two Firewall (FW) instances announce the same address:
@IPf w . Flows have to be processed here by a unique chain:
IDS + FW . The first flow is thus routed through the IDS in-
stance and then through the top FW instance. Indeed, in this
example, this vSF instance is at one hop from the NFV-R that
hosts the IDS instance. The NFV-Rs that host the used vSFs
advertise their neighbors with the new experienced load or
any other relevant information. When the second flow arrives,
the Firewall instance at the bottom is preferred, resulting in
load balancing among the FW instances (Figure 1b). Notice
that in Figure 1b, since the same address is announced but
no adjacency is made between the vSF (the two Firewall in-
stances in our example), the flows that use a link to reach a
service function (drawn as boxes) have to use the same link
to go out of it. However, note as well that this link is only
virtual, since it is the representation of the vSF instance in
the IGP, but in reality, is running directly on a NFV-R.

Augmenting the IGP modularly allows to fully benefit from
what is already done at the network layer routing. Anycast
addressing leverages IGP information sharing to build the

augmented topology. Based on this topology a routing deci-
sion maps vSF type to the appropriate next(s) NFV-R(s) based
on network and instances metric. Finally, the IGP gives us
robust IP connectivity between NFV-Rs to steer flows through
the correct set of instances. Notice that the IGP protects us
against flow remapping in case of link failure. Indeed, once
the IGP has converged, connectivity to NFV-R is restored
without any change in cached routing decisions.

As for any IGP, high level policies can be used to control
the decision-making at each NFV-R. They are common to
all the nodes and can be enforced by a central controller for
easy-manageability. Such policies include flow classification
rules, to map traffic to the needed service chain. High level
policies also concern routing decisions since all NFV-Rs must
share the same routing objectives. Based on the service plane
topology, the NFV-Rs can use any path computation algo-
rithm, to choose which instance of the next vSF of the chain
the flow will go through. Additionally, high level policies can
define as well how to compute vSFs’ IGP costs, stating which
data to use and the function to translate such data in a cost.

We use an encapsulation approach to convey the necessary
information so to drive flows through the associated service
chain. This information can be used to take a routing decision
at the source or at every NFV-R processing the flow (hop-by-
hop). This header should include i) part or all of the service
chain identified at the classification step at the ingress of
the network, ii) the next service step in this chain and iii) a
consistent flow identifier to cache the routing decision. For
instance, in the example in Figure 1, the NFV-R that hosts
the IDS instance must have a mean to know that a packet
belonging to a specific flow has been assigned to the service
chain IDS + FW , that the next service to apply is FW , and
which of the FW instances it actually has to go through.

4 SYSTEM ARCHITECTURE
In this section, we describe the architecture of our system and
design its main modules. A NFV-R, as shown in Figure 2, is
composed of an IP router providing underlay connectivity, a
connector, attaching the router to the different vSF instances,
the vSFs themselves, providing the services, and a Distributed
MANagement and Orchestration (D-MANO) component, al-
lowing local autonomous management of the node.

Router: The router provides both underlay connectivity
and participate in the network IGP. It exposes a control inter-
face used by the D-MANO to inject or remove vSF anycast
addresses, announcing the services available on the node and
the associated costs. This control interface is also used to get
the IGP topology to build the service plane topology.

Connector: The connector allows dispatching traffic to the
vSFs. It enforces chaining decisions as follows. It forwards
incoming packets to the intended vSF instance, based on the

SOSR ’19, April 3–4, 2019, San Jose, CA, USA A. Wion et al.

NFV Router

Connector

Network

vSF vSFvSF

Resource
Monitor

Route
Injector

vSF
Routing

Algorithm

High Level
Policies

Router

D-MANO

Figure 2: NFV-R architecture. Doted arrows illustrate
vSF routing control flow. Solid arrows show how vSFs
state is monitored, transformed in a cost, which is then
injected in the IGP.

encapsulation header. Once the packets have been processed,
the vSF forwards them back to the connector, which enforces
a forwarding decision toward the next vSF instance location
(i.e., its connector) according to the service topology. These
forwarding decisions are cached in the connector, indexed by
a hash computed using flow-related information, thus ensur-
ing flow affinity. The connector also exposes a control inter-
face, used by the D-MANO, to populate the service-aware
routing table and the mapping between service function and
vSF instance unicast address. This information is used by the
connector to enforce chaining decisions for outgoing traffic,
and locally balance the load among the vSF instances that
provide the same service (same prefix).

vSF: vSF instances process flow packets according to the
provided service. Once a packet has been processed, the vSF
instance updates the chaining encapsulation header to point to
the next service. Each instance is monitored by the D-MANO.

Distributed MANO: The D-MANO controls and man-
ages the other NFV-R’s components. It is configured with
high level policies, which guide its autonomous orchestration
decisions. It has two essential control functions (illustrated in
Figure 2). The first one consists in monitoring vSF instances,
deriving from them vSF costs, and then injecting such costs
in the IGP, via the router. The second function consists in
getting IGP information from the router to build the service
plane topology, computing the service-aware routing table
and then pushing it in the connector.

5 IMPLEMENTATION
We started to implement our proposed solution, which we
describe in the present section. Furthermore, we include the
technical choices we made for each component of the archi-
tecture described in the previous section.

5.1 System-Level Choices
Encapsulation header: Our implementation uses the Net-
work Service Header (NSH) to steering the traffic through the
different services [27]. Our choice is motivated by the fact
that NSH is an IETF standard explicitly designed for service
chaining and is widely used in many open-source frameworks
(e.g., [1, 3–5]). In NSH, the Service Path Identifier (SPI) field
uniquely identifies a set of abstract service functions (i.e., the
Service Function Chain), while the Service Index (SI) points
to the next function the packet has to be delivered to in the
SPI set. NSH also provides extensible metadata fields that we
leverage to convey the hash value used to consistently identify
a flow along its chain. Such hash value is computed at the
classification step with the 5-tuple of the original packet.

IGP: As IGP protocol we use Open Shortest Path First
(OSPF), since it is widely used and easily extensible, thanks
to opaque Link State Advertisements (LSA). Opaque LSAs
are leveraged to share information about vSF instances and
links. Even if flooding opaque LSAs increases control traffic
overhead, it does not affect OSPF stability, since they do not
trigger shortest path re-computation. We use vSF opaque LSAs
to convey 3 pieces of data: i) the anycast address of a vSF
instance, ii) the associated vSF cost, and iii) the NSH endpoint
IP address (i.e., the IP address of the next Connector). In our
initial implementation, we choose to use a simple vSF metric:
the remaining processing capacity of the vSF instance. The
NFV-Rs use the provided information to build a graph linking
vSFs and NFV-Rs, each link weighted with the associated
cost (Fig. 3). Thus, each NFV-R is able to build the service
plane topology based on the information shared via OSPF.

Service-aware path computation algorithm: We choose
to use Weighted Cost MultiPath (WCMP) [35] to compute
nodes’ service-aware routing table. It is particularly suited
for our anycast-based approach as it allows balancing the
traffic based on the vSF cost. As illustrated on Figure 3, we
use network link costs and vSF costs to weight the paths to
a vSF anycast address. In this example, we show the service
topology as seen by node A. It is easy to see that the cost to
reach the FW instance on node B is 30 and to reach the one
on node D is 25. WCMP combines network and vSF cost in
order to assign weight to the differents vSF instances. This
weight corresponds to the probability for a new flow to be
sent to a given vSF instance. Since the vSF cost is regularly
updated, WCMP adapts to the load by distributing the traffic
on the lightly loaded instances (i.e., lower cost, hence, higher
WCMP weight). In Sec. 7 we discuss more about the metrics.

5.2 Node-Level Choices
We build our NFV-R using Linux and use network name-
spaces to isolate the components.

Distributed Function Chaining with Anycast Routing SOSR ’19, April 3–4, 2019, San Jose, CA, USA

NFV-R A

NFV-R D

NFV-R C

NFV-R B

NFV-R E

FW FW

IDS

Classifier

10

10

10 1010

10

10

20 5

25

(a) Network topology.

NFV-R
A

NFV-R
C

NFV-R
B

NFV-R
D

FW

IDS

10

20

10

20

5

25

Network Metric VNF Metric

(b) Service plane topology seen at the
NFV-R A.

Figure 3: Each NFV-R builds its service plane topology
(example at Node A on Fig. (b)) with the Network costs
and vSF costs so as to compute the next hop(s).

Router: In our implementation, we use FRRouting [2],
an open source IP routing protocol suite, to implement our
OSPF router. In particular, we use the OSPF API offered by
FRRouting to mirror the Link-State Database (LSDB) in the
D-MANO and to inject vSF opaque LSAs.

Connector: We implemented the connector logic in P4, a
language for programming the dataplane [11]. P4 has been
chosen for several reasons: it can support any header (e.g.
NSH) and it is stateful (registers), allowing us to cache routing
decision so to handle flow affinity. Our P4 code is run on the
simple_switch target [6]. Its runtime CLI is exposed to the
D-MANO to configure the switch and populate the WCMP
table at runtime.

vSF: vSFs are implemented as simple processes (using
scapy [7]) parsing incoming packets, decrement their NSH SI
field, and forward them back to the connector. The focus of
the initial implementation being on the different components
of the proposed approach, we purposely choose simplistic
vSFs for the time being. The Python psutil library enables us
to monitor the resources used by the vSF processes.

D-MANO: The D-MANO has been implemented in Python.
Its main loop runs as follows. First, it polls the resource use
of the local vSF instances to build the related costs. The costs
are then announced on the network with vSF opaque LSAs.

Figure 4: Traffic distribution over time on the vSF in-
stances. During the first 150s only two vSFs are running.
At t = 150s, a third vSF is instantiated.

Second, the D-MANO gets the vSF announces from its mir-
rored LSDB. With these data, it builds a service view (see
Fig. 3b). Based on this topology, it computes WCMP weights
and updates them on the connector.

6 PRELIMINARY RESULTS
In this section we evaluate a simple scenario to show how
we can achieve load balancing on different vSF instances of
the same type by using the proposed solution. We selected
the parameters in order to assess that our system successfully
steers traffic through the target service chain. More complete
evaluations are let for future work.

We consider a network topology that looks like Figure 3b,
except that we use one single generic service. The link cost
between NFV-R A and NFV-R B and the link cost between
NFV-R A and NFV-R C are set to the same value. Link cost
between NFVR-R A and NFV-R C is set to a different value
so to be less preferred than the previous ones. All the vSF
instances have the same initial capacity (i.e., vSF cost). It is
the maximum number of packets per second a vSF instance
can process, normalized so to have the same range of values as
the link costs. We use Mininet to emulate this topology [21].

Traffic has to go through one of the vSF instances and
then toward the egress. We generate constant bit-rate flows
on a source connected to Node A. Each flow lasts 50 seconds
and consumes 2 of processing units at the vSFs. The arrival
rate is of two flows per second. Our scenario evolves in 2
phases. Phase 1: only the vSFs on NFV-R B and NFV-R
C are running. Phase 2: After 150 seconds, a third vSF is
instantiated on NFV-R D, leading to traffic redistribution.

Figure 4 presents the traffic distribution over time on the
vSF instances. Since each flow lasts 50s, during the first 50s
of the experiment, the system load rises until it reaches its
steady state. Note that, in this example, a measure of each vSF
load is measured and advertised every 2s. We can see that,
during the first phase, each vSF instance receives in average
the same amount of traffic. Indeed, they do have the same
network cost from the ingress point of view and the same
initial vSF cost. Once Phase 2 starts, after the 50 seconds of

SOSR ’19, April 3–4, 2019, San Jose, CA, USA A. Wion et al.

(a) Phase 1 (50-150s). (b) Phase 2 (200-300s).

Figure 5: Mean traffic distribution on the vSF instances
during the two phases.

transition, which lasts between t = 150s and t = 200s, a new
steady state is reached. Now the vSFs on Node B and C, each
process 40% of the traffic, while the vSF on Node D roughly
processes 20%. This distribution of traffic corresponds to the
WCMP weights that consider links’ cost and vSFs’ cost.

Figure 5 presents the mean traffic distribution on the in-
stances for the steady state of the two phases of the scenario.
They result from 20 runs of the experiment. We can observe
that our solution is able to balance the load among the avail-
able vSFs. The mean and median loads are centered on the
values we can compute from WCMP: 50/50% in Phase 1 and
40/40/20% in Phase 2. In addition, 50% of the loads are less
than 3 points from the median value, while the max and min
values are at most 10 points from it. Such limited variation
shows that the system remains quite stable.

7 RESEARCH AGENDA
Our preliminary results illustrate how service chaining can
indeed be achieved by augmenting the network layer routing
and applying high level policies. However, while opening
interesting perspectives, it opens several questions as well.
We overview them in this section.

Augmented Network Layer Routing: We have shown
that we can steer traffic through a service function chain by
augmenting the network routing layer. Nonetheless, finding
feasible path with or without constraint is a hard problem [9].
Precomputed hop-by-hop routing decisions could follow sim-
ple and fast heuristic (shortest path to the next vSF) to steer
best effort traffic. Yet, we believe that flows, which require
QoS guarantees (e.g., VoIP), would be best served using the
source routing paradigm (e.g., with segment routing) so to
enforce on-demand optimized path. Even if our service plane
topology provides support for both approaches, such hybrid
scenarios and related tradeoff need further investigation.

vSF Metrics: To take service-aware routing decisions, two
different types of entities are involved: network links and vSF
instances. While assigning a cost to a link is straightforward
(based on bandwidth, latency etc.), the cost of a vSF instance

is an open research area. This cost may be based on a plethora
of vSF state parameters [13, 24], but should also be in the
same order of magnitude of the links’ metric. More impor-
tantly, it has also to be additive, so to guarantee loop-free even
when considering multiple constraints [23, 31].

Multi-domain SFC: In this paper, we define an augmented
IGP routing logic to provide distributed SFC decisions. This
is a first step towards the design of multi-domain services.
Indeed, our proposal can be extended to inter-domain routing
with BGP [29]. With the use of communities [22], operators
could choose the information to share to build multi-domain
SFC thus opening new business opportunities.

Service Chain Management: Our proposal can leverage
on existing works to support vSF maintenance, failure or
even chain modification. Indeed, with our approach mainte-
nance can be easily handled through any existing loop-free
graceful shutdown mechanism [15]. Furthermore, some vSF
state migration use-cases can be locally dealt with on NFV-
Rs [20, 28, 32]. However, service management operation
involving several NFV-Rs is more challenging, since state
(vSF session state, routing cache entries...) has to be coordi-
nated. Such operations are needed when a service is modified
(e.g., suspicious flows redirected to an IDS), or when a vSF
is migrated to a distinct NFV-R. Existing work [33] identified
challenges and possible solution to keep end-user sessions
alive during reconfigurations, which can also be used.

Distributed Orchestration Decisions: NFV-R decouples
traffic steering from orchestration. However, it hardens vSF
resource management problem which is already difficult when
decisions are taken by a centralized orchestrator [19]. Even
if distributed approaches like ours improve the architecture
resiliency and scalability, how autonomous nodes could take
orchestration decisions (e.g., instantiating a new vSF instance
to balance the global load) using on our augmented topology
is another problem to be tackle.

8 CONCLUSION
In this paper, we have made the case for orchestrating service
chaining in a distributed manner. We proposed to augment
the network layer routing by using anycast addressing for
VNF so to build what we call the service topology, allowing
embedding service chaining into routing. We designed our
NFV Router whose architecture is based on this concept and
we implemented a first prototype. Early evaluation performed
with our implementation shows that flows can be successfully
driven through the chain of services according to available
resources. Our approach sets itself apart from previous work,
and as such it still needs to be thoroughly investigated. To this
end we provide a research agenda highlighting the different
aspects that need to be tackled. However, what comes out as
well is quite promising and opens interesting perspectives.

Distributed Function Chaining with Anycast Routing SOSR ’19, April 3–4, 2019, San Jose, CA, USA

REFERENCES
[1] fd.io. https://fd.io/.
[2] Frrouting. https://frrouting.org/.
[3] Onos. https://onosproject.org/.
[4] Opendaylight. https://www.opendaylight.org/.
[5] Opnfv. https://opnfv.org.
[6] P4 software switch. https://github.com/p4lang/behavioral-model.
[7] Scapy. https://github.com/secdev/scapy.
[8] A. Abdelsalam, F. Clad, C. Filsfils, S. Salsano, G. Siracusano, and

L. Veltri. Implementation of virtual network function chaining through
segment routing in a linux-based NFV infrastructure. In Proceedings of
the IEEE Conference on Network Softwarization (NetSoft), pages 1–5,
2017.

[9] S. A. Amiri, K.-T. Foerster, R. Jacob, and S. Schmid. Charting the al-
gorithmic complexity of waypoint routing. ACM SIGCOMM Computer
Communication Review, 48(1):42–48, 2018.

[10] B. Anwer, T. Benson, N. Feamster, and D. Levin. Programming slick
network functions. In Proceedings of the ACM SIGCOMM Symposium
on Software Defined Networking Research, page 14, 2015.

[11] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al. P4: Pro-
gramming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review, 44(3):87–95, 2014.

[12] A. Bremler-Barr, Y. Harchol, and D. Hay. OpenBox: a software-defined
framework for developing, deploying, and managing network functions.
In Proceedings of the ACM SIGCOMM Conference, pages 511–524,
2016.

[13] L. Cao, P. Sharma, S. Fahmy, and V. Saxena. Nfv-vital: A framework
for characterizing the performance of virtual network functions. In Pro-
ceedings of the IEEE Conference on Network Function Virtualization
and Software Defined Network (NFV-SDN), pages 93–99, 2015.

[14] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul. Flowtags:
Enforcing network-wide policies in the presence of dynamic middlebox
actions. In Proceedings of the ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking, pages 19–24, 2013.

[15] P. Francois, M. Shand, and O. Bonaventure. Disruption free topology
reconfiguration in OSPF networks. In Proceedings of the IEEE Interna-
tional Conference on Computer Communications (INFOCOM), pages
89–97, 2007.

[16] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand,
T. Benson, A. Akella, and V. Sekar. Stratos: A network-aware orches-
tration layer for middleboxes in the cloud. CoRR, abs/1305.0209, 2013.

[17] M. Ghaznavi, N. Shahriar, S. Kamali, R. Ahmed, and R. Boutaba.
Distributed service function chaining. IEEE Journal on Selected Areas
in Communications, 35(11):2479–2489, 2017.

[18] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils,
T. Telkamp, and P. Francois. A declarative and expressive approach to
control forwarding paths in carrier-grade networks. In ACM SIGCOMM
computer communication review, volume 45, pages 15–28. ACM, 2015.

[19] J. G. Herrera and J. F. Botero. Resource allocation in NFV: A compre-
hensive survey. IEEE Transactions on Network and Service Manage-
ment, 13(3):518–532, 2016.

[20] M. Kablan, A. Alsudais, E. Keller, and F. Le. Stateless network func-
tions: Breaking the tight coupling of state and processing. In Proceed-
ings of the USENIX Conference on Networked Systems Design and
Implementation (NSDI), pages 97–112, 2017.

[21] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: rapid
prototyping for software-defined networks. In Proceedings of the ACM
SIGCOMM Workshop on Hot Topics in Networks, page 19, 2010.

[22] T. Li, R. Chandra, and P. S. Traina. BGP Communities Attribute. RFC
1997, 1996.

[23] J. J. M. Algorithms for finding paths with multiple constraints. Net-
works, 14(1):95–116.

[24] P. Naik, D. K. Shaw, and M. Vutukuru. NFVPerf: Online performance
monitoring and bottleneck detection for NFV. In Proceedings of the
IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), pages 154–160, 2016.

[25] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker. E2: A framework for NFV applications. In Proceedings
of the Symposium on Operating Systems Principles (SOSP), pages 121–
136, 2015.

[26] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. SIMPLE-
fying middlebox policy enforcement using SDN. In Proceedings of the
ACM SIGCOMM, pages 27–38, 2013.

[27] P. Quinn, U. Elzur, and C. Pignataro. Network service header (NSH).
RFC 8300, 2018.

[28] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield. Split/merge:
System support for elastic execution in virtual middleboxes. In Pro-
ceedings of the USENIX Conference on Networked Systems Design and
Implementation (NSDI), pages 227–240, 2013.

[29] Y. Rekhter, S. Hares, and T. Li. A Border Gateway Protocol 4 (BGP-4).
RFC 4271, 2006.

[30] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. Making middleboxes someone else’s problem: Network
processing as a cloud service. In Proceedings of the ACM SIGCOMM
Conference, pages 13–24, 2012.

[31] Z. Wang and J. Crowcroft. Bandwidth-delay based routing algorithms.
In Proceedings of the IEEE Global Telecommunications Conference
(GLOBECOM), volume 3, pages 2129–2133, 1995.

[32] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker.
Elastic scaling of stateful network functions. In Proceedings of the
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2018.

[33] P. Zave, R. A. Ferreira, X. K. Zou, M. Morimoto, and J. Rexford.
Dynamic service chaining with dysco. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, pages 57–
70, 2017.

[34] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani,
R. Mishra, R. Patneyt, M. Shirazipour, R. Subrahmaniam, C. Truchan,
et al. Steering: A software-defined networking for inline service chain-
ing. In Network Protocols (ICNP), 2013 21st IEEE International
Conference on, pages 1–10. IEEE, 2013.

[35] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh, and
A. Vahdat. WCMP: Weighted cost multipathing for improved fairness in
data centers. In Proceedings of the European Conference on Computer
Systems, page 5, 2014.

https://fd.io/
https://frrouting.org/
https://onosproject.org/
https://www.opendaylight.org/
https://opnfv.org
https://github.com/p4lang/behavioral-model
https://github.com/secdev/scapy

	Abstract
	1 Introduction
	2 Related Work
	3 Distributed Orchestration via Network Layer Routing Augmentation
	4 System Architecture
	5 Implementation
	5.1 System-Level Choices
	5.2 Node-Level Choices

	6 Preliminary Results
	7 Research Agenda
	8 Conclusion
	References

