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Abstract

Consider observations where random signals are randomly present or ab-
sent in independent and additive white Gaussian noise (AWGN). By using
a recently established limit theorem, we introduce a new estimator for the
estimation of the noise standard deviation when the signals are less present
than absent and have unknown probability distributions.

The bias, the consistency and the minimum attainable mean square es-
timation error of the estimator we propose are still unknown. However, the
experimental results that are presented are very promising. First, when the
Minimum-Probability-of-Error decision scheme for the non-coherent detec-
tion of modulated sinusoidal carriers in independent AWGN is tuned with
the outcome of our estimator instead of the true value of the noise standard
deviation, the Binary Error Rate tends to the optimal error probability when
the number of observations is large enough. Second, given some speech sig-
nal corrupted by independent AWGN, our estimator can be used to estimate
the noise standard deviation so as to adjust the standard Wiener filtering
of the noisy speech. The objective performance measurements obtained by
so proceeding are very close to those achieved when the Wiener filtering is
tuned with the true value of the noise standard deviation.

Keywords

Binary hypothesis testing, decision, estimation, likelihood theory, multivari-
ate normal distribution, speech denoising.



Résumé

Considérons le cas d’observations qui résultent de la présence aléatoire de
signaux dans un bruit blanc Gaussien, additif et indépendant. En utilisant un
résultat théorique récent, nous présentons un nouvel estimateur permettant
d’estimer I’écart-type du bruit quand les signaux ont des distributions de
probabilité inconnues et des probabilités de présence inférieures ou égales a
un demi.

Les propriétés statistiques de cet estimateur ne sont pas encore connues.
Cependant, les résultats expérimentaux présentés sont tres prometteurs.

Tout d’abord, quand le test de Bayes garantissant le minimum de proba-
bilité d’erreur pour la détection non-cohérente de sinusoides dans le bruit est
ajusté, non pas avec la valeur exacte de I’écart-type du bruit, mais avec le
résultat de I'estimation que nous proposons alors que I’estimateur ne connait
pas la nature des signaux, le taux d’erreur binaire tend vers la probabilité
d’erreur optimale quand le nombre d’observations devient grand. Ensuite,
étant donné un signal de parole bruité par un bruit blanc Gaussien additif
et indépendant, notre estimateur peut étre utilisé pour estimer 1’écart-type
du bruit de maniere a ajuster le filtrage de Wiener standard. Les mesures
objectives de performance obtenues en procédant ainsi sont tres proches de
celles que l'on a lorsque le filtre de Wiener est ajusté avec la valeur exacte
de I’écart-type du bruit.

Mots-clés

Test binaire d’hypotheses, décision, estimation, rapport de vraisemblance,
distribution normale multivariée, débruitage de la parole.
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1 Introduction

In many signal processing applications, observations can be modelled by d-
dimensional random vectors that result from the random presence of signals
in independent and additive white Gaussian noise (AWGN).

Often, very little is known about the signals or about most of their describ-
ing parameters. The probability distributions of the signals are sometimes
partially or definitely unknown. This issue is typically met in Electronic
(Warfare) Support Measure (ESM) systems faced with non-cooperant com-
munications. This is also the case with sonar systems that receive signals
resulting from noise generated by motors and hull vibrations transmitted
through a fluctuating environment. Echoes received by a radar system are
not always easy to model because they derive from a convolution between a
known transmitted pulse and an unknown environment.

In addition to our lack of prior knowledge about the signals, the noise
standard deviation may be unknown as well. In order to process the obser-
vations, it can then be necessary to estimate it.

For instance, Constant False Alarm Rate (CFAR) systems, standardly
used in radar processing, perform an estimate of the noise standard deviation
in order to detect radar targets with a false alarm rate close to some pre-
specified value. Basically, CFAR systems select observations considered as
signal-free and called “reference cells”. The estimation of the noise standard
deviation is then achieved on the basis of these reference cells. The design of
a CFAR system is no easy task (see [1], [2]).

A second example is the denoising of speech signals corrupted by inde-
pendent AWGN. Indeed, most standard filtering techniques must be adjusted
with an estimate of the noise standard deviation when the latter is unknown.
A popular approach involves using a Voice Activity Detector (VAD). The
VAD decides, with some error rate, that some periods of time are signal-
free and the noise standard deviation is then estimated on the basis of these
periods of time. Another approach is to achieve an estimate of the noise
standard deviation by computing the smallest eigenvalues of the noisy speech
autocorrelation matrix. Depending on the matrix size, the computation of
the eigenvalues may prove unstable.

In contrast with such approaches mostly based on the physics of the prob-
lem, we hereafter propose an estimator relying on statistics only. This esti-
mator is based on a recent theoretical result established in [3]. A simplified
version of this result will however be sufficient to derive our estimator.

After introducing some notations and pieces of terminology, section 2
presents the theoretical result, namely proposition 2.1, from which the es-
timator proposed in this report is derived. Proposition 2.1 and the more



general result [3, Theorem 1] concern any sequence of mutually independent
d-dimensional real random observations where signals, with unknown proba-
bility distributions but with norms larger than or equal to some known value,
are randomly present or absent with unknown probabilities of presence less
than or equal to one half in independent AWGN.

Our estimator is then presented in section 3. It applies to sets of non
signal-free observations where signals have unknown probability distributions
and unknown probabilities of presence less than or equal to one half. No
prior knowledge on a lower bound for the norms of the signals is any longer
required.

The bias, the consistency and the mean square error of this estimator are
still unknown. Nevertheless, several experimental results are presented in
section 4. These experimental results concern two-dimensional observations
where the signals are uniformly distributed on the circle centred at the origin
with known radius . The two components of every signal can be regarded
as the in-phase and quadrature components of a modulated sinusoidal carrier
with amplitude o and phase uniformly distributed in [0, 27].

An application to speech denoising is also presented. Given some speech
signal corrupted by independent AWGN, section 5 describes how the es-
timator introduced below makes it possible to estimate the noise standard
deviation and adjust the standard Wiener filtering of the noisy speech signal.

Section 6 concludes this report by suggesting several theoretical devel-
opments, extensions to speech processing as well as applications in radar
processing and electronic warfare.

2 Theoretical background

In what follows, only one probability space (€2, M, P) is considered and every
random vector or variable is assumed to be defined for every w € §2 by setting
this random vector or variable to 0 on any negligible subset where it could
be undefined. As usual, we write (a-s) for “almost surely”.

Let S stand for the set of all the sequences of d-dimensional real random
vectors. Given a positive real value oy, an element X = (Xj)xen of S will be
called a d-dimensional white Gaussian noise (WGN) with standard deviation
oo if the random vectors X, k£ = 1,2,..., are mutually independent and
identically Gaussian distributed with null mean vector and covariance matrix
0214 where I stands for the d x d identity matrix. For the sake of brevity,
we will henceforth write independent instead of mutually independent.

We define the minimum amplitude of an element S = (Sg)ren of S as the
supremum a(S) of the set of those a € [0, 00] such that, for every natural



number k, ||S|| is larger than or equal to « (a-s):
a(S) =sup{a € [0,00] : VE € N, ||Sk|| = « (a-s)}. (1)

If f is some map of § into R, we say that the limit of f is £ € R when
a(S) tends to oo and write that lim,g)— f(S) = € if, for any positive real
value 7, there exists some ag € (0,00) such that, for every a > aq and every
S € S with a(S) > «, we have |f(S) — | <n.

Given v € [0,00), let L¥ (2, RY) stand for the set of those d-dimensional
real random vectors Y such that E[|Y|"] < oo. In the sequel, we will
encounter the set (*(N, L*(€2,RY)) of those elements S = (Si)ren of S such
that Sy, € L¥(Q,RY) for every k € N and sup,cy E[||Sk||*] is finite.

In what follows, ¢F; is the generalized hypergeometric function (see [4,
p. 275]). Given p € [0,00), £(p) is the unique positive solution for z in the
equation

oF1(d/2; p*z° /4) = exp(p?/2). (2)

Given ¢ € [0,00), T, stands for the map defined for every z € [0, 00) by

T, (z) = /09«“ t7 4 exp(—#2/2)dt. (3)

The following result is a particular case of a more general limit theorem
established in [3]. The statement considered hereafter is sufficient with re-
spect to our purpose. Given any random vector Y and any real number 7,
I(]]Y]] < 7) stands for the indicator function of the event {||Y|| < 7}.

Proposition 2.1 LetY = (Yj)ken be some element of S such that, for every
k € N, Yk = 5kSk +Xk where S = (Sk)keN; X = (Xk)keN and € = (gk)keN
are an element of S, some d-dimensional WGN with standard deviation og
and a sequence of random variables valued in {0,1} respectively.

Assume that
(A1) for every k € N, Sg, Xy and ey are independent;
(A2) the random vectors Yy, k € N, are independent;

(A3) the probabilities of presence P({ex, = 1}),k € N, are less than or equal
to one half and the random variables €, k € N, are independent;

(A4) there exists some v € (0,00] such that S € (*(N, L*(Q,RY)).



Given two non-negative real numbers r and s such that 0 < s <r < wv/2,
some natural number m and any pair (o,T) of positive real numbers, define
the random variable A,,(o,T) by

IVell"T(|Yi]| <oT)
A (o, T)= ; F k _O_T—STT(T) "
m\0, = Ts |
SOV (1il <oT) (T)

Then, oy is the unique positive real number o such that, for every By €
(0,1],
lim
a(S)—oo

I A, (0. 5¢(a(5) /)| =0 (5)

uniformly in 3 € 0o, 1].

In the foregoing statement, U models a sequence of observations where,
for every given k € N, S stands for some possible random signal and ¢
models the possible occurrence of Sy in the background of AWGN modelled
by X.

In proposition 2.1, neither the probabilities of presence nor the signals are
required to be identically distributed. Moreover, it is worth mentioning that
the convergence criterion exhibited by this result derives from a corollary of
Kolmogorov’s classical strong limit theorem and not from usual generaliza-
tions of the central limit theorem such as the Lindeberg and the Lyapounov
theorems.

Note that, for 7 € [0, 00), the ratio

AR ARSI AR )
k=1 k=1

is defined everywhere for the following reason. Let x1, o, ..., 2, be m real
numbers. If there exists at least one natural number k& € {1,...,m} such
that x;, # 0, the finiteness of the ratio Y - |zg|"/> 1o, |zx|® is trivial. Since
r > s, the definition of this ratio is then extended by continuity by setting
Yovey w3 |we|® = 0 if (21, ..., 2m) = (0,...,0).

Proposition 2.1 concerns positive solutions of Eq. (5) only because o =0
trivially satisfies this equation regardless of the specific convergence involved.
Straightforwardly, Eq. (5) is also satisfied for all o € [0,00) when r = s > 0.
This explains why it is assumed that r > s > 0.



3 The Essential Supremum, the Modified and
the Complex Estimates

In this section, the notations used so far are kept with exactly the same
meaning. On the basis of the previous theoretical result, we present several
algorithms for the estimation of the noise standard deviation. We begin
with an algorithm already introduced in [3]. This algorithm requires prior
knowledge of the minimum amplitude of the signals. We then propose a
method that does not need such prior knowledge. This method is mainly
heuristic. We particularize it to the case of two-dimensional real random
vectors, or equivalently, complex random variables. This particular case will
serve to address the applications treated in sections 4 and 5.

3.1 The Essential Supremum Estimate

According to Eq. (5), given [y € (0, 1] and some positive real value 7, there
exists ap € (0, 00) that satisfies the following property: for every real number
« larger than or equal to ag, every element S of L”(£2, RY) whose minimum
amplitude is larger than or equal to «, and every # € [, 1], the absolute
value of the difference between the random variable

NE

IVell"T(I Y]l < 08¢(a(S) /o))

k=1

NE

IVl I(| Yl < 0B8E(a(S)/0))

B
Il

1

and

X005 (a(S) /o)
T(op¢(a(S)/0))
does not exceed 7 (a-s) when the sample size or number of observations m is
large enough.

In many applications, the signals Sy, k¥ € N, have “finite energy” in the
sense that the second-order moments E[||S;||?], k¥ € N, are finite. In what
follows, this “finite energy” hypothesis is made. Therefore, with respect
to assumption (A4), we consider the case ¥ = 2 and assume that S €
(=(N, L?(2,RY)). Since the values r and s must verify the inequalities 0 <
s < r <1, our rather natural choice is » =1 and s = 0.

Given m observations Y1, ..., Y,, for which the minimum amplitude a(.S)
is known to be larger than or equal to some known «, if we set L € N and

10



B¢ = /L for every £ € {1,..., L}, the foregoing suggests estimating o, by a
possibly local minimum of

P A AR ICTE))
sup kzlm — 0O(Ba/0) (6)
> I(|Vill < Beoé (/o))

k=1

where O is defined for every x € [0, 00) by

Ti@) /O tdexp(—t?/2)dt

O(x) = = 5 :
To(x) /tdlexp(—t2/2)dt

(7)

Following the terminology proposed in [3], the estimate obtained by minimiz-
ing Eq. (6) is an Essential Supremum Estimate (ESE) of the noise standard
deviation. This name follows from the fact that the essential supremum norm
plays an important role in proposition 2.1 and its generalization stated in [3,
Theorem 1].

In [3], experimental results are given for the case of independent sig-
nals that are two-dimensional random vectors uniformly distributed on a
circle centred at the origin with known radius a and that have their prob-
abilities of presence less than or equal to one half. Such random signals
model modulated sinusoidal carriers whose amplitudes equal o and whose
phases are uniformly distributed in [0, 27]. The empirical bias and the em-
pirical Mean-Square Error (MSE) of the ESE remain reasonably good for o €
{0,0.25,0.5,0.75, ..., 5} and any probability of presence in {0.1,0.2,...,0.5}.
One conclusion of [3] is therefore that the asymptotic conditions on which [3,
Theorem 1] and proposition 2.1 rely, are not so constraining and can certainly
be relaxed in practice.

3.2 Modified and Complex Essential Supremum Esti-
mates

The computation of the ESE requires prior knowledge of a lower bound for

the amplitudes of the signals. This lower bound is not always known. Since

[3] suggests that the convergence stated by (5) is quite fast, we hereafter set
o to 0 in (6) and, thus, since £(0) = v/d (see [5]), estimate o by a possibly

11



local minimum & of

SOV (Y]] < B V)
sup kzlm —U@(ﬁz\/a)
B STl < B0 VA)
k=1

Any minimization routine for scalar bounded non-linear functions is suitable.
For instance, the experimental results presented in the next sections were ob-
tained with the MATLAB routine fminbnd.m based on parabolic interpolation
(see [6]). This routine is also that employed in [3] to compute the ESE.
The search interval [opmin, Omax] 18 computed as follows. Sort the observa-

tions Y1,...,Y,, k = 1,...,m, by increasing norm. Let Yy, k =1,...,m,
be the resulting sequence. The right endpoint of the search interval is then
Omax = ||Upn||/V/d. As far as the left endpoint is concerned, choose a real

number () close to 1 but less than or equal to 1 — m. A typical

choice is @ = 0.95, provided that m > 24. Set h = 1/y/4m(1 — @) and
Fmin = m/2—hm. The left endpoint is then ouin = || Yk, ll/Vd. The reader
is asked to refer to [3] for justifications regarding the construction of this
search interval.

Regarding the applications considered in the sequel, simulations of the
same type as those proposed below show that oy is a reasonably good estimate
of 0g. However, we can propose a better estimate of og. This new estimate,
henceforth called the Modified ESE and denoted by &y, is computed on the
basis of gy by setting

Z IVellPI(|[Yel| < Gov/d)
Go=7 | = (8)

\ S IV < 60vd)

m
k=1
where 7 is some constant chosen empirically with respect to the application.
For instance, this constant is different for the two applications addressed in
the sequel.
The rationale is the following. Under the assumptions of proposition 2.1
and in the particular case where § = 1, Eq. (5) means that, when the
amplitudes of the signals are larger than or equal to some sufficiently large

12



value o and the sample size is large enough, the random variable

Z Vel I([[Ye]l < o€(r/o0))

3H

D IVPI(IYA < o€ (/o))

k=1

approximates 0" *Y,.(&(a/0y))/Ts(£(a/0p)). For the computation of oy, we
have chosen » = 1, s = 0, and considered that the convergence stated by Eq.
(5) holds true even for small values of «.

Assume now that S € (*(N, L*(Q,RY)), which remains reasonable al-
though stronger than the “finite energy” assumption since £*°(N, L*(Q, RY)) C
(=(N, L?(2,RY)). Then, we can choose r = 2 and s = 0. Still assuming that
Eq. (5) is valid whatever the value of «, we consider that o2 can be approx-
imated, in a certain mathematical sense that remains to be specified, by the
random variable

IYIFIIY) < o€(a/o0))
Tolé(a/on)) >

To(é(a/a0)) i] |Yel| < 0é(a/oy))
k=1

By setting & = 0 and taking into account that £(0) = V/d, the foregoing

leads to approximate o as proposed in Eq. (8) with v = \/TO(\/E)/TQ(\/E).
When d = 2, the case addressed in the sequel, this constant equals 1.0937.
According to the experimental results presented below, it may be necessary
to adjust this value with respect to the application.

In practice, observations are often complex random variables, or equiva-
lently, two-dimensional real random vectors. For instance, such observations
can be the complex values provided by the standard I and ) decomposi-
tion encountered in most receivers in radar, sonar and telecommunication
systems. Complex observations can also be simply the outcome of a Dis-
crete Fourier Transform (DFT) as in some radar and sonar systems but also
in a great variety of other applications. In section 5, we will consider an
application to speech processing where the DFT plays a crucial role.

Because of the important role played by two-dimensional real random

vectors and complex random variables in many applications, the Modified
ESE when d = 2 will be called the Complex ESE (C-ESE). In the two-

13



dimensional case, note that the expression of © simplifies so that

/ t* exp(—t*/2)dt
0

1 — exp(—2x2%/2)

O(z) = (9)

4 Application to the non-coherent detection
of modulated sinusoidal carriers in AWGN

The bias, the consistency and the minimum attainable mean square estima-
tion error of the Modified and Complex ESEs are still unknown. However,
we can undertake some experiments making it possible to assess the per-
formance of such estimates. The experiments presented in this section are
motivated by the following facts.

We keep the notations used so far. Given any real number x, by the
thresholding test with threshold height h € R, we hereafter mean the test
T, =1(]| - || > h) that assigns 1 to y € R4 if ||y|| > h and 0, otherwise.

Given any non-negative real number «, let 7 be the statistical test I(]| -
| > do&(a/dp)). Given k € N, the decision of this test is that g5 is 1 if
|Yel] > 60&(a/dp) and that g is 0, otherwise.

If the Modified ESE 4y is a reasonably good estimate of the noise standard
deviation, the performance of test 7 can be expected to approach that of the
thresholding test 7, ¢(a/0,) With threshold height oo&(a/og).

To detect the presence of any signal with norm larger than or equal to «
and prior less than or equal to one half, it follows from [5, Theorem VII.1]
that the probability of error Pe{Zo¢(a/00)} Of Toge(a/on) Satisfies the following
inequalities

PeAL} < PelTovg(ajon) ) < V(a/00)- (10)

In these inequalities, P.{L} stands for the probability of error of the Minimum-
Probability-of-Error (MPE) decision scheme £, that is the likelihood ratio
test with the smallest possible probability of error among all possible hy-
pothesis binary tests. In Eq. (10), the map V is defined for every x € [0, 00)
and the reader can refer to [5] for the general expression of this map.

The inequalities in (10) become equalities in the least favourable situa-
tion where the signal is uniformly distributed on the sphere centred at the
origin with radius o and has prior equal to one half (see [5, Theorem VII.1]).
Therefore, in this least favourable case, if the ESE 0o is a good estimate of o,
the probability of error P.{7 } of 7 should not significantly exceed V (a/oy).
If the probability of presence of every S, equals one half, Pe{’ZA'} should even
be close to V(a/oy).

14



We do not know the theoretical value of Pe{’j\' }. Hence, we estimate this
probability of error by the Binary Error Rate (BER) obtained by a Monte-
Carlo simulation and compare this BER to V' («/og). This Monte-Carlo sim-
ulation is carried out in the case of two-dimensional real random observations
(d = 2). We then choose some p € (0,1/2] and every Sy has a probability
of presence equal to p and is uniformly distributed on the circle centred at
the origin with radius «. Therefore, the two components of every Sj can be
regarded as the in-phase and quadrature components of a sinusoidal carrier.
In other words, we consider the “non-coherent detection of modulated sinu-
soidal carriers”, a problem particularly relevant for telecommunication and
radar processing (see [7, p. 65]).

In the two-dimensional case, the mathematical expressions of £ and V
simplify. According to [3], for d = 2, we have

§(p) = (1/p)lg (exp(p®/2)) (11)
and
1 £(p)
V(o) = gespl—r/2) [ teso(=t 2o
5 p(~E(p/2) (12)

where I is the zeroth-order modified Bessel function of the first kind (see |8,
Eq. 9.6.47, p. 377]).

For the computation of the C-ESE and on the basis of some preliminary
tests such as those described below, the constant v in Eq. (8) is set to 1, the
integer part of the constant suggested in the preceding section.

The BER of 7 is then computed as follows. Independent trials of m
observations each are carried out until two conditions are fulfilled. First, at
least M trials must be performed. Inasmuch as the decision about the pres-
ence or the absence of signals is made on the observations used for estimating
0o, the accuracy of the estimate affects m decisions at one go. This effect
is then reduced by fixing a minimum number of trials. Second, trials are
performed until the total number N, of errors made by test 7 for detecting
the presence or the absence of signals is above or equal to some specified
number N. If j is the first trial number larger than or equal to M for which
the total number of errors N, becomes larger than or equal to N, the BER
of test 7 is then defined as the ratio N./(j x m).

The simulation is achieved with oy = 1. The pre-specified number of er-
rors is N = 1000 and the minimum number of trials is M = 1000. We choose
L =m and () = 0.95 on the basis of preliminary trials. The comparison be-
tween the BER of 7 and V(a/0y) is achieved for p € {0.1,0.2,0.3,0.4,0.5}

15



and A € {0,0.25,0.5,0.75,...,5}. The results are those of figures 1, 2, 3
and 4 for different values of m. As expected, the performance of T yields
performance close to that of 75 ¢(a/00)-

The experimental results presented above were achieved without prior
knowledge on the amplitude of the signals. Nevertheless, they are signifi-
cantly close to those given in [3] where the estimation of the noise standard
deviation is performed via the ESE, which does require such prior knowledge.

Again for signals that have the same probability of presence p less than
or equal to one half and that are uniformly distributed on the circle centred
at the origin with radius «, we calculated the absolute value |BIAS| and the
empirical MSE of the C-ESE computed over M = 1000 trials. Tables 1, 2
and 3 below display some results obtained for different values of o and p.
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| o 05 | 1 [ 15 [ 2 [25 ] 3 |35 ] 4 |
m — 100 LIBrAs[ | 0.077 | 0.07 | 0.053 | 0.039 | 0.04 | 0.049 | 0.048 | 0.064
MSE [0.036 | 0.039 | 0.037 [ 0.032 | 0.035 | 0.036 | 0.034 | 0.04
w1 — 200 LIBAs| | 0.065 | 0.051 | 0.03 | 0.041 | 0.054 | 0.052 | 0.054 | 0.056
MSE [0.023]0.023 | 0.02 | 0.022 [ 0.026 | 0.024 | 0.022 | 0.023
w1 — 400 LIBrAs| | 0.069 | 0.058 | 0.05 | 0.045 | 0.054 | 0.061 | 0.068 | 0.062
MSE [ 0.016 | 0.017 | 0.016 | 0.015 [ 0.015 | 0.016 | 0.017 | 0.016
w1 — 800 LIBrAs| | 0.082 | 0.07 | 0.062 | 0.054 | 0.059 | 0.067 | 0.07 | 0.074
MSE | 0.014 [ 0.013 | 0.012 | 0.011 [ 0.011 | 0.012 | 0.012 [ 0.012

Table 1: Absolute value of the empirical bias and empirical MSE of the
C-ESE when signals are uniformly distributed on the circle centred at the
origin with radius a and have a probability of presence p equal to 0.1.
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| o 05 | 1 [ 15 [ 2 [25 ] 3 |35 ] 4 |
w1 — 100 LIBrAs[ | 0.071 ] 0.024 | 0.02 | 0.041 | 0.039 | 0.014 | 0.005 | 0.01
MSE [0.037 [ 0.038 | 0.042 | 0.046 | 0.05 | 0.041 | 0.038 | 0.035
w1 — 200 LIBAS| | 0.059 | 0.005 | 0.028 | 0.043 | 0.033 | 0.013 | 0.002 | 0.017
MSE [0.024 | 0.023 | 0.024 | 0.028 [ 0.028 | 0.021 | 0.018 | 0.018
w1 — 400 LIBAs| | 0.065 | 0.017 | 0.026 | 0.026 | 0.02 | 0.002 | 0.012 | 0.014
MSE [0.017 | 0.015 | 0.016 | 0.017 [ 0.014 | 0.012 | 0.01 [ 0.01
w1 — 800 LIBrAs| | 0.07 ]0.033 | 0.009 | 0.024 | 0.002 | 0.009 | 0.017 | 0.023
MSE [0.013] 0.01 | 0.01 | 0.01 [0.008 | 0.006 | 0.005 | 0.006

Table 2: Absolute value of the empirical bias and empirical MSE of the
C-ESE when signals are uniformly distributed on the circle centred at the
origin with radius a and have a probability of presence p equal to 0.3.

a o5 | 1 |15 ] 2 [ 25 ] 3 |35 [ 4 |
= 100 | 1BIAS] [ 0.056 [ 0.02 | 0.124 | 0.193 | 0.223 | 0.161 [ 0.101 | 0.07
MSE | 0.035 | 0.04 ] 0.068 | 0.098 | 0.128 | 0.099 [ 0.059 | 0.041

1 — 200 | BIAS] [ 0.038 | 0.042 | 0.145 | 0.207 | 0.209 | 0.15 [ 0.095 | 0.08
MSE | 0.021 | 0.027 | 0.052 | 0.083 | 0.088 | 0.057 [ 0.029 | 0.021

i — 400 | 1B1AS] [ 0.045 [ 0.028 | 0.129 | 0.197 | 0.177 | 0.135 | 0.113 | 0.105
MSE | 0.014 | 0.016 | 0.036 | 0.063 | 0.054 | 0.031 | 0.02 [ 0.017

1 — g0 | B1AS] [ 0.059 [ 0.012 ] 0.112 | 0.17 | 0.16 [ 0.141 [ 0.137 | 0.145
MSE | 0.012 | 0.01 | 0.024 [ 0.043 [ 0.037 [ 0.026 | 0.021 [ 0.024

Table 3: Absolute value of the empirical bias and empirical MSE of the
C-ESE when signals are uniformly distributed on the circle centred at the
origin with radius a and have a probability of presence p equal to 0.5.

19



5 Application to speech denoising

In this section, we describe how the C-ESE can be used by the standard
Wiener filtering aimed at denoising speech signals corrupted by independent
AWGN with unknown standard deviation. We briefly remind the reader of
the basics concerning the standard Wiener filtering of noisy speech signals
(see subsection 5.1). Then, in subsection 5.2, under the assumption that noise
is white and Gaussian, we explain how to use the C-ESE to estimate the
noise standard deviation and adjust the filtering. We complete this section
by experimental results (see subsection 5.3).

5.1 Wiener filtering

Let s(t), t =0,...,T — 1, be the samples of some speech signal and suppose
that these T samples are corrupted by some noise x(t), t = 0,1,...,7 — 1,
so that the samples of the observed signal are

y(t) =s(t) +x(t),t=0,..., T — 1. (13)

It is usual to split the 7" available samples y(¢), t = 0,1,...,7 — 1, into
frames of N = 29 samples each where ¢ is some integer such that NF, =~
20ms, F being the sampling frequency. Frames are generally constructed so
that two consecutive ones overlap by one half. The samples of each frame
can be weighted. In what follows, for the sake of simplifying the notations,
the description of the filtering is made without taking such weighting into
account.

For the k'™ frame, let si(t), zx(t) and yi(t), t = 0,1,..., N — 1, stand
for the N samples of the speech signal, noise and the observed noisy speech
signal, respectively. We thus have y,(t) = sg(t) + xx(1).

Now, let Yi(v), Sk(v) and Xi(v), v = 0,...,N — 1, denote the DFT
coefficients of yx(t), sx(t) and zx(t), ¢ = 0,1,..., N — 1, respectively. For
every v =0,1,..., N — 1, we have Y, (v) = Sk(v) + Xi(v).

The standard Wiener filtering of y is based on Malah’s decision-directed
approach (see [9]). Each frequency component Si(v) is then estimated by
Sp(v) = Wi(v)Yi(v) where Wy, (v) is the so-called Wiener gain function. This
gain is given by

Wi(v) = Ri(v)/(1 + Ri(v)) (14)

where R
18P

Ri(v) = (1 —w)h (G(v) —1) + B[ Xx(0)

(15)
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is the so-called decision-directed estimate of the a priori Signal to Noise Ra-
tio (SNR) E[|Sx(v)|!]/E[| Xk(v)]?]. In Eq. (15), Sp_1(v) = W1 (v)Yi1(v)
is the " spectral component of the Wiener denoised speech signal in frame
k—1; h(z) =z if x > 0 and h(x) = 0 otherwise; (.(v) = |Yi(V)|?/E [| Xk (v)|?]
is the a posteriori SNR; the weighting factor w will be set to 0.98 as recom-
mended in [9]. The decision-directed approach described by (15) takes into
account the current frame, with weight (1 — w), and the result of the pro-
cessing of the previous frame, with weight w.

5.2 Estimation of the noise standard deviation via the
C-ESE when noise is white and Gaussian

When noise is white and Gaussian with standard deviation og, the noise
frequency components are independent and identically distributed so that
each Xj(v) is complex Gaussian distributed with

Xi(v) ~ CN(0,2NA%02) (16)

where A is some constant depending on the normalization chosen with re-
gard to the Parseval identity. More specifically, if the sequence U(v), v =
0,1,...,N — 1, is the DFT of the discrete sequence of (possibly complex)
values u(t), t = 0,1,..., N — 1, this constant is such that 3" ' |U(v)|* =
NA2 SV |u(t)[? and generally chosen in {1/v/N,1,1/N}.

To perform the standard Wiener filtering according to Eq. (15), an es-
timate of the noise standard deviation must be calculated so as to estimate
E[|Xx(v)|?] = 2NA%02. A basic and popular solution to perform this esti-
mate involves using a Voice Activity Detector (VAD). The estimate of oy
is then computed on the basis of the samples of the time frames that the
VAD has detected as noise alone. Subspace approaches can also be used to
estimate oy by computing the smallest eigenvalues of the noisy speech auto-
correlation matrix. In this case, the model order is difficult to choose and
the computation of the eigenvalues may prove unstable.

We now present how to use the C-ESE for the estimation of 9. We begin
by splitting the T available samples y(t), t = 0,1,...,7 — 1, into frames of
N = 2% successive samples each. In contrast to the previous subsection,
the frames are here constructed so that they do not intersect; it is even
conceivable to choose frames separated by some time lapse. We proceed thus
for reasons given below.

Let K stand for the number of frames so constructed. The notations
used above to denote the observed signal, the speech signal and noise in the
k™ frame are again yi(t), si(t) and zx(t), t = 0,1,..., N — 1, respectively.
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Consider now the set of observations Yy (v), k € {1,..., K}, v € {0,...,N —
1}, where, again as above, Y (v), Sk(v) and Xy (v), v =0,1,..., N—1, stand
for the respective DFTs of the signals y(t), si(t) and zx(t), t =0,1,..., N —
1. Because of the Hermitian symmetry of the DFT, we can restrict our
attention to half of this set, namely the complex random variables Yj(v),
ke{l,...,K},ve{0,...,N/2 — 1} where N is assumed to be even.

Of course, we still have Yy (v) = Si(v) + Xi(v) for every k =1,2,... . K
and every v = 0,1,..., N — 1. However, depending on the Signal to Noise
Ratio (SNR) and the type of speech signal present during frame k, some
speech time-frequency components can be neglected in comparison to noise
and other speech time-frequency components. For instance, high frequency
components of voiced speech signals can become negligible with regard to
noise and the low-frequency components of the same speech signals. For
unvoiced fricative speech signals, low-frequency components can also be sig-
nificantly smaller than high-frequency ones and smaller than those due to
noise.

According to these remarks, we propound to model the presence and
the absence of the speech time-frequency component Si(v) by a discrete
random variable €;(v) valued in {0,1} and write that the observation is
Yi(v) = er(v)Sk(v) + Xi(v). With respect to this model, P({ex(v) = 1}) is
the probability that some speech component is present at frequency v dur-
ing frame k. This probability of presence may be larger than one half for
low frequency components. However, for high frequency components, this
probability of presence becomes less than or equal to 1/2 and even relatively
small. Summarizing, we can consider that the speech time-frequency compo-
nents are less present than absent. If we now split the observation set Y (v),
ke{l,...,K}, ve{0,...,N/2— 1}, into subsets of m observations each
and if the elements of each subset are chosen randomly amongst the available
observations, the observations of each subset can reasonably be expected to
be independent all the more since these observations are computed on the
basis of non-intersecting frames. We thus assume that the model underly-
ing proposition 2.1 and the construction of the C-ESE are satisfied for each
subset of m observations.

According to Eq. (16), for each subset of m observations, the C-ESE will
return an estimate of Aggv/N since each complex random vector X (v) can
be regarded as a centred two-dimensional random vector whose covariance
matrix equals Acyv/NI,. Therefore, our final estimate of Aogv/N is simply
obtained by averaging all these estimates returned by the C-ESE. Dividing
this average by AV/N vields an estimate of oy.
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5.3 Performance evaluation

We randomly select twenty-five sentences in the TIMIT database and twenty-
five sentences in the TIDIGITS database. These two databases are standard
in speech processing. The TIMIT and the TIDIGITS databases are com-
posed of read speech and connected digit sequences, respectively. The sen-
tences selected in these databases are downsampled to 8 kHz before adding
white Gaussian noise. We estimate the noise standard deviation as described
above via the C-ESE on the basis of frames with N = 256 samples each.
Such a frame thus corresponds to 32ms of noisy speech signals. As specified
above, we use non-overlapping frames for the estimation of the noise stan-
dard deviation. They are not weighted either. On the basis of preliminary
tests on signals other than the sentences used to achieve the experimental
results presented below, we set the constant 7 in (8) to v/2.

As far as the Wiener filtering is concerned, there is a 50% overlap between
two adjacent frames and each frame is weighted by a Hanning window.

We evaluate the quality of the filtered speech signals by calculating the
standard Segmental Signal to Noise Ratio (SSNR) (see [10]) and the Modified
Bark Spectral Distortion (MBSD) (see [11]). The SSNR is the average of the
SNR values on short segments. The SSNR is not relevant enough to measure
the distortion of the denoised speech signals. This is the reason why we use
the MBSD. The MBSD is an improved version of the Bark Spectral Distortion
(BSD) proposed in [12]. Basically, it extends the BSD by incorporating the
speech masking threshold so as to perform the measure without taking into
account inaudible distortions. The MBSD proves to be highly correlated with
subjective speech quality assessment [11].

The average SSNR and MBSD obtained over the twenty-five sentences of
the TIMIT database are presented in figures 5(a) and 5(b). Figures 6(a)
and 6(b) are the average SSNR and MBSD calculated over the twenty-five
sentences of the TIDIGITS database. In all these figures, the solid curves
are the performance measurements achieved with the filtering defined by
equations (14) and (15) when the C-ESE is used instead of the true value
of the noise standard deviation. The dashed curves are the results obtained
when the filtering is achieved with the exact value of the noise standard
deviation. The results are similar for the two sets of sentences considered
during these experiments. Clearly, the Wiener filtering adjusted with the
noise standard deviation estimate yields results that are significantly close
to those obtained when the noise standard deviation is known. In addition,
figure 7(a) (resp. figure 7(b)) compares the average value of the C-ESE
obtained by processing the 25 sentences of the TIMIT database (resp. of the
TIDIGITS database) to the true value of the noise standard deviations at
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the different SNR’s tested during the experiments. These figures illustrate the
good behaviour of our algorithm. As mentioned below, they are preliminary
to further studies undertaken to get better insight into the behaviour of the
C-ESE with respect to applications in speech denoising.
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Figure 5: (a) SSNR and (b) MBSD improvement for 25 speech signals ran-
domly chosen in the TIMIT database and additively corrupted by indepen-
dent AWGN with various SNRs.

6 Perspectives and extensions

We have presented algorithms for estimating the standard deviation of some
AWGN when observations derive from signals less present than absent in
this background. According to experimental results, this algorithm is very
promising. An application to speech denoising has been described where
the estimator avoids the use of a DAV or subspace approaches that can be
difficult to adjust.

New theoretical developments should be achieved in forthcoming work.
In particular, further study of the Modified and Complex ESEs are required
to get better insight into the behaviour of these estimates, in particular with
regard to the constant v in Eq. (8) since this constant is chosen empirically
depending on the application.

More exhaustive experiments are in progress so as better characterize the
statistical behaviour of the C-ESE in the case of noisy speech signals. The
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Figure 6: (a) SSNR and (b) MBSD improvement for 25 speech signals ran-
domly chosen in the TIDIGITS database and additively corrupted by inde-
pendent AWGN with various SNRs.
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over (a) the 25 noisy sentences of the TIMIT database and (b) the 25 noisy
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analysis of the bias, the consistency and the mean square estimation error of
the estimators proposed above should also be addressed from a theoretical
point of view.

The design of CFAR systems for the detection of radar targets also seems
to be a rather natural field of application. Application in ESM for the inter-
ception of non-cooperant communications could also be investigated. Two
other areas of applications are proximity sensing and distributed detection
systems (see [13]). Proximity sensing aims at informing a robot that it is
approaching an object. For the design of distributed detection systems, the
absence of prior knowledge about the statistics of the observations is still an
issue.

As an extension of the application to speech denoising described above,
on-going work concerns the application of the C-ESE to perceptual speech
denoising in AWGN and coloured noise.
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