
HAL Id: hal-02163873
https://hal.science/hal-02163873

Submitted on 24 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preserving Functional Correctness of Cyber-Physical
System Controllers: From Model to Code

Guillaume Davy, Christophe Garion, Pierre-Loïc Garoche, Pierre Roux,
Xavier Thirioux

To cite this version:
Guillaume Davy, Christophe Garion, Pierre-Loïc Garoche, Pierre Roux, Xavier Thirioux. Pre-
serving Functional Correctness of Cyber-Physical System Controllers: From Model to Code.
2018 Forum on specification & Design Languages (FDL), Sep 2018, Munich, France. pp.5-16,
�10.1109/FDL.2018.8524044�. �hal-02163873�

https://hal.science/hal-02163873
https://hal.archives-ouvertes.fr

Preserving functional correctness of cyber-physical
system controllers: from model to code

Guillaume Davy∗§, Christophe Garion†§, Pierre-Loı̈c Garoche∗§, Pierre Roux∗§ and Xavier Thirioux‡§
∗Onera, The French Aerospace Lab, Toulouse, France †ISAE Supaero, Toulouse, France
‡IRIT INPT, Toulouse, France §University of Toulouse, France

blocks, and relies on a dataflow semantics: an (un)specified
sampling time is used to trigger the computation. Every time
step the whole model is evaluated and this computation is
assumed to be instantaneous. This model of computation is
particularly suited for discrete time dynamical systems such
as time-triggered controllers.

The use of models fitted with an executable semantics also
enables early validation: the model can be simulated and
evaluated with respect to its specification, before having the
complete system.

Ideally, the requirements would have to be checked with
respect to the final embedded code. Two different approaches
can be used for this purpose. The first one trusts the compila-
tion process to preserve the model semantics in the produced
code and the verification activities can be performed only –
or mainly – at model level. This is the approach currently
used in the industry when relying on qualified compilers such
as SCADE KCG [28] or developed in academia with proved
compilers such as CompCert [23] or verified Lustre compil-
ers [8], [22]. In these approaches, the compiler implementation
is complex and relies on the formalization of a proof of the
compilation process based on the Curry-Howard isomorphism.

A second approach, translation validation [29], [25], [26],
authorizes to use of off-the-shelf compilers but requires the
specification to be validated both at model and code level.
This is the approach developed in this paper.

We propose to rely on formal methods and perform exhaus-
tive verification of requirements at all design stages of the
development process. Our approach is specification oriented
and requires specification to be formally defined as a logical
component. Formal analyses are then performed at model level
to ensure the verification of the specification. The model is
next compiled to embeddable C code and its specification
checked again at code level.

The paper is structured as follows. Section II outlines the
different approaches used to perform formal specification and
verification. We also present basic algorithms used to support
these verification activities. The next two sections focus on
the model level: Section III addresses the formal specification
of requirements at model level as well as the main principle
behind model-checking, namely induction, while Section IV
focuses specifically on the need to synthesize model invariants
to support the verification activities. We present techniques to
address the computation of non linear invariants using convex-
based optimization. The last sections focus on code level:

Abstract—In this paper, we outline a methodology allowing
to support the formal verification o f f unctional p roperties for
generated code. When relying on a code generator, a model
is directly mapped into the target embedded code, in C for
instance. At model level, a specification c an b e a ssociated to
the model and used to assess the validity of the model with
respect to its requirements. At code level, other means such as
deductive methods can be used to ensure similar goals. While the
analysis of user-specified p roperties a t m odel-level i s developed
and tractable, the automatic verification of these specification at
code level remains an open issue. We present here a framework
which builds a semantics layer connecting model specification to
code specification, a s w ell a s a ssociated p roof evidences.

This approach has been designed and developed in the context
of dataflow languages such as Simulink, SCADE or Lustre, typi-
cally used in the design of cyber-physical system controllers, but it
could also be revisited in other contexts. The model is analyzed by
SMT-based model checking and convex optimization-based static
analysis. At code level, deductive techniques, such as implemented
in Frama-C, are used to prove the functional correctness. Our
approach combines static analysis with refinement t o d rive the
proof at code level, relying on analysis results obtained at model
level. The refinement relates the initial model semantics with the
one of the code.

This papers only outlines the methodology combining anal-
yses. It has been applied manually on some examples. A fully
implementation remains a future work.

Index Terms—Formal verification, C onvex o ptimization, Cy-
berphysical systems, Compilers

I. CONTEXT / MOTIVATION

When developing critical systems, verification plays a major
role and impacts drastically the process and the development
cost. In recent years, formal methods have been received as
an accepted means of compliance when performing verifi-
cation and validation activities of critical software. This is
implemented in certification norms such as DO-178C [16] for
aerospace or EN50128 [13] for railway.

Another recent paradigm change is the widespread use
of domain specific m odels t o d esign e mbedded s oftware. In
some contexts, such as the design of control systems, models
now enable a full characterization of the software which is
eventually fully generated from the model design. This is
for instance implemented through the MATLAB Simulink
toolset which provides a model-based design environment
fitted w ith a utocoders p roducing e mbeddable c ode, o r the
ANSYS SCADE environment with similar features. In both
cases, the model describes the composition of computation

Section V outlines the compilation process of both model and
its specification components; Section VI presents our approach
to automatize the proofs at code level using a refinement proof.
Last, Section VII revisits the validation of numerical invariants
at code level, accounting for numerical imprecision.

II. PRELIMINARIES

We introduce in this section some definitions and outline
the different tools and methods used to perform our formal
analyses.

A. Notations: sets, logic and predicates

Sets are labeled with a capital letter (e.g. I , O, V). For a set
S, ~S (resp. S) is the set of tuples (resp. streams) of elements
of S. Elements in such sets are denoted as ~s ∈ ~S and s ∈ S,
where s = [s0, s1, . . .] = {si}i∈N, each si belonging to S.

Let V be a set of variables. Predicates, labeled in typewriter
font (e.g. p or init), are boolean functions over V . We denote
by FV (p) the set of variables used in p.

We denote by MV = (V → R) the possible models of
a set of variables V . A model associates a real value to each
variable of V . For a model m ∈MV , we interpret p[m] as the
evaluation of predicate p with the model m, i.e. substituting
all occurrences of free variables of p with their value in m.

B. Synchronous dataflow models

Synchronous languages are a class of languages proposed
for the design of so called “reactive systems” – systems that
maintain a permanent interaction with physical environment.
Such languages are based on the theory of synchronous time,
in which the system and its environment are considered to
both view time with some “abstract” universal clock. In order
to simplify reasoning about such systems, outputs are usually
considered to be calculated instantly [5]. Examples of such
languages include Esterel [6], Signal [2], the discrete subset
of Simulink, or Lustre [12], [19]. In this paper, we focus on
basic constructs and do not mention clock related features. In
the following, we will use a syntax inspired from Lustre.

Programs manipulate streams, i.e. infinite sequences of
values. At each time step, the system is considered to evaluate
all streams, so all values are considered stable for any actual
time spent in the instant between steps. A stream position can
be used to indicate a specific value of a stream in a given
instant, indexed by its clock tick. A stream at position 0 is in
its initial configuration. Positions prior to this have no defined
stream value. A dataflow program defines a set of equations
of the form:

y1, . . . , yn = f(x1, . . . , xm, u1, . . . , uo)

where yi are output or local variables and ui are input
variables. Variables are used to represent individual streams
and they are typed with basic types including streams of Real
numbers, Integers, and Booleans. Programs and subprograms
are expressed in terms of Nodes. Nodes directly model sub-
systems in a modular fashion, with an externally visible set
of inputs and outputs. A node can be seen as a mapping of a

finite set of input streams (in the form of a tuple) to a finite
set of output streams (also expressed as a tuple). The top node
is the main node of the program, the one that interfaces with
the environment of the program and is never called by another
node.

At each instant t, each node takes in the values of its
input streams and returns the values of its output streams.
Operationally, a node has a cyclic behavior: at each cycle t,
it takes as input the value of each input stream at position or
instant t, and returns the value of each output stream at instant
t. Nodes have a limited form of memory: when computing the
output values they can also look at input and output values
from the previous instant. Nested definitions allow to access
up to a finite limit of history, statically determined by the
program itself.

The body of a node consists typically in a set of definitions,
i.e. stream equations of the form x = t where x is a variable
denoting an output or a locally defined stream and t is an
expression, in a certain stream algebra, in which variables
name input, output, or local streams. More generally, x can
be a tuple of stream variables and t an expression evaluating
to a tuple of the same type. Most of dataflow operators are
point-wise lifting to streams of the usual operators over stream
values. For example, let x = [x0, x1, . . .] and y = [y0, y1, . . .]
be two integer streams. Then, x+y denotes the stream [x0 +
y0, x1+y1, . . .]. An integer constant c may denote the constant
integer stream [c, c, . . .]. Two important additional operators
are defined: a unary shift-right operator pre (“previous”), and a
binary initialization operator→ (“followed by”). pre is defined
as pre(x) = [u, x0, x1, . . .] with the value u left unspecified.
→ is defined as x → y = [x0, y1, y2, . . .]. Syntactical
restrictions on the equations in a program guarantee that all its
streams are well defined: e.g. forbidding recursive definitions
hence avoiding algebraic loops.

Definition 1 (Node definition). A Lustre node N is defined by
the tuple (IN , ON , LN , EqN) where IN , ON , LN ⊆ V denote
set of input, output and local variables, respectively, and EqN
is a set of equations in L(IN ∪ON ∪LN) defining the Lustre
node streams where L denotes the set of valid expressions as
defined previously.

The pre construct characterizes local memories of a node.
Since a node can call other nodes which can themselves
contain memories, we denote a node state by the treedescribing
this structured set of local memories. Each call to a node
characterizes an instance of it, identified by a unique identifier
(uid). We annotate the call by this uid.

Definition 2 (Node State SN). Let N be a set of nodes and
(IN , ON , LN , EqN) be a node N ∈ N . Let Uid a set of uid
and Uid∗ its Kleene closure with ∅ the empty word. We assume
that each occurrence of a call in an equation eq ∈ EqN has
been associated to a uid ∈ Uid. We define recursively a node

state as the set SN ∈ ℘(Uid ∗ ×V)

SN ,

{(∅, v) | v = pre e ∈ EqN}
∪{

(uid · uidv, v)
∣∣∣∣ v = N ′uid(e) ∈ EqN ∧

(uidv, v) ∈ SN′

}
To ease the following notations, we consider this set as a
regular set of variables, SN ⊆ V , provided an appropriate
injective naming scheme.

C. Axiomatic semantics

As introduced by Hoare [21], specification of imperative
programs can be formally expressed using predicates via
axiomatic semantics. When expressing requirements about
an imperative program, a Hoare triple (Pre, Code, Post)
can be used to define an assume/guarantee contract. Both
Pre and Post are predicates over the Code variables and
the contract should be understood as “When Pre is valid
before the execution of Code then Post holds afterwards”.
When manipulating C code, ACSL, the ANSI C specification
language [4], provides means to write such specifications and
to attach them to code with annotations. These annotations are
defined as code comments and do not modify the behavior of
the final code. However, they can be manipulated by specific
verification algorithms and used to check the validity of the
specified contracts.

D. Tools

1) Satisfiability Modulo Theory (SMT): SAT solvers ana-
lyze propositional formulas and return a SATisfiable assigne-
ment, that is, a valuation of all propositional variables that ren-
der the propositional formula valid. When no such assignment
is feasible the provided formula is identified as unsatisfiable
(UNSAT). SMT solvers extend SAT solvers, enabling the
atoms of the propositional formulas to be expressed in first-
order theories, for instance linear real arithmetics.

2) Convex optimization: Convex optimization is a restric-
tion of general numerical optimization problems. A convex
optimization problem is defined as follows:

min f0(x)

s.t. fi(x) ≤ 0 for i ∈ [1,m]

aᵀj x = bj for j ∈ [1, p]

where f0 and all fi are convex functions and aj , bj
vectors. A well known special case convex optimization is
linear optimization or LP (linear programming) in which the
objective function f0 and the constraints fi are linear.

This notion of convex optimization can be extended to more
general convex sets. For instance, using semi-definite matrices
(a matrix A is positive semidefinite, denoted by A � 0, iff
∀x, xᵀAx ≥ 0) leads to Linear Matrix Inequalities (LMI) for
fi constraints and SDP (semi-definite programming) solvers,
in which unknown variables denote matrices, can be used to
solve such problems.

Another equivalent kind of convex optimization problems is
SOS (Sums-of-Squares) programming. Showing positivity of a

polynomial constraint can be done by rewriting it as a – usually
large – LMI problem. Positive constraints over polynomial can
then be solved using SDP solvers.

III. MODEL ANALYSES: FORMAL SPECIFICATION AND
VERIFICATION OF SYNCHRONOUS DATAFLOW MODELS

A. Propositional encoding

Relying on the definition of node equations and the char-
acterization of node states, a node semantics can be encoded
as a pair of predicates initN[s ∈

−→
SN] and stepN[i, o, s, s

′ ∈−→
IN ×

−→
ON ×

−→
SN ×

−→
SN] (cf. [17]).

Definition 3 (Node propositional encoding). Let N be a set of
nodes and (IN , ON , LN , EqN) be a node N ∈ N . We define
the semantics of N through the following two predicates:
• initN[s ∈

−→
SN];

• stepN[i, o, s, s
′ ∈
−→
IN ×

−→
ON ×

−→
SN ×

−→
SN]

as the smallest predicates (wrt logical implication) verify-
ing, for all input streams i ∈

−→
IN and output streams o ∈

−−→
ON,

the property:

∃s ∈
−→
SN .s.t. initN[s0]

∧
i∈N

stepN[ii, oi, si, si+1]

B. Synchronous observers

A synchronous observer [20], [38], [36] is a wrapper
dataflow node used to test observable properties of a node
N with minimal modification of the node itself. It returns an
error signal if the property does not hold, reducing the more
complicated property to a single Boolean stream. This stream
has just to be checked to be constantly true. To support such
specification during the compilation process, we have extended
the traditional Lustre language with annotations similar to
ACSL ones, Lustre contracts. Assume/guarantee formulas can
be expressed in Lustre contracts as follows:

(∗@ requires Pre(i);
ensures Post(i, o); ∗)

node N (i :
−→
IN) returns (o :

−→
ON) ;

where Pre and Post are Lustre boolean expressions repre-
senting respectively the assumptions and guarantees of the
contract.

Definition 4 (Contract satisfaction). We say that a node N
fulfills its contract (denoted by N |= 〈Pre, Post〉) if and
only if, for all input, output and state sequences i ∈

−→
IN,o ∈−−→

ON, s ∈
−→
SN the following holds:

∀j, (initN[s0] ∧ ∀k ∈ [0..j].stepN[ik, ok, sk, sk+1] ∧ Pre[ik])
=⇒ Post[ij , oj]

Intuitively, the above definition asserts that if the assump-
tions have held at all instants up and including the current time,
then the guarantee holds at the current time. Such formulation
follows closely the contract semantics defined in the AGREE
framework [14].

Remark 1 (Expression over node states). Without loss of
generality, we can express these contracts over node states.

In the following developments, to keep the presentation
simpler, we deliberately expressed contracts 〈Pre, Post〉 over
system states. Expressions Pre[s] and Post[s, s′] are then
predicate over elements of SN .

C. Formalizing specification.

Synchronous observers are a powerful way to express prop-
erties, as long as they can be expressed over state variables
values. When analyzing control systems, two main issues are
faced. First, most properties are expressed on the closed loop
description of the system, i.e. they integrate the plant model
used in the design. A solution would be to discretize the
plant model and treat it as a regular program [34]. It could
then be embedded within the observers, building complex
stateful observers. A second and more difficult issue is the
characterization of properties in the frequency domain [3].
This typically happens when analyzing linear control system
and is largely used in the control community. A possible
solution is to rely on the Kalman-Yakubovich-Popov [30],
[31] lemma which relates frequency domain properties to
linear matrix inequalities, i.e. numerical invariants over state
variables. As an example, we have revisited the computation
of phase and gain margin using this lemma and characterized
the appropriate numerical property [37].

D. SMT-based model-checking: Contract verification with in-
duction

Let us now assume that the semantics of a model node
N is described by a predicate stepN[i,o, s, s

′]1 defining the
relationship between input flows i, output flows o as well as
internal states s, as defined in EqN for a Lustre node. Let
initN[s] be the predicate over initial states.

As specification is described as a synchronous observer,
similar predicates can be defined for the Pre and Post

conditions since both of them are expressed as regular Lustre
equations.

Proving exhaustively the validity of the contract (cf Def. 4)
with respect to the node semantics can be performed by
induction:

initN[s] ∧ stepN[i, o, s, s′] ∧ Pre[s] =⇒ Post[s′] (1)
stepN[i, o, s, s

′] ∧ Pre[s] ∧ Post[s] =⇒ Post[s̃′] (2)

Both properties are universally quantified over free variables
s, s′, i, o. As outlined in Sec. II-D1 they can be verified using
SMT-based model-checking. SMT-based model-checking tools
rely on more sophisticated variants of this principle, for exam-
ple with algorithms such as k-induction [24] or PDR/IC3 [10].
In all cases the analysis expresses both the model semantics
and the property as predicates and achieves an induction
proof.

1We refer to the traditional definition of transition system in model checking
techniques. A detailed description of a transition system for Lustre programs
can be found in [18].

IV. INVARIANT SYNTHESIS BASED ON CONVEX-BASED
OPTIMIZATION, LYAPUNOV FUNCTION AND POSITIVE

INVARIANCE

Unfortunately, most valid properties are not inductive with
respect to the model semantics. Let us consider the collecting
semantics of N , defined as the set of models CollN ⊆MSN :sn

∣∣∣∣∣∣ ∃
i0, . . . , in ∈MIN ,
o0, . . . , on ∈MON ,
s0, . . . , sn−1 ∈MSN ,

initN[s0]∧∧
0≤i<n stepN[ii, oi, si, si+1]

We define the associated predicate collN[s] = s ∈ CollN .

Any valid property on the model is verified on all reachable
states, in other words, it is inductive with respect to the
collecting semantics. In that setting the induction principle is
complete.

collN[s] ∧ collN[s′] ∧ initN[s]
∧ stepN[i, o, s, s

′] ∧ Pre[s] =⇒ Post[s′] (3)

collN[s] ∧ collN[s′]
∧ stepN[i, o, s, s

′] ∧ Pre[s] ∧ Post[s] =⇒ Post[s̃′] (4)

The same contract (Pre, Post) may not be inductive
over some arbitrary states s, s.t. ¬collN[s]. Such a state
would correspond to a spurious counter-example: a state
s1 unreachable but satisfying Post such that its succes-
sor s2 by the transition system semantics violates Post:
(Pre[s1] ∧ Post[s1] ∧ stepN[i1, o1, s1, s2]) ; Post[s2]

While CollN is, in general, not computable, any over-
approximation of it, i.e. an invariant inv[s] such that
∀s, collN[s] =⇒ inv[s], could be used to reinforce the
model description.

Substituting collN[s] by a computable inv[s] in Eqs (3)
and (4) reinforces the induction proof but introduces in-
completeness (since true is a trivial over-approximation of
collN[s]).

A. Static analysis – Abstract interpretation

Static analysis, and more specifically abstract interpreta-
tion, provide means to compute over-approximation of the
collecting semantics. The theory relies on Tarski fixpoint
characterization and identifies the (non computable) collecting
semantics as the set CollN defined by a least fixpoint

CollN = lfp⊥F = minX⊆MSN {X|F (X) ⊆ X} (5)

of the following function F manipulating sets of models M :

F : ℘(MSN)→ ℘(MSN)

M 7→

m′
∣∣∣∣∣∣
initN [m′]∨
∃i ∈MIN , o ∈MON ,m ∈M,
s.t. stepN [i, o,m,m′]

 (6)

As a consequence, any set C of modelsMSN verifying the
condition F (C) ⊆ C is a sound over-approximation of CollN
since CollN ⊆ C and therefore ∀s ∈ MSN , collN[s] =⇒
s ∈ C.

Abstract interpretation attempts to compute such a set C
by considering a family of such sets, notorious ones being
intervals (C , SN → R×R) or convex polyhedra (C , (Ax+

x

y

intervals

x

y

octagons

Fig. 1: Examples of abstract domains.

b ≤ 0) with x ∈ SN , n = card(SN), A ∈ Rn × Rn, b ∈ Rn).
Fig. 1 illustrates such computed sets, called abstract domains,
here an interval-based set and an octagon.

B. Lyapunov functions and positive invariant sets

In 1890, Alexander LYAPUNOV published his well known

result stating that the differential equation
dx

dt
= Ax(t) is

stable iff a positive-definite matrix P exists such that AᵀP +
PA � 0. In discrete-time setting over a discrete linear system
xk+1 = Axk, it is defined as{

∃P � 0
AᵀPA− P � 0

(7)

The LYAPUNOV function x 7→ xᵀPx acts as a measure of
energy of the system. When measuring the energy of the image
state Ax, we obtain (Ax)ᵀP (Ax) = xᵀAᵀPAx.

Since P is positive definite, ∀x ∈ Rn, xᵀPx > 0, and
P denotes a norm over states. While, thanks to the second
constraint, its sublevel sets, ie. sets defined by a scalar λ as
xᵀPx ≤ λ, are inductive over states: ∀x ∈ Rn, xᵀPx ≥
xᵀAᵀPAx. The inequality AᵀPA−P � 0 encodes a kind of
energy dissipation along trajectories.

Therefore these Lyapunov functions describe naturally in-
ductive sets and are good candidate for over-approximation.

C. Convex-optimization based analysis: automatic synthesis
of semialgebraic sets

Ineq. (7) is a Linear Matrix Inequality (LMI). With the
development of interior point algorithms [27] and convex
optimization [9], the numerical resolution of these convex
optimization problems (LMI or SOS) is now feasible in
reasonable time. Solving equations such as Eq. (7) produces
a inductive sublevel set property for the model semantics.

Let us assume, without loss of generality, that the rela-
tionship defined by the predicate step[i, o, s, s′] between its
internal state before and after the step can be represented
by a polynomial function (possibly non-deterministic or even
piecewise-defined) s′ such that s′ = step(i, s) where step is
polynomial in i and s.

We can reformulate the definition of the collecting semantics
approximation. Let C be a solution of Equation (5),then{

{s | init[s]} ⊆ C ,
{step(i, s) | ∃i ∈MIN , s ∈ C} ⊆ C . (8)

Black points represent random traces, starting from the black square.
Grey regions are computed semialgebraic sets (deg. 8 and 10, resp).

Fig. 2: Computed invariants: inductive semialgebraic sets. [1]

Encoding the set C as the 0-sublevel set of a polynomial p,
we obtain the following problem:{

∀s ∈MSN s.t. init[s] p(s) ≤ 0
∀i ∈MIN , s ∈MSN p (step(i, s)) ≤ p(s) . (9)

Remark 2. Note that the constant part of p can be normalized
to −1. Then the first constraint rewrites as pnc(x) ≤ 1 where
pnc denotes the non constant part of p = pnc − 1. These
constants cancel in the second equation.

This problem is linear in p. It can be solved with an
SDP solver using an SOS encoding (cf. [1]). As an example,
Fig 2 illustrates computed inductive sublevel set invariants of a
piecewise polynomial system: semialgebraic sets. The degrees
of the polynomials p are, respectively, 8 and 10.

V. COMPILATION OF DATAFLOW MODELS AND
SPECIFICATION

While first compilation schemes for Lustre computed a
global automaton of the system [11], the approach of [7]
relies on an object-like compilation of the program: each
Lustre node call is seen as an instance of the generic dec-
laration of the node. In this compilation scheme, traceability
is also more tractable due to the preservation of the program
structure. Such compilation is done through three phases: (i)
First, equations of each Lustre node are transformed in order
to extract the stateful computations that appear inside the
expressions. Stateful computation can either be the explicit
use of a pre construct or the call to another node which may
be stateful. The extraction is made through a linear traversal
of the node’s equations, introducing new equations for stateful
computation. (ii) In a second stage, the set of equations are
ordered in order to enable compilation as imperative code. (iii)
Finally, the C code is generated. Each node instance (object)
is represented by a struct, which defines its state. In Lustre,
syntactic restrictions ensure that recursive definitions are not
allowed, therefore side effects are only allowed in identified
memories and are updated at each execution of the node body.

The compilation of a Lustre node (IN , ON , LN , EqN) will
then produce the following C artefacts. The struct memN

describes hierarchically the internal state of nodes, ie. the set
SN .

struct memN { struct N reg { . . . } reg ;
struct callee mem ni 1 ; . . . };

void N init (struct memN ∗se l f) { . . . };
void N step (type in , type ∗out , struct memN ∗se l f) { . .} ;

This compilation scheme can be adapted to produce other
outputs. For instance, in the present case, we will produce
ACSL predicates, ie. propositional formulas, encoding the
transition relation between input stream, output stream and
the evolution of the internal state of each node.

The input model components are partitioned into categories:
some components are regular model components that will
eventually become embedded C code; some others are speci-
fication artifacts, synchronous observers, that have to be com-
piled to ACSL predicates. Since synchronous observers are
regular dataflow components, they can be made as complex as
possible, for example embedding the (discrete) plant semantics
when expressing closed loop properties.

Once both the code and its ACSL specification are produced
we obtain the following annotated code (implementing Eq (2)):

/ /@ requires Pre(∗ se l f) && Post(∗ se l f) ;
/ /@ ensures Post(∗ se l f) ;
void N step (type in , type ∗out , struct memN ∗se l f) { . .} ;

Formal verification. The generated function contracts can
be used to perform verification. When compiled as online
checks, these contracts act as test oracles: any use of the
functions that violates the contracts will produce an error at
runtime. The formal specification can also be used to perform
exhaustive analysis using deductive methods. These analyses,
as implemented in the WP plugin of Frama-C [15], are
similar to the SMT model-checking algorithms: they encode
the C semantics as a set of predicates and perform reasoning
about this first-order encoding. The encoding is however more
complex since it has to formally and soundly represent the
memory model of the program (stack of calls, pointers on the
heap).

In practice this additional encoding of the memory has a
huge impact on the provability of the requirements and, in
our experiments, deductive methods rarely succeed in proving
these annotations that were previously proved at model level
by SMT-based model-checking.

VI. PROOF OF REFINEMENT

At this stage, the model semantics is both expressed as a set
of C functions and as a set of ACSL predicates. Both express
the same computations but will produce different encodings
when expressed as proof objective.

Consider for example a simple Lustre program
accumulating the absolute value of its input i:
o = 0 → pre o + (if i <0 then −i else i); .

Listing VI.1 presents an ACSL encoding of the node seman-
tics, expressed as a predicate step between input, previous
and next states of memory. Besides its natural contract step
one can also define a specification of the C function foo step
denoting the node semantics: a post-condition nneg expressing
that the updated memory is non-negative.

/ /@ predicate step(i , o , memi, memo) = o == memo &&
(i<0 && memo == memi − i) | | (i ≥ 0 && memo == memi + i) ;
/ /@ predicate nneg(mem) = mem ≥ 0;
/ /@ ensures step(i , ∗o , \at (∗ se l f . reg . pre o , Pre) ,

∗se l f . reg . pre o) ;
/ /@ ensures nneg(∗ se l f . reg . pre o) ;
void foo step (in t i , in t ∗o , struct memfoo ∗se l f) { . . . }

Listing VI.1: A first example in ACSL.

In this very simple example, the proof objective gener-
ated when considering the ensures clauses will contain all
the axiomatization of the memory model and will include
arrays/indices representing memory/pointers, while a theorem
stating that the property nneg is inductive with respect to step
would generate a much simpler proof objective. Note the use
of the ACSL function at which allows to access to the value
of the pointer before the call to the function.

As a consequence, it is much more reliable to perform the
proof in two stages: i) first, prove the inductiveness of the
property with respect to an predicate encoding in ACSL of the
model semantics and ii) prove that the C function do conform
to the relationship expressed by the ACSL predicate describing
the semantics of the model. This second challenge amounts to
performing a refinement proof of the ACSL predicate by the
C function.

We present here our method to automatize this refinement
proof through the definition of intermediate ACSL predicates
describing each computation step.

A. Memory Representation

We first map the low-level memory representation to a sim-
pler model, more suited to verification purposes. We propose to
build a ghost memory representation in ACSL, with the same
structure but without any pointer, using only structs within
structs. For a node N , we then consider a simulation relation
ghostN , pictured in Figure 3, between real (memN) and ghost
(mem ghostN) memory, which equates corresponding struct
fields of both memories, disregarding pointers. The stateful
operator “−>” also has its own ghost memory. Listing VI.2
shows the requirements that the N step function must meet.

self
ghostN

N step

��

memi (Pre)

stepN

��
self

ghostN memo (Post)

Fig. 3: The ghost simulation relation.
Besides, the validity of the C memory state must be ensured

through the ACSL predicate separated . A valid memory
has all its pointers allocated and pairwise different. Similar
requirements are needed for node initialization, both for the
C function and the ACSL predicate.

B. Code Annotation and Optimization

Finally, after every equation processing, depending whether
a node memory is assigned, a different simulation relation

/∗@ requires . . . ; /∗ memory val id i ty predicate ∗/
ensures \forall struct mem ghostN memi;

\forall struct mem ghostN memo;
\at (ghostN (memi, se l f) , Pre)
==> ghostN (memo, se l f)
==> stepN (i1 , . . . , ia , ∗o1 , . . . , ∗oc ,

memi, memo) ;
assigns . . . ; /∗ assigned memory and output ∗/∗/

void N step (I1 i1 , . . . , Ia ia ,
O1 (∗o1) , . . . , Oc (∗oc) ,
struct memN ∗se l f) {. . .}

Listing VI.2: Code contracts with ghost memories in ACSL.

ghostkN and annotation stepkN has to be provided, still
following the preceding general scheme of Listing VI.2. These
relations account for the different partial matchings between
initial and updated memory variables. We also existentially
quantify over free local variables as soon as they are not
live anymore, according to a liveness analysis. It allows
to activate various optimizations (such as equation inlining
and non-live variable reuse) during code generation, without
compromising the proof process. For the sake of simplicity,
we elude here the precise treatment of these annotations. The
resulting predicates stepiN are defined in Figure VI.3. Locals
and Livei respectively denote the set of local and live variables
after the evaluation of equation eqi. ACSL eqi denotes the
translation of equation i to ACSL, as in Figure VI.1.

/∗@ predicate
stepi+1

N (I1 i1 . . . ia , Locals ∩ Livei+1 , Outputs ∩ Livei+1 ,
struct mem ghost N memi, struct mem ghost N memo) =

\exists Locals ∩ (Livei \ Livei+1) ;
stepiN (i1 , . . . , ia , Locals ∩ Livei , Outputs ∩ Livei ,

memi, memo)
&& ACSL eqi+1 ; ∗/

void N step (. . .) {
eqi ; /∗ af ter each equation ∗/
/∗@ assert \forall struct mem ghostN memi;

\forall struct mem ghostN memo;
\at (ghostN (memi, se l f) , Pre)
==> ghostiN (memo, se l f)
==> stepiN (. . .) ; ∗/

. . .}

Listing VI.3: Annotation predicates in ACSL.

VII. VALIDATING NUMERICAL INVARIANTS

As presented in Sec. IV invariants are mandatory to rein-
force the semantics description and enable the validation of
requirements. Such invariants were computed at model level
and can be expressed at code level. However two main issues
arise: first, these numerical invariants are typically non linear,
from simple quadratic sets to more general semi-algebraic sets
(sublevel set of polynomials), and most SMT-solvers have
limited capabilities to manipulate predicates over non-linear
arithmetics; second, all numerical computation were assumed
to be performed with Reals, while, in practice they will
be implemented with imprecise machine type representations

such as floating point arithmetics. We present here how we
propose to address these issues, in a global formal framework.

A. SMT-solver with support of polynomial real arithmetics

To revalidate the invariants computed in Section IV, SMT
solvers will face goals such as

∀x, init(x) ≤ 0 =⇒ p(x) ≤ 0
∀x, p(x) ≤ 0 =⇒ p(step(x)) ≤ 0

(10)

where p, init and step are given polynomials. As already
stated, these will be adressed by attempting to prove that the
following formulas are unsatisfiable

init(x) ≤ 0 ∧ p(x) > 0
p(x) ≤ 0 ∧ p(step(x)) > 0.

(11)

The theory of polynomial real arithmetic is decidable but, since
the best algorithms remain costly, state of the art SMT-solvers
rely on various heuristics to attempt to perform these proofs.
Unfortunately, they often fail to prove the above goals.

A sufficient condition for (10) is the existence of polyno-
mials σ1, . . . , σ4 such that σ1 ≥ 0, . . . , σ4 ≥ 0 and

σ1 init− σ2 p > 0

σ3 p− σ4 p(step) > 0.

For an arbitrary bounded degree, such polynomials can be
looked for using a SOS encoding and a SDP solver. Unfor-
tunately, due to the nature of the interior point algorithms
they implement, these solvers provide approximate numerical
results that may be incorrect and must be checked. This check
amounts to checking that some matrix is positive definite,
which can efficiently be performed using a floating-point
Cholesky decomposition and carefully bounding its rounding
errors [35]. For increased confidence, this algorithm has been
formally proved [32] using the Coq proof assistant.

Implementing the above procedure in a SMT-solver enables
to revalidate invariants computed in Section IV [33].

B. Addressing floating point imprecision

Actual implementations will likely use some finite preci-
sion arithmetic such as floating-point arithmetic. Thus, one
must check that the invariant previously computed assuming
arithmetic computations in the real field are still valid for the
floating-point implementation.

Controllers are usually designed to offer some robustness
qualities. They are for instance able to withstand some amount
of imprecision in the input sensors or output actuators. It
is thus expected that they also withstand rounding errors
induced by the floating-point implementation, considering that
the latter are commonly of a much smaller magnitude. This
however remains to be checked.

A simple solution is to use the standard model of floating-
point arithmetic to represent each floating-point operation as
the corresponding one in the real field plus some small error
ε. These errors can then be accumulated and hopefully, it can
be proved that the invariant remain inductive despite the addi-
tional error. Again, for quadratic invariants on linear systems

(the most common case), the details have been proved [32]
using the proof assistant Coq. This additional guarantee is
particularly welcome for such proofs which are typically rather
easy but tedious, hence error prone.

VIII. CONCLUSION

We presented a framework allowing to support translation
validation, while dealing with functional specification. The
proposed approach supports formal specification and formal
verification all along the software development cycle, from
model design while manipulating dataflow models, to code
level verification and validation.

The approach amounts to adapt a compilation process to
compile specification and proof, and to support their later re-
validation.

In terms of perspectives, the first one is a complete im-
plementation of the methodology, linking the existing tools
together. We would also like to address the specification of
system-level properties (such as stability, robustness or per-
formance) and to consider hybrid closed-loop systems where
the plant semantics is defined by ODEs and the controller is
a regular (discrete time) dataflow model.

REFERENCES

[1] A. Adje, P.-L. Garoche, and V. Magron. A sums-of-squares extension
of policy iterations. Nonlinear Analysis: Hybrid Systems, 2017.

[2] P. Amagbégnon, L. Besnard, and P. L. Guernic. Implementation of the
data-flow synchronous language signal. In PLDI’95, pages 163–173.
ACM, 1995.

[3] K. J. Astrom and R. M. Murray. Feedback Systems: An Introduction for
Scientists and Engineers. Princeton University Press, 2008.

[4] P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Pre-
vosto. ACSL: ANSI/ISO C Specification Language. version 1.7.

[5] A. Benveniste and G. Berry. The synchronous approach to reactive and
real-time systems. In Proc. of the IEEE, pages 1270–1282, 1991.

[6] G. Berry and G. Gonthier. The esterel synchronous programming
language: design, semantics, implementation. Sci. Comput. Program.,
19(2):87–152, 1992.

[7] D. Biernacki, J.-L. Colaço, G. Hamon, and M. Pouzet. Clock-directed
modular code generation for synchronous data-flow languages. In
LCTES, pages 121–130, 2008.

[8] T. Bourke, L. Brun, P. Dagand, X. Leroy, M. Pouzet, and L. Rieg.
A formally verified compiler for lustre. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages
586–601, 2017.

[9] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge
University Press, New York, NY, USA, 2004.

[10] A. Bradley. Understanding IC3. In SAT 2012, pages 1–14, 2012.
[11] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: A declarative

language for programming synchronous systems. In POPL, pages 178–
188, 1987.

[12] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: a declarative
language for real-time programming. In Proceedings of the 14th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages,
POPL ’87, pages 178–188. ACM, 1987.

[13] CENELEC. CENELEC 50128 - Railway applications - Communication,
signalling and processing systems - Software for railway control and
protection systems, 2001.

[14] D. Cofer, A. Gacek, S. Miller, M. Whalen, B. LaValley, and L. Sha.
Compositional verification of architectural models. In NASA Formal
Methods - 4th International Symposium, NFM 2012, pages 126–140,
2012.

[15] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski. Frama-c: a software analysis perspective. SEFM’12,
pages 233–247. Springer, 2012.

[16] DO-178C, software considerations in airborne systems and equipment
certification, 2011.

[17] P.-L. Garoche, A. Gurfinkel, and T. Kahsai. Synthesizing modular
invariants for synchronous code. In Proceedings First Workshop on Horn
Clauses for Verification and S ynthesis, HCVS 2014, Vienna, Austria, 17
July 2014., pages 19–30, 2014.

[18] G. Hagen and C. Tinelli. Scaling up the formal verification of Lustre
programs with SMT-based techniques. In FMCAD-2008, pages 109–
117. IEEE, 2008.

[19] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
dataflow programming language lustre. In Proceedings of the IEEE,
pages 1305–1320, 1991.

[20] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and
the verification of reactive systems. In AMAST, pages 83–96, 1993.

[21] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, 1969.

[22] N. Izerrouken, X. Thirioux, M. Pantel, and M. Strecker. Certifying an
automated code generator using formal tools : Preliminary experiments
in the geneauto project. In European Congress on Embedded Real-Time
Software (ERTS), Toulouse, 29/01/2008-01/02/2008, http://www.sia.fr,
2008. Société des Ingénieurs de l’Automobile.

[23] J. Jourdan, V. Laporte, S. Blazy, X. Leroy, and D. Pichardie. A formally-
verified C static analyzer. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT POPL 2015, Mumbai, India, January 15-17, 2015,
pages 247–259, 2015.

[24] T. Kahsai and C. Tinelli. PKIND: a parallel k-induction based model
checker. In PDMC, volume 72 of EPTCS, pages 55–62, 2011.

[25] G. C. Necula. Translation validation for an optimizing compiler.
SIGPLAN Not., 35(5):83–94, May 2000.

[26] G. C. Necula. Translation validation for an optimizing compiler. In
Proceedings of the ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation, PLDI ’00, pages 83–94, New
York, NY, USA, 2000. ACM.

[27] Y. Nesterov and A. Nemirovski. Interior-point Polynomial Algorithms
in Convex Programming, volume 13 of Studies in Applied Mathematics.
Society for Industrial and Applied Mathematics, 1994.

[28] B. Pagano, O. Andrieu, T. Moniot, B. Canou, E. Chailloux, P. Wang,
P. Manoury, and J. Colaço. Experience report: using objective caml
to develop safety-critical embedded tools in a certification framework.
In Proceeding of the 14th ACM SIGPLAN international conference on
Functional programming, ICFP 2009, Edinburgh, Scotland, UK, August
31 - September 2, 2009, pages 215–220, 2009.

[29] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In Pro-
ceedings of the 4th International Conference on Tools and Algorithms
for Construction and Analysis of Systems, TACAS ’98, pages 151–166,
London, UK, UK, 1998. Springer-Verlag.

[30] A. Rantzer. On the kalman-yakubovich-popov lemma. Syst. Control
Lett., 28(1):7–10, June 1996.

[31] A. Rantzer. On the kalman-yakubovich-popov lemma for positive
systems. IEEE Trans. Automat. Contr., 61(5):1346–1349, 2016.

[32] P. Roux. Formal proofs of rounding error bounds - with application to
an automatic positive definiteness check. J. Autom. Reasoning, 2016.

[33] P. Roux, M. Iguernlala, and S. Conchon. A non-linear arithmetic
procedure for control-command software verification. In Tools and Algo-
rithms for the Construction and Analysis of Systems - 24th International
Conference, TACAS 2018, ETAPS 2018, Thessaloniki, Greece, April 14-
20, 2018, Proceedings, Part II, pages 132–151, 2018.

[34] P. Roux, R. Jobredeaux, and P.-L. Garoche. Closed loop analysis of
control command software. In A. Girard and S. Sankaranarayanan,
editors, 18th International Conference on Hybrid Systems: Computation
and Control (part of CPS Week), HSCC’15, Seattle, Washington, USA,
April 14-16, 2015,, pages 108–117, 2015.

[35] S. M. Rump. Verification of positive definiteness. BIT Num. Math.,
2006.

[36] J. Rushby. The versatile synchronous observer. In SBMF, pages 1–1.
Springer, 2012.

[37] T. Wang, P.-L. Garoche, P. Roux, R. Jobredeaux, and É. Féron. Formal
analysis of robustness at model and code level. In 19th International
Conference on Hybrid Systems: Computation and Control (part of CPS
Week), HSCC’16, Vienna, Austria, April 12-14, 2016, 2016.

[38] M. Westhead and S. Nadjm-Tehrani. Verification of embedded systems
using synchronous observers. In Conference on Formal Techniques
in Real-time and Fault-tolerant Systems, LNCS 1135, pages 405–419.
Springer, 1996.

