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DG-ENHANCED HECKE AND KLR ALGEBRAS

RUSLAN MAKSIMAU AND PEDRO VAZ

ABSTRACT. We construct DG-enhanced versions of the degenerate affine Hecke algebra and of
the affine ¢-Hecke algebra. We extend Brundan—Kleshchev and Rouquier’s isomorphism and
prove that after completion DG-enhanced versions of Hecke algebras are isomorphic to completed
DG-enhanced versions of KLR algebras for suitably defined quivers. As a byproduct, we deduce
that these DG-algebras have homologies concentrated in degree zero. These homologies are iso-
morphic respectively to the degenerate cyclotomic Hecke algebra and the cyclotomic ¢-Hecke
algebra.
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Hecke algebras and their affine versions are fundamental objects in mathematics and have a
rich representation theory (see the review [9] for an account of some of the current trends). The
representation theory of finite dimensional Hecke algebras also carries interesting symmetries
which occur in categorification of Fock spaces and Heisenberg algebras [5, 11]
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In a series of outstanding papers, Lauda [10], Khovanov-Lauda [6, 7, 8] and independently
Rouquier [20], have constructed categorifications of quantum groups. They take the form of
2-categories whose Grothendieck rings are isomorphic to the idempotent version of the quan-
tum enveloping algebra of a Kac—Moody algebra. Both constructions were later proved to be
equivalent by Brundan [1]. As a main ingredient of the constructions by Khovanov-Lauda and
Rouquier there is a certain family of algebras, nowadays known as KLR algebras, that are con-
structed using actions of symmetric groups on polynomial spaces.

It turns out that in type A the KLR algebras are instances of affine Hecke algebras. It was
proved by Rouquier [20, Section 3.2] that KLR algebras of type A become isomorphic to affine
Hecke algebras after a suitable localization of both algebras. Independently, Brundan and Klesh-
chev [2] have proved a similar result for cyclotomic quotient algebras. This endows cyclotomic
Hecke algebras with a presentation as graded idempotented algebras. In particular, in the case
of KLR for the quiver of type A, the isomorphism to the group algebra of the symmetric group
in d letters k&, gives the latter a graded presentation. The grading on k&, was already known
to exist (see [19]) but transporting the grading from the KLR algebras allowed to construct it
explicitly. This gave rise to a new approach to the representation theory of symmetric groups and
Hecke algebras [3]. These results are valid over an arbitrary field k.

The BKR (Brundan—Kleshchev—Rouquier) isomorphism was later extended to isomorphisms
between families of other KLR-like algebras and Hecke-like algebras. A similar isomorphism
between the Dipper-James-Mathas cyclotomic g-Schur algebra and the cyclotomic quiver Schur
algebra is given in [21]. The papers [12] and [22] have constructed a higher level version of the
affine Hecke algebra and have proved that after completion they are isomorphic to a completion
of Webster’s tensor product algebras [23]. A weighted version of this isomorphism is also given
in [22]. A similar relation between quiver Schur algebras and affine Schur algebras is given
in [13]. The paper [12] have constructed a higher level version of the affine Schur algebra and
have proved that after completion it is isomorphic to a completion of the higher level quiver
Schur algebras.

The BKR isomorphism was also generalized to other algebras. For example, in [18] it is
used to show that cyclotomic Yokonuma-Hecke algebras are particular cases of cyclotomic KLR
algebras for certain cyclic quivers, and in [17] the BKR isomophism is extended to connect affine
Hecke algebras of type B and a generalization of KLR algebras for a Weyl group of type B.

More recently, the second author and Naisse have constructed categorifications of (parabolic)
Verma modules in a series of papers [14, 15, 16]. The construction in [16], motivated by the work
of Khovanov-Lauda, Rouquier, and Kang—Kashiwara [6, 7, 20, 4], introduces DG-enhanced ver-
sions R(v) of KLR algebras, which are some sort of resolutions of cyclotomic KLR algebras.
These can be seen as a sort of integration of cyclotomic KLR algebras into free (over the polyno-
mial ring) algebras, where the cyclotomic condition is replaced by a differential with the property
that the DG-algebras R (v) are quasi-isomorphic to cyclotomic KLR algebras, the latter seen as
DG-algebras with zero differential. The algebras R (v) also provide categorification of universal
Verma modules.

It seems natural to ask the following question.
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Question 1. (a) Are there DG-enhanced versions of affine Hecke algebras that are quasi-iso-
morphic to cyclotomic Hecke algebras?

(b) In this case, does the BKR isomorphism extend to an isomorphism between (completions of)
DG-enhanced versions of KLR algebras and DG-enhanced versions of Hecke algebras?

In this article we answer this question affirmatively. We construct DG-enhanced versions of
the degenerate affine Hecke algebra and of the affine ¢-Hecke algebra.

Let us give an overview of our Hecke algebras and the main results in this article. Fix d € N
and a field k that for simplicity we consider to be algebraically closed (we follow the convention
that 0 € N, i.e., we have N = {0,1,2,...}). We consider the Z-graded algebra Ha generated
by T1,...,T; 1 and X, ..., X, in degree zero and 6 in degree 1. The generators 77, ..., Ty 4
and X7, ..., X, satisfy the relations of the degenerate affine Hecke algebra H,. The generator
commutes with the X,’s and with T, ..., T,;_; and satisfies #> = 0 and 7,07,6 + 01,07, = 0.
This implies that the subalgebra of H, concentrated in degree zero is isomorphic to H,. For
Q = (Q1,...,Qy) € k' introduce a differential 0q by declaring that it acts as zero on H, while

dq(f) = Hle()ﬁ — @,). We denote H, the completion of the algebra H, at a sequence of
ideals depending on a € k.

In order to make the connection to DG-enhanced versions of KLR algebras we consider a
quiver I with a vertex set [ < k and with an edge ¢« — 7 iff j + 1 = 7. We assume that ), € [
for each . We fix a € I? and we set v and A such that v; and A; are the multiplicities of 7 in
respectively a and Q. We have []'_, (X1 — Q,) = [Tic; (X1 — @)% Let (R(v), dy) be the DG-
enhanced version of the KLR algebra of type I with parameters v and A as above and (ﬁ(y), dp)
its completion.

The first main result in this article is the DG-enhanced version of the BKR isomorphism for
the degenerate affine Hecke algebra:

Theorem 4.5. There is an isomorphism of DG-algebras (R(v), dx) ~ (Ha, 0Q)-

Next, we give a similar construction for the affine ¢g-Hecke algebra. Fix q € k, ¢ # 0,1. We
consider the Z-graded algebra #, generated by T,...,Ty_; and Xi, ..., X}l in degree zero
and 6 in degree 1. The generators T7,..., Ty, and Xi', ..., X7 satisfy the relations of the
affine g-Hecke algebra H,;. The generator § commutes with the X,.’s and with T, ..., T, 1 and
satisfies the relations 8> = 0 and 730710 +0T,0T, = (¢g—1)0T16. This implies that the subalgebra
of H4 concentrated in degree zero is isomorphic to H,. For Q = (Q, ..., Q) € (k*)* introduce
a differential dg by declaring that it acts as zero on Hy while dq(6) = []._,(X1 — Q,). We

denote H, the completion of the algebra H, at a sequence of ideals depending on a € (k*).

To make the connection to DG-enhanced versions of KLR algebras we consider a quiver [’
with a vertex set /] < k* with an edge ¢« — j iff i = ¢j. We assume that (), € I for each r.
Finally set » and A such that v; and A; are the multiplicities of ¢ in respectively a and Q. We
have [T'_, (X1 — @Q,) = [1..;(X1 — i)%. Let (R(v),dy) be the DG-enhanced version of the

A~

KLR algebra of type I with  and A as above and (R (v), dy) its completion.
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The second main result in this article is the DG-enhanced version of the BKR isomorphism
for the affine g-Hecke algebra:

Theorem 4.7. There is an isomorphism of DG-algebras (ﬁ(u), dp) ~ (7-A[a, 0Q)-

The two main results above imply that we have a family of isomorphisms 7%(1/) ~ 7—A[a between
the underlying algebras parametrized by integral dominant weights.

The DG-enhanced versions of BKR isomorphisms above allow us to compute the homology of
the DG-algebras H, and H, in the following way. It is already proved in [16, Proposition 4.14]
that the DG-algebra R (v) is quasi-isomorphic to the cyclotomic KLR algebra. The most difficult
part of this proof is to show that the DG-algebra R(») has homology concentrated in degree
zero. The proof of this fact is quite technical and there is no obvious way to rewrite it for Hecke
algebras. So we use the following strategy: we deduce the statement for Hecke algebras from
the statement for KLLR algebras using the DG-enhanced version of the BKR isomorphism.

“As a corollary of Theorem 4.5 and Theorem 4.7 and [16, Proposition 4.14], the DG-algebras
(Ha, 0q) and (Ha, Oq) are resolutions of the degenerate cyclotomic Hecke algebra H(? and of
the cyclotomic ¢-Hecke algebra HC? respectively.

Proposition 2.12. The DG-algebras (Hgq, 0q) and (H2,0) are quasi-isomorphic.

Proposition 2.23. The DG-algebras (Hgq, 0q) and (H®,0) are quasi-isomorphic.

Up to our knowledge, the DG-enhanced versions of Hecke algebras we introduce are new. Propo-
sition 2.12 and Proposition 2.23 are important for a forthcoming paper.

We would also like to emphasize the fact that the algebras #H, and #, have triangular de-
compositions (see Remark 2.6 and Remark 2.20). This looks like an analogy with Cherednik
algebras.

Plan of the paper. In Section 2 we introduce DG-enhanced versions of the degenerate affine
Hecke algebra and of the affine ¢g-Hecke algebra and their completions, that will be used in the
BKR isomorphism. The material in this section is new.

In Section 3 we review the DG-enhanced version of the KLLR algebra introduced in [16]. We
give the minimal presentation of this algebra explained in [16, Remark 3.10], which is more
convenient to us, and present its completion, which is involved in the BKR isomorphism.

Section 4 contains the main results. We first generalize the BKR isomorphism to a class of
algebras satisfying some properties. The most important point is that to have a generalization
of the BKR isomorphism we need to construct an isomorphism between the completed polyno-
mial representation of the Hecke-like algebra and the completed polynomial representation of
the KLLR-like algebra, this isomorphism must intertwine the action of the symmetric group. Our
main results, Theorem 4.5 and Theorem 4.7, are then proved by showing that our DG-enhanced
versions of Hecke algebras H, and H, on one side, and the DG-enhanced versions of KLR al-
gebras R(v) on the other satisfy the properties that are required for them to be isomorphic (after
completion). We then use the fact that the DG-algebras R(v) are quasi-isomophic to cyclo-
tomic KLR algebras together with the DG-enhanced version of the BKR isomorphism to show
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in Corollary 4.10 that the algebras H4 and H, are quasi-isomorphic to degenerate cyclotomic
Hecke algebras and cyclotomic g-Hecke algebras respectively.

Acknowledgments. We thank Jonathan Grant for useful discussions. PV was supported by the
Fonds de la Recherche Scientifique - FNRS under Grant no. MIS-F.4536.19.

2. DG-ENHANCED VERSIONS OF HECKE ALGEBRAS

2.1. The polynomial rings Pol; and Poll; and the rings P; and Pl;. Fix an algebraically
closed field k, g € k, ¢ # 0,1 and d € N once and for all.

2.1.1. The polynomial rings Poly and Poll,. Set Pol; = k[X1,..., X,]. Let &, be the sym-
metric group on d letters, which we view as being generated as a Coxeter group with generators
s;. These correspond to the simple transpositions (¢ i+1), and we use these two descriptions
interchangeably throughout. It acts from the left on Pol; by permuting the variables: for w € &,
we have
w(Xl) = Xw(i)~

Using the &4-action above, we introduce the Demazure operators 0; on P;forall 1 <i < d—1

in the usual way, as

[ =sif)
M Wf) = Xi— Xy
We have s;0;(f) = 0;(f) and 0;(s;f) = —0;(f) for all 4, so ¢; is in fact an operator from Pol,

to the subring Pol} < Pol, of invariants under the transposition (¢ ¢+1). It is well-known that
the action of the Demazure operators on Pol, satisfy the Leibniz rule

2) 0i(fg) = di(f)g + si(f)i(g),

for all f, g € Pol; and for 1 < ¢ < n — 1, and the relations

(3) 51'2 =0, 0i0i410; = 034100541,

(4) (31(3] = 5]81 for |Z —j| > ]_,

®) X0 — 0 Xip1 = 1, 0iX; — Xip10; = 1.

Set Poll; = k[ X, ..., X;']. We have, Poll; = Poly[X;",..., X;']. Moreover, the &,-
action on Pol; can be obviously extended to a G -action on Poll,;. This means that the action of
the Demazures on Pol; also extends to operators on Poll,; that satisfy the relations in (2) (for f
and g in Poll,) and (3)-(5).

2.1.2. The rings Py and Pl,. Let0 = (04, ...,0,) and form the ring P; = Pol; ®/\* (@), where
A*(0) is the exterior ring in the variables ¢ and coefficients in k. Introduce a Z-grading on P,
denoted \(e) and defined as A(X;) = 0 and \(#;) = 1. This grading is of cohomological nature
and (up to a sign) is half the grading deg, introduced in [14, §3.1].

As explained in [14, §8.3], the action of &, on Pol; extends to an action on P, by setting

(6) 5i(05) = 05 + 6; (Xi — Xip1)0i41.
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This action respects the grading, as one easily checks.

With this G,4-action above, the action of the Demazure operators ¢; on Pol; given by (1)
extends to any f € P, and defines Demazure operators on F,;, which we denote by the same
symbol.

Similarly to the operators above, ¢; is an operator from P, to the subring P;* < P, of invariants
under the transposition (7 i+1).

It was proved in [ 14, §8.2] that the action of the Demazure operators on P; satisfies the Leibniz
rule (2) (with f and g in P;), the relations (3)-(5), and

&ﬁk = 0]@61 for k # i,

0i(0; — Xiv10iv1) = (0 — Xi10i11) 0%,
forall: =1,...,d—1.
Form the supercommutative ring
Ply = Poll; @A\ (0).

We have, Pl; = Py[X;',..., X ']. Moreover, the & j-action on Pol, can be obviously extended
to a G -action on Pl;. This means that the action of the Demazures on Pl; also extends to
operators on Pl that satisfy the relations in (2) (for f and g in Pl;) and (3)-(5).

2.2. Degenerate version.

2.2.1. Degenerate affine Hecke algebra. The degenerate affine Hecke algebra I, is the k-algebra
generated by 71, ...,7; 1 and X, ..., Xy, with relations (7) to (9) below.

@) T2 =1, TT, =TT if [i—j|>1,  TTnT, = T T,
®) X, X; = X;X;,
) T.X:— XinT, = =1,  T,X; = X;T, if j—i#0,1.

For w = s;,---s;, € &, a reduced decomposition we put 7, = T1;, ---T; . Then T, is
independent of the choice of the reduced decomposition of w and the set

m m,
{Xl b 'Xd dTw}w€6d7mi€Z>o

is a basis of the k-vector space H,.

There is a faithful representation of H,; on Poly, where T;(f) = s;(f) — &;(f). It is immediate
that H,; contains k&, and Pol, as subalgebras and that for p € Poly,

Tip — si(p)T; = —0i(p)-
Let ¢ be a positive integer and Q = (Q1, ..., Q) be an (-tuple of elements of the field k.
Definition 2.1. The degenerate cyclotomic Hecke algebra is the quotient

A = /] [(X: - Q)

r=1
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2.2.2. The algebra H,.

Definition 2.2. Define the algebra 7, as the k-algebra generated by T, ..., Ty_; and X1, ..., X4
in A\-degree zero, and an extra generator # in A\-degree 1, with relations (7) to (9) and

(10) 62 =0

(11) X,0=0X, forr=1,...,d,
(12) T.0 = 01T, forr > 1,

(13) T0T10 + 0T,0T, = 0.

The algebra H, contains the degenerate affine Hecke algebra [, as a subalgebra concentrated
in A\-degree zero.

Lemma 2.3. The algebra H acts faithfully on P by
T.(f) = s:(f) — a:(f),
XT(f) = XTf7
Q(f) = 91f7
forall f € Pyand where s,(f) and 0,.(f) are as in (6) and (1).

Proof. The defining relations of H4 can be checked by a straightforward computation. Faithful-
ness follows from the proof of Proposition 2.5 below. O

Define &), ..., & € Hqby therules & = 6, &1 = T;&T;. The following is straightforward.
Lemma 2.4. The elements &, satisfy forallr =1,...,d—1andalll =1,...,d,
& =0, &+ & = 0, 1380 = &s, 0 Th
It is not hard to write a basis of H in terms of the &, ’s.
Proposition 2.5. The set
(X X, b e Gy, (ay, . .., aq) € N (by, ..., bg) € {0,1}7},
is a basis of the k-vector space H,.

Proof. First, we show that this set spans 4. We have no explicit commutation relations between
X’s and £’s. But this problem is easy to overcome because we know that # commutes with
X’s. First, each monomial on @, X’s and 7"’s can be rewritten as a linear combination of similar
monomials with all X’s on the left. After that, we replace 6 by & and we move all £’s to the
right. This shows that the set above spans H,.

The linear independence follows from Lemma 2.7 and Lemma 2.9 below. U

Remark 2.6. We see from the proposition above that the algebra #, has a triangular decompo-
sition (only as a vector space)

Ha=k[X1,..., X QkGa @ A (€1, ..., &).
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Abusing the notation, we will write 6, for the operator on P, that multiplies each element of
P, by 0,. Set M = {0, 1}. Denote by 1 the sequence 1 = (1,1,...,1) € M. For each sequence
b= (by,...,bs) € M weset 0 = 6 ... 9%, Foreachb e M we setb = 1 — b. In particular
we have 0P - 0° = +6,0,...0, = 6. Set also |b| =b; + by + ...+ bg.

Lemma 2.7. The operators {6®; b e M} acting on Py are linearly independent over H,. More
precisely, if we have Y, ., h,0° = 0 with hy, € H, then we have hy, = 0 for each' b € M.

Proof. Let H = Y, _,, hu,0° be an operator that acts by zero. Assume that H has a nonzero
coefficient. Let by be such that hy,, # 0 and such that |by| is minimal with this property. Then
for each element P € P, we have H(#* P) = +0*hy,, P. This shows that Ay, acts by zero on
01 P; = 6* Pol,. But this implies hy,, = 0 because the polynomial representation Poly of Hg is
faithful. .

For each, k € {0, 1, ...,d} we denote by ’}-_[jk the subalgebra of the algebra of operators on F
generated by X;, 0; for ¢ < k and T, for r < k. We mean that for k£ = 0 we have H5? = k. The
A-grading on P, induces a grading on ’ij that we also call A-grading.

Lemma 2.8. The set
(X0 X080 - 0% w e Gy, (ay, ..., a,) € N¥ (by, ... b) € {0,1}F},
is a basis of the k-vector space 7-_[?“.

Proof. Itis clear that the given set spans 7—25’“ . The linear independence follows from Lemma 2.7.
U

Similarly to the notation #® above, we set P = 511’1 e Zd. For two elemtns b, b’ € M we
write b’ < b if there is an index r € [1; d| such that b, > b/ and b; = b, fort > r.

Lemma 2.9. The element &P e Hy acts on P, by an operator of the form hyp0° + D bi<b hy 6,
where hy, hy € Hy and hy, is invertible.

Proof. 1t is easy to see by induction that for each k € _{1, 2,...,d} the element & acts on P,
by an operator of the form ¢, + di0y, where ¢, d;, € Hf’“fl, Aecg) = 1, M(dg) = 0 and dj, is
invertible.

The element £P can be written up to sign in the form &, i, Gy withi, > 4,9 > .00 > 4.
It acts by the operator (¢;, + d;,.0;,)(ci,_, + di,_,0i.,)...(c;y + di,0;,). Since each 6y, super-
commutes with ka ~1 we see that this operator can be rewritten as

iy, di 0,0, . 0+ Y hiy0
b’<b

for some hy € H,. We see that the additional terms above are indeed of the form D bi<h hy, 0F

from Lemma 2.8.
O
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2.2.3. DG-enhancement of Hy. Let ¢ and Q be as in Section 2.2.1.

Definition 2.10. Define an operator dg on H, by declaring that 0q acts as zero on H,, while

1~

6Q<9) = (Xl - Qr)a

r=1
and for a,b € Hy, dq(ab) = dq(a)b + (—1) Vadq(b).
Lemma 2.11. The operator Oq is a differential on Ha.

Proof. We prove something slightly more general. Let P € k[X},..., X4] be a polynomial.
Define dp: Hq — Hgq by declaring that dp acts as zero on H4, while d p(0) = P, together with
the graded Leibniz rule. Then dp is a differential on H,. To prove the claim is suffices to check
that dp(Tlnge + QTlng) = 0.

We have T1 P = s;(P)T1 — 01(P) and PTy = Tys1(P) — 01(P), where 0; is the Demazure
operator. This also implies 71 PT} = s;(P) — ¢1(P)T;. Note also that ¢, (P) is a symmetric
polynomial with respect to X, X, so it commutes with 7}. So, we have

dp(Th0T10 + 0T101y) =T, PT\0 — T0T\ P + PT\0T, — 0T\ PT}
:(Sl(P)e - (31(P)T19) - (Tlesl(P)Tl - T10(31(P))
+ (Tlsl(P)QTl — (31(P)9T1) — (931(]3) — 961(P)T1)
which proves the claim. U
The following is proved in Section 4.4.
Proposition 2.12. The DG-algebras (Hgy, 0q) and (H,0) are quasi-isomorphic.

2.2.4. Completions of H4. Consider the algebra of symmetric polynomials Sym, = Polfd. We
consider it as a (central) subalgebra of Hy.

For each d-tuple a = (ay,...,aq) € k? we have a character y,: Sym, — k given by the
evaluation X, — a,. It is obvious from the definition that if the d-tuples a’ is a permutation of
the d-tuple a then the characters x, and y. are the same. Denote by m, the kernel of ..

Definition 2.13. Denote by 7/{_\3 the completion of the algebra 7, at the sequence of ideals
Hdm;’}-[d.
Set also P = Dresa K[ X1 = b1, .., Xa — b4]] @ A*(0) 1. We can obviously extend the

action of H, on P, to an action of H, on P,. Each finite dimensional H,-module M decomposes
into its generalized eigenspaces M = ®b66da My, where

My = {m € M| 3N e Z such that (X, — b,)V'm = 0 ¥r}.

For each b € G a the algebra H,, contains an idempotent 13, that project onto M}, when applied
to M.
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Proposition 2.14. (a) The Pola-module 77-_[\3 is free with basis
(T, b we &y, (by,. .., ba) € {0,1}%).
(b) The representation Pol, of 7/:[:1 is faithful.
Proof. 1t is clear that the elements from the statement generate the ﬁala-module ”ﬁl\a. To see that

they form a basis, it is enough to remark that they act by linear independent (over Pol,) operators

on the representation Pol,. This proves (a). Then (b) also holds because a basis acts on Pol, by
linearly independent operators. U

The algebra H (? has a decomposition H Q= @afl Q (with a finite number of nonzero terms)
such that Sym, acts on each finite dimensional /2-module with a generalized character .

2.3. g-version.

2.3.1. Affine q-Hecke algebra. The affine q-Hecke algebra H, is the k-algebra generated by
Ty,...,Tyyand X{, ..., X', with relations (14)-(16) below.

(14) X, X' =X'X, =1, XiX; = X;X;, XPXF = XPXF,
sy (Li-qi+1) =0, T =TT if[i - j| #0, TTnT =TTl
(16) T;X; = X;T; forj—i#0,1, TX{T;=qXi1.

For w = s;,---s; € 64 a reduced decomposition we put 7,, = 1;, ---1; . Then T, is
independent of the choice of the reduced decomposition of w and the set
{Xinl o 'X;ndTU)}WGGd,miEZ

is a basis of the k-vector space H,. There is a faithful representation of H; on Poll;, where

Ti(f) = qsi(f) — (¢ = 1) Xis10:i(f).
Let ¢ be a positive integer. Let Q = (Q1, ..., Q) be an (-tuple of nonzero elements of the
field k.

Definition 2.15. The cyclotomic q-Hecke algebra is the quotient

HP = Hy/ | [(X1 - Q,).

r=1

2.3.2. The algebra H,.

Definition 2.16. The algebra #, is the k-algebra generated by 77, ..., 7T, ; and X, ... ,le
in A\-degree zero, and an extra generator ¢ in A-degree 1, with relations (14) to (16) and

(17) 6% =0
(18) X0 =0xF forr=1,....d,
(19) T,.0 = 0T, forr > 1,
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The algebra H, contains the affine ¢g-Hecke algebra H; as a subalgebra concentrated in \-
degree zero.

Lemma 2.17. The algebra H, acts faithfully on Pl, by
T.(f) = gse(f) = (¢ = D) Xoi10:(f),
X)) =X,
0(f) = 0.,
forall f € Py and where s,(f) and 0,.(f) are as in (6) and (1).

Proof. The defining relations of H; can be checked by a straightforward computation. Faithful-
ness follows from Proposition 2.19 below. U

Define &), ..., & € Hqby therules & = 0, &1 = Ty6T; . The following is straightforward.
Lemma 2.18. The elements &, satisfy forallr = 1,...,d—1landall{ =1,...,d,
& =0, &€+ & =0

and
&ETy ifr#0,0+1,
To&r = 8T+ (@ —1) (&1 — &) if r=L041,
§e1 Ty if r==~

It is not hard to write a basis of H, in terms of the &,.’s.
Proposition 2.19. The set
(X0 X990 hw e Gy, (ay, ..., aq) € 22, (b1, ..., b) € {0, 1},
is a basis of the k-vector space H,.
Proof. Imitate the proof of Proposition 2.5. U

Remark 2.20. We see from the proposition above that the algebra H; has a triangular decompo-
sition (only as a vector space)

Ha=Kk[X1,..., Xa] @ HP" @ \* (&3, - -, €a),

where Hi" is the (finite dimensional) Hecke algebra of the group &,. More precisely, the algebra
Hgn is defined by generators 77, ..., 7T, and relations (15).

2.3.3. DG-enhancement of H4. Let ¢ and Q be as in Section 2.3.1.

Definition 2.21. Define an operator dg on H, by declaring that dq acts as zero on H,, while
¢

2q(0) = [ [(X1— @),

r=1
and for a,b € Hy, dq(ab) = dq(a)b + (—1) Vadq(b).
Lemma 2.22. The operator Oq is a differential on H,.
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Proof. Similarly to the proof of Lemma 2.11, we consider a more general differential dp. We
have to check

dp(Tlng‘g + QTlng) = dp((q - 1)9T19>

We have T1P = 81(P)T1 - (q - 1)X281(P) and PT1 = TlSl(P) - (q - 1)X281(P), where
01 is the Demazure operator. Note also that ¢, (P) is a symmetric polynomial with respect to
X1, Xo, so it commutes with 7;. So, we have

dp(Th0T10 + 0T101,) =T, PT\0 — T0T\ P + PT 0T, — 0T\ PT}

=(T?%s,(P)0 — (q — 1)0,(P)T1 X,0) — (T10s,(P)T}
— (¢ — D)T10X50,(P)) + (T1s1(P)0Ty — (g — 1) X20,(P)6T7)
— (0s1(P)T? — (q — 1)00,(P)X,T1)

=T?s1(P)0 — 0s,(P)T}

=(q—1)PT0 — (¢ — )01 P

:dP((q - 1)9T19)7

which proves the claim. U
The following is proved in Section 4.4.

Proposition 2.23. The DG-algebras (Hg, 0q) and (HS,0) are quasi-isomorphic.

2.3.4. Completions of H4. Similarly to Section 2.2.4, we want to define a completion of the alge-

bra H,. Consider the algebra of symmetric Laurent polynomials Syml, = k[ X, ..., X;']%.
We consider it as a (central) subalgebra of .
For each d-tuple a = (aq,...,aq) € (k*)" we have a character x,: Syml; — k given by the

evaluation X, — a,. Denote by m, the kernel of ..

Definition 2.24. Denote by Ha the completion of the algebra H, at the sequence of ideals
Hdmg’;'-[d.

Set also P = k[[ X1 — a1, ..., X4 — ag]] @ A"(6). We can obviously extend the action of Hy

on P; to an action of 7-AI,a on ﬁa. Similarly to H., the algebra 7-A[a has idempotents 1;,, b € G, a
that are defined in the same way as in Section 2.2.4.
Similar to Proposition 2.14 we have the following.

Proposition 2.25. (a) The Pola-module H, is free with basis
(TLE ... gd] we &y, (by,..., by) e {0,1}9.
(b) The representation ﬁc\)la of 7-A[a is faithful.

The algebra H C? has a decomposition H C? = @all, B (with a finite number of nonzero terms)
such that Syml, acts on each finite dimensional H3-module with a generalized character .
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3. DG-ENHANCED VERSIONS OF KLR ALGEBRAS

DG-enhanced versions of KLLR algebras were introduced in [16] as one of the main ingredients
in the categorification of Verma modules for symmetrizable quantum Kac-Moody algebras.

Let ' = (1, A) be a quiver without loops with set of vertices I and set of arrows A. We call
elements in [ labels. Let also N[I] be the set of formal N-linear combinations of elements of I.
Fix v € N[I],

VZZVi'i, vieNiel,
iel
and set |v| = . ;. We allow the quiver to have infinite number of vertices. In this case only a
finite number of v; is nonzero.

For each i, j € I we denote by h; ; the number of arrows in the quiver I' going from ¢ to j, and

define for ¢ # j the polynomials

Q;(u,v) = (u— U)hi,j (v — u)hﬂ?i,

3.1. The algebra R(v). We give a diagrammatic definition of the algebras R = R(I") from [16,
§3], corresponding to the case of minimal parabolic p. The definition we give is minimal and
equivalent to the one in the reference by [16, Remark 3.10].

Definition 3.1. For each v € N|[I] we define the k-algebra R () by the data below.
o It is generated by the KLR generators

and

i i J
for ¢, 7 € I, where each diagram contains v; strands labeled ¢, together with floating dots

which are labeled from elements of / and decorate the region immediately at the right of
the first strand (with the same label and counted from the left),

O.
)

]

e The multiplication is given by gluing diagrams on top of each other whenever the labels
of the strands agree, and zero otherwise, subject to the local relations (21) to (27) below,
foralli,j,kel.

o The KLR relations, for all i, j, k € I:
I I
21 =0 and = Qi (Y1, 92) ife#j
I I
i i A i
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2 XX KX e

i J i J i J i J
o XX XX
) 7 7 7 7 7 7 7 7 )
(24) = unless ¢ = k # j,
I N I I

(25) _ | Qis(ys2) — Qi (1, 92) iz
Y3 —
I I I

(N I (A I VB

(26) i - =0,

O.
27) = - .
i i %

Remark 3.2. A diagram with a box containing a polynomial means a polynomial in dots. The
indices in the variables indicate the strands carrying the corresponding dots. For example, for

py1,Y2) = 2., Crsy1y5 With ¢, 5 € k we have

p(yh y?) = 2 Crs OT S .
I I r,8
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We now define a Z x Z-grading in R(v). Contrary to [16] we work with a single cohomological
degree \. We declare

(—2,0) if i=j,
deg <+> = (2, 0), deg< >< ) =< (=1,0) if h;; =1,

i (0,0)  otherwise.
deg (

7

and

where the second grading is the A-grading, which we write A(e). Note that the A-grading is (up
to a sign) half the grading deg, in [16] where we take the deg, s equal. The defining relations
of R(v) are homogeneous with respect to this bigrading.

Remark 3.3. The algebra R(v) contains the KLR algebra R(v) as a subalgebra concentrated in
A-degree zero.

For 2 = 71 - - - 74 define the idempotent

1; =

(ST 14
Let Seq(v) be the set of all ordered sequences @ = iyis . . .74 with each i, € I and 7 appearing

v; times in the sequence. For ¢, j € Seq(v) the idempotents 1; and 1; are orthogonal iff ¢ # j,
we have 1) = >, 1;, where 1z, denotes the identity element in R(v), and

R(l/) = @ 1_77?,(1/)1,,,

J,i€Seq(v)

1€Seq(v)

Finally, the algebra R is defined as
R= P R).

veN[I]
3.2. Polynomial action of R (). We fix v € N[I] with |v| = d. For eachi € I let

PRZ = k[yl,i7 Ce ,y,,m] ® /\'<w1,i, Ce ,w,,i,i>.
Each PR; is a bigraded superring with deg(y,;) = (2,0) and deg(w,;) = (—2r,2), which is
isomorphic to the superring R (with the right number of variables) defined in [15, §2.1]. The
symmetric group S, acts on PR; by
w(Z/r,i) = Yuw(r),js
Sk(Wri) = Wri + Ok (Yri — Yra1,6)Wrr 1,

forw e G,, and s;, € G,, a simple transposition.
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Set PR; = X),.; PR; where ® is the supertensor product, and define
PR, = (—B PR;1;,
1€Seq(v)
where 1; is a central idempotent.

It is sometimes convenient to use a different notation for the elements of PR,. For each
1 < r < |v|, denote by Y, the element of PR, determined by the condition that for each
i € Seq(v) we have Y, 1; = y,»,; 1; where r’ is such that the element 7, appears 7’ times among
i1,%2, ..., 1. Similarly, we consider the element ), € PR, given by Q,1; = w,; 1;, where ' is
defined in the same way as above. It is clear from the definition that all Y, commute and all 2,
anti-commute. Then we have PR, = @ieSeq(y) kY1, ...,V ] @ A, ., Qs

We extend the action of &,, on PR; to an action of &), on PR, where

Sk - PR]lZ - PRllskia

sends
Ypi1ilss ifin = ip1 = i and p = #{s < k|i, = i},
Ypili = S Yp1ilss i, =dp1 = iand p = 1 + #{s < kli, = i},
Yp,ils,i otherwise,

and

o Ls (Wpi + (Ypi = Ypr1,0)Wpr1d) Lo i = g1 = i and p = #{s < klis = i},
b Wp.ils,i otherwise,

withpe {1,...,y;}and i = iy .. .14
For the comfort of the reader we also give the formulas of the &), |-action on PR, is terms of
Y’s and (0’s:
Sk - PR[LL - PRllsk'h

sends
Yit1lss ifp=k,
Y;,le }/klskz lfp:k-f—l,
Y1, otherwise,
and

(% + (Y — Yir1) Q1) Ls,s ifp = kand iy = t541 ,

0.1 D1l ifp=Fkandi # g1,
P leskz ifp=~k+1and iy # ipq1,
Q14,4 otherwise.

For each i, j € I, # j, we consider the polynomial P;;(u,v) = (u—wv)". Note that we have

Qi,j(U, v) = Pi,j(ua U)R‘,i(%“)-
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In the sequel it is useful to have an algebraic presentation of R(r) as in [2]. We set

1 1y i 11 23 lr41 id 11 19 id

O.
21

= Y, 1,

= Trlia

We declare that a € e, R(v)e; acts as zero on PR;1; whenever j # 4. Otherwise

Y1, +—— fli— Y. f1;,
Q1; — fli— Qf1;,

and

fli — s, (f1i)
Y, — Yoo

Pimiwrl (}/7"7 Y;‘-i-l)sr(fli) if 'ir 7 ir—&-l-

lfir = ir+17
Tl fl; —

The following is Proposition 3.8 and Theorem 3.15 in [16].
Proposition 3.4. The rules above define a faithful action of R(v) on PR,

We now give the basis of R(v), as constructed in [16, §3.3]. Fix 4,7 € Seq(v). We write
6; < &), for the subset of permutations w satisfying w(z) = j.

Recall [16, §3.3] that a reduced expression s, - - - s,, of w € &, is left-adjusted if v +- - -+ 1},
is minimal among all reduced expressions for w. For each w € &, we fix a left-adjusted
presentation w = s,, - - - s, of w.

Foreachr € Z = {1,--- ,d} and w as above let r,,,, m € {1, ..., k} be the index such that

Srm"'STl(T)gs”j“'ST’l(T) VjE{l,...,]{?},
and

S " Sy (T) < Srpor S (T) if m > 17

i.e., m is the minimal index such that s, ---s,, (r) is minimal.
Define Q(r) = Trp,—1""" 7'27'197'17'2 o Trp—1 and put

Tw(r) =T - 'TrmHQ(r)Trm T 1 € 1LiR(V)1
Now, for each I < Z, define 7,,(I) by simultaneously placing all the Q") for » € I following

the rule above. For example, for I = {r,r'}, with s, ---s, (r) and s, ,---s, (') minimal with
m < m', we have

’ r’ r
To({r,7'}) = 7, - .T%IHQ( 1 - 'Trm+1Q( )Trm T

m

The following is Theorem 3.15 in [16].
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Theorem 3.5. The set
{ru(DY™ Y [we ;6;, IS T, ne NV}
is a basis of the k-vector space 1;R(v)1;.

3.3. Completion of R(v). Foreachi € I consider the polynomial ring PolR; = k[y1, ..., ¥, ]
Set also PolR; = X),.; PolR,;. We will consider PolR; as a subalgebra of R(v). Let m be the
ideal of PolR; generated by all y,;,7€ [,1 <r < ;.

Definition 3.6. Denote by ﬁ(z/) the completion of the algebra R(v) at the sequence of ideals
R(v)mIR(v).

Now we construct a representation PR, of 7%(1/), which is a completion of the representation
PRy of R(v). Fori € I, set

P/Oﬁi = k[[yl,ia e 7y1/i,i]] and ﬁ\Rz = k[[yu, e ,yui,i]] & /\°<w1,i, cee 7wui,i>-
Set also - - - -
PolR; = @PolRi, PolR, = @ PolR;1;,
i€l i€Seq(v)

and - A A A

PR; =) PR;, PR,= @ PR/l

i€l i€Seq(v)
The &,,|-action on PR, extends obviously to an &), |-action on ﬁ]\%,,. Moreover, the action of

R(v) on PR, yields an action of R(v) on PR,

Lemma 3.7. (a) The algebra 7%(1/) is free over PolR,, with basis
{rw(I)|we ;j&;, I =T,1,7 € Seq(v)}.
(b) The representation PR, of ﬁ(u) is fully faithful.

Proof. 1t is clear that the set in the statement generate the P/()E{l,-module ﬁ(u) Then this set
forms a basis because the elements 7,,(I) act on PR, by linearly independent (over PolR,)

operators. This proves (a). Then (b) is also true because a basis of ﬁ(u) acts on PR, by linearly
independent operators. O

3.4. Cyclotomic KLR algebras. Let A be a dominant integral weight of type I (i.e., for each
vertex i of I we fix a nonnegative integer A;). Let " be the 2-sided ideal of R(v) generated by
YlAi1 1; with ¢ € Seq(v). In terms of diagrams, this is the 2-sided ideal generated by all diagrams
of the form

!

i1 i iy

with ¢ € Seq(v).
Definition 3.8. The cyclotomic KLR algebra is the quotient R (v) = R(v)/I".
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3.5. DG-enhancements of R (). We turn R(v) into a DG-algebra by introducing a differential
d, given by

da(13) = da(Yr) = da(7) = 0,
da(21;) = (Y1) 1,
together with the Leibniz rule dx(ab) = da(a)b + (—1)*d,(b). This algebra is differential

graded w.r.t. the homological degree given by counting the number of floating dots.
The following is [ 16, Proposition 4.14].

Proposition 3.9. The DG-algebra (R(v), dy) is quasi-isomorphic to the cyclotomic KLR algebra
RMv).

4. THE ISOMORPHISM THEOREMS

4.1. A generalization of the Brundan—Kleshchev—Rouquier isomorphisms. Choose /, [" and
v as in Section 3. Assume additionally that for ¢, 7 € I, ¢ # j, there is at most one arrow from ¢
to 7.

I{et PolR; be as in Section 3.3. Set PolR, @zeSeq PolR;1;. Let PA, be a PolR,-
algebra (the most interesting examples for us are PA, = PR and PAV = PolR,). Set also
PA = POIR ®POIR PA

Fix an action of G|, on PA (by ring automorphisms) that extends the obvious &), -action
on ﬁ)ﬁiy. Assume additionally that for each simple generator s, of &, each 4 € Seq(v) such
that i, = i, and each f € PA,, we have (f —s:.(f))1; € (YT/: YTH)FZV. In particular, this

implies that the Demazure operator Yl’YSf is well-defined on PA,1;.

Fix a subalgebra P PA of PA,. Assume now that we have an algebra A( ) that has a faithful
representation on PA Assume that the action of A( ) on PA is generated by multiplication

by elements of PAV and by the operators 7., 7 € {1,2,...,|v| — 1} given by
e if 7, = 4,1, then 7, acts on f1; by a (nonzero scalar) multiple of the Demazure operator,

(f = s:(f)s

Y, =Y
® i, — i,,1, then 7, sends f1; to a (nonzero scalar) multiple of (Y, — Y, .1)s.(f1;),
e in other cases, the element 7,. sends f1; to a (nonzero scalar) multiple of s,.(f1;).

i.e., 7. sends f1; to

We are going to show that in some situations, an algebra satisfying some list of properties is
automatically isomorphic to A(v).

4.1.1. Degenerate version. Fix Q = (Q1,...,Q,) € k', as in Section 2.2.1. Now we fix some
special choice of I' and v. Let I be a subset of k that contains ()1, ..., Q,. We construct the
quiver [' with the vertex set [ using the following rule: for ¢, j € I we have an edge + — j if and
only if we have j + 1 = 7. Note that this convention for I" is opposite to [20]. Let d be a positive
integer. Fix a € I? (see Section 2.2.4). Finally we consider v such that v; is the multiplicity of
in a. In particular, we see that || = d is the length of a.
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For each i € I denote by A; the multiplicity of i in (@1, ..., Q). In particular, this implies

¢
Hr:l(Xl - Q ) HzEI(Xl - 2)

As above, we set Poly = k[ X, -, X4]. Let PBy be an Pol-algebra. (The most interesting
examples are PB; = P, and PB,; = Poly.) Set Pol, = @beedak[[Xl —by,..., Xg — ba]]lp
and @a = @be@da(k[[Xl —b1,..., Xaq — bg]] ®pol, PBa)ly. Then ﬁ?a is a Isala—algebra.

Fix an action of G; on PB,; (by ring automorphisms) that extends the obvious & ;-action
on Pol;. Assume additionally that for each simple generator s, of G, and each f € PBy, we
have f — s.(f) € (X, — X,11)PBy. In particular, this implies that the Demazure operator

o = X::;:H is well-defined on PB,;. The action of G, on Pol; and PB,; can be obviously

extended to an action on P%la and ]51\351.
— — ~
Fix a subalgebra PB, of PB,. Now, assume that there is an algebra B3, that has a faith-

ful representation in ]SEa that is generated by multiplication by elements of ]SE; and by the
operators

T, = s, — O,.
By construction, we have the isomorphism
(28) PolR, ~ Pola, Y,1; — (X, — i,)1;.

Moreover, this 1somorphlsm commutes with the action of &,. Assume that we can extend the
isomorphism PolR,, ~ Pol in (28) to an G -invariant 1som0rphlsrn PAV ~ PB Moreover,

we also assume that this extension restricts to an isomorphism RAV ~ PBa. Then we have the
following.

Proposition 4.1. There is an algebra isomorphism A(v) ~ B, that intertwines the representation
in PA, ~ PB,.

Proof. We only have to show that we can write the operator 7, in terms of 7;. (and multiplication

—/ —/
by elements of PA, ~ PB,) and vice versa.
First, we express 7, in terms of 7,.. We can rewrite the operator 7. in the following way

X, — X, +1
L (s, —1).
X'r - Xr+1
Fix i € Seq(v) = G4a. Assume i, = i, . Then the action of the operator (X, — X,,; + 1)7'1;
on PA, ~ PB, is well-defined. The element —(X, — X, + 1)7'(7, — 1)1; acts on PB, by
the same operator as 7,.1;. Now, assume that we have ¢, # 7, ;. If additionally we have no arrow

1y — 1y41, WE can write s,.1; = (%(TT —1)+1)1;. (We need the condition i, 1 + 1 # i,

to be able to divide by (X, — X,.,; + 1) here.) The operator s,.1; acts on J/DZ,, ~ @a in the
same way as 7,.1;. Finally, if we have i, — i,,1, then the operator (X, — X, 1 + 1)s,1; =
(X, — Xoi)(T — 1) + (X, — X1 + 1)]1; acts on PB, in the same way as 7, 1;.

Now, we express 7. in terms of 7,.. The operator 7,.1; acts by [1 + %(sr —1)]1;. In
the case 7, # i,,1, we are allowed to divide by X,. — X, | here. If we additionally have no arrow
i, — 1,+1, then the element s,.1; acts in the same way as 7,.1;. If we have an arrow i, — 7,1,

T, =1+
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then (X, — X, 1 + 1)s,1; acts in the same way as 7,.1;. It remains to treat the case i, = i,,;. In

this case, the element 5_’"_1+ acts in the same way as —7,.1;.

O
4.1.2. g-version. Fix g e k, q # 0,1. Fix also Q = (Q1,...,Qy) € (k*)*, as in Section 2.3.1.
Now we fix some special choice of I" and v. Let I be a subset of k* that contains ()1, ..., Q.

We construct the quiver 1" with the vertex set / using the following rule: for ¢, 7 € I we have an
edge © — j if and only if we have ¢qj = ¢. Note that this convention for I' is opposite to [12] and
[20]. Fix a € I (see Section 2.3.4). Finally we consider v such that v; is the multiplicity of 7 in
a. In particular, we see that || = d is the length of a. As in the degenerate case, for each i € [
we denote by A; the multiplicity of ¢ in (Q1, ..., Q).

Set Polly; = k[ X', -+, X7']. Let PB, be a Poll,-algebra. (The most interesting examples

are PB; = P; and PB; = Poll;.) Set P/’ala = @beGdak[[Xl — by,..., X4 — bg]]1p and

Ba = @ypee,aK[[X1 — b, ..., Xa — bg]] ®pon, PBy)1p. Then PB, is a Pol,-algebra.

Fix an action of G, on P B, (by ring automorphisms) that extends the obvious G -action on
Poll. Assume additionally that for each simple generator s, of G, and each f € PB,;, we have
f—s:.(f) € (X, — X,11)Ply. In particular, this implies that the Demazure operator Xf:—;:ﬂ is
well-defined on Pl;. The action of &, on Poll,; and P, can be obviously extended to an action

on ﬁo\lla and ]SEa.
— —_— ~
Fix a subalgebra PB, of PB,. Now, assume that there is an algebra B, that has a faith-

ful representation in f/’??a that is generated by multiplication by elements of f/’??/a and by the
operators

(qu - Xr-i—l)
T, = — (s, — 1).
X X Y
By construction, we have the isomorphism
(29) PolR, ~ Pol,, Y,1; — i:'(X, —i,)1;.

Moreover, this 1somorphlsm commutes with the action of G,. Assume that we can extend the
isomorphism PolR,, ~ Pol in (29) to an G -invariant 1s0m0rphlsm PAV ~ PB Moreover,

assume also that this extension restricts to an isomorphism PAV ~ PBa. The we have the
following.

Proposition 4.2. There is an algebra isomorphism A(v) ~ B, that intertwines the representation
in PA, ~ PB,.

Proof. We only have to show that we can write the operator 7,. in terms of 7;. (and multiplication
by elements of 161\4; ~ f/’E;) and vice versa.

First, we express 7, in terms of 7,. Fix ¢ € Seq(v) = Sja. Assume i, = i,4;. Then
the action of the operator (¢X, — XTH)_lli on ]/3/\41, ~ ]/DEa 1s well-defined. The element
—(¢X,—X,41) (T, —q)1; acts on @a by the same operator as 7,.1;. Now, assume that we have
i, # ir41. If moreover we have no arrow 7, — 7,.,1, we can write s,.1; = (%(Tr —q)+1)1;
(we need the condition qi, 1 # i, to be able to divide by (¢X, — X, ;1) here). The operator s, 1;
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acts on J/DZV ~ 131\33 in the same way as 7,.1;. Finally, if we have i, — /z'iﬂ, then the operator
(¢ X, — Xpy1)$: L = (X — Xoi1) (T — q) + (¢ X — X,11)]1; acts on P B, in the same way as
T, 1; up to scalar.

Now, we express T, in terms of 7,. The operator 7}.1; acts by [¢ + %(sr — 1D)]1;. In
the case 7, # 7,1, we are allowed to divide by X,. — X, 1 here. If we additionally have no arrow
i, — 1,41, then the element s,.1; acts in the same way as 7,.1;. If we have an arrow 7, — 2,1,
then (¢X, — X,1)s,1; acts up to scalar in the same way as 7,.1;. It remains to treat the case

iy = tr41. In this case, the element 5 L acts in the same way as —7,1;. O

r+1
4.2. The DG-enhanced 1som0rph1sm theorem: the degenerate version. In Proposmon 4 1

we proved that we have an isomorphism of algebras A( ) ~ 15’ for some algebras .A(1/) and B
that satlsfy some list of propertles Let us show that we can apply Proposition 4.2 to the special

situation A(v) = R(v) and B, = 7-[ . (We assume that v and a are related as in Section 4.1.1.)
In this case we can take ﬁZ = ﬁ% and FE = ]3 We fix the following f’ZI c FZ The
subalgebra PA 1s generated by PolR and Ql Similarly, we construct a subalgebra PB c

PB The subalgebra PB is generated by Pol and 6.
To be able to apply Proposmon 4.1, we only have to construct a G -invariant 1som0rphlsm

o Pa ~ PR extending the isomorphism (28) such that « restricts to an isomorphism PB
PAV. First, we consider the following homomorphism «’: Pola — PRV.

L; — 1,

X1 = (Y +i,)1.
This homomorphism is obviously & -invariant.

1—s,

= XX, is well-defined on P,.

Remark 4.3. For each 1 < r < d, the Demazure operator ¢, =
Now, using the isomorphism Pola = PolRl,, we can consider it as an operator on I/Dl\%y. The
action of 0, on PR, can be given explicitly by

o.(f1;) = JL Sr(f)lsr(i)

ek||Y:,..., Yyl
oy Jek )

1ST

Attention, the operator ¢, on PR should not be confused with -, which is not well-

defined. /\
The Demazure operators ¢, on PR, satisfy the relation (3), (4), (5).

Now, we want to extend o to a homomorphism o f’a ~ PR,. To do this, we have to choose
the images of 6,,60,,...,0, 1n PR such that this images anti-commute with each other and

commute with the image of Pol (i.e., with PolR ). Moreover, we want to make this choice in
such a way that « is bijective and G 4-invariant.
First, we set

30) 04(9111) = ( 1_[ (Yi e Z)A‘) (—I)Ailﬂlli.

i€l i#iy
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This choice is motivated by the fact that we want « to be compatible with the DG-structure. For
r > 1, we construct the images of other ¢, inductively in the following way

37‘—1(05(97"—1)) - 05(91”—1)
Y;“—l - Yvr + ir—l - ir

(31) Of(@rlz) = —6r_1(oz(9r_1))1i = 11
This choice is motivated by the fact that we want « to be S,-invariant and we have that 0, =
—0,—1(0,_1). Equation (31) implies immediately

(32) a(sr<6r)) = Sr(a(‘gr))'

Lemma 4.4. The homomorphism o: ﬁa — f’}\%y given by (30) and (31) is an isomorphism and
it is S4-invariant.

Proof. Since the homomorphism «’: Pol, — PR, is obviously & -invariant, to show the &4-
invariance of «, we have to show

(33) sk(a(&lz)) = @(sk(erz))

for each ¢ € [V, each r € [1;d] and each k € [1;d — 1]. We induct on r. First, we prove (33) for
r=1.If k > 1 and r = 1, then (33) is obvious because #; and «(6,) are si-invariant. The case
k = r = 1 follows from (32).

Now, assume that » > 1 and that (33) is already proved for smaller values of r. The case k = r
follows from (32).

For k # r, the element 0, is sj-invariant. So (33) is equivalent to the s,-invariance of «(6,).

Assume that & > r or & < r — 2. This assumption implies that s; commutes with s,_;.
Moreover, we already know by induction hypothesis that a/(6,_1) is sg-invariant. So, the sj-
invariance of «(6,_1) together with (31) implies the sj-invariance of «.(0,.).

Now, assume k = r — 1. In this case the s,_;-invariance of a(f,) is obvious from (31).

Finally, assume k = r — 2. To prove the s, _,-invariance of «(0,), we have to show that
Or—2(c(6,)) = 0. We have

arf2(a<6r)> = (’/37"7207"7107"72(05(97"72)) = (’/37"71(77'72(97"71<05(6r72))-

This is equal to zero because 0, _1(«(0,_2)) = 0 by the s,_;-invariance of «(6,_s).

This completes the proof of the & -invariance of a.

Now, let us prove that « is an isomorphism. It is easy to see from (30) and (31) that «(6,.1;) is
of the form

(34) a(b,1;) = > Puls,
t=1

where P; € 16]\%,,11- for r € {1,2,...,r} and P, is invertible in ]Sl\%l,li. Then the bijectivity is
clear from (34) and from the fact that « restricts to a bijection Pol, ~ PolR,. J

Note that (30) implies that the isomorphism « identifies the subalgebra 151\4; of ﬁZV with the

subalgebra JSB; of ]gl\?a.
This show that Proposition 4.1 is applicable. We get the following theorem.
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Theorem 4.5. There is an isomorphism of DG-algebras (ﬁ(u), dy) ~ (’ﬁa, Q)

Proof. The isomorphism of algebras follows immediately from Proposition 4.1. We only have to
check the DG-invariance. - R
Denote by ~ the isomorphism of algebras 7v: H, — R(v). It is obvious that -y preserves the

\-grading. Let us check that for each h € H,, we have
(35) 7(0q(h)) = dx(v(h)).

Moreover, if (35) is true for some h = hy, h = hy, then it is automatically true for A = hyhs. So,
it is enough to chech (35) on generators.

The algebra 7 is generated by elements of \-degree zero and by 6.
So, it is enough to check (35) for h = 6. This follows directly from (30). (In fact, this is
exactly the reason why we define (30) in such a way.) U

Remark 4.6. We could also take I/DZZ, = I/DZ; = P/oﬁ%l, and FEa = @; = ﬁc\)la. Then we get
(the completion version of) the usual Brundan-Kleshchev-Rouquier isomorphism.

4.3. The DG-enhanced isomorphism theorem: the g-version. In Proposmon 4 1 we proved
that we have an isomorphism of algebras A( ) ~ ~ B, for some algebras A( ) and B, that satisfy
some list of propertles Let us show that we can apply Proposition 4.2 to the special situation

./Z(V) = R( ) and B = Ha (We assume that 1 and a are related as in Section 4.1.2.) In this
case we can take PA, = PR, and PB, = D,.

To be able to apply Proposition 4.2, we only have to construct a G -invariant 1somorphlsm
o PR,, ~ P extending the 1som0rphlsm (29) such that o restricts to an isomorphism PA

PBa (we choose the subalgebras PAV = PA,, and PBa - PBa in the same way as in Sec-
tion 4.2). This can be done in the same way as in the degenerate case. However, some formulas
in this case are different from the previous section because of the difference between (28) and
(29). Here, we only give the modified formulas. The proofs are the same as in the previous
section. . A

We consider the & 4-invariant homomorphism «’: Pol, — PR,,.

1i — 1i>

Now, we extend o/ to a homomorphism «: ]3a ~ ﬁR, in the following way.

(36) a(611;) = ( [] (hi(vi+1) —i)Ai> (—i) 10,1

i€l i#iq
sr—1(a(0r-1)) — a(fr 1) ,
(Yoo + 1) — i (Yo +1) "

As in the previous section, we can show that « is a G 4-invariant isomorpism.
We get the following theorem.

(37 a(0,1;) = —=0r—1(a(0,-1))1; =
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Theorem 4.7. There is an isomorphism of DG-algebras (R(v), dy) ~ (Ha, Q)

Remark 4.8. We could also take J/DZV = ]/3;1; = P/oﬁ{,, and F/’Ea = ]51\3; = Ij(;la. Then we get
(the completion version of) the usual Brundan-Kleshchev-Rouquier isomorphism.

4.4. The homology of H, and 7,. We now prove Proposition 2.12 and Proposition 2.23.
Proposition 4.9. The DG-algebras (ﬁ(y)7 dp) and (R*(v),0) are quasi-isomorphic.

Proof. Ttis proved in [16, Proposition 4.14] that the DG-algebras (R(v), ds) and (R*(v), 0) are
quasi-isomorphic. The same proof with minor modifications applies to our case. (We just have
to replace polynomials by power series.) U

Corollary 4.10. There are quasi-isomorphisms (”;{_\a, dq) ~ (HR,0) and (7-A[a, dq) ~ (HS,0).

Proof. Proposition 4.9, Theorem 4.5 and the usual Brundan-Kleshchev-Rouquier isomorphism
imply

(Has 2@) ~ (R(v),dy) = (RMv),0) =~ (H2,0).
This proofs the first part. The second part is similar. U

Proof of Proposition 2.12 and Proposition 2.23. Itis obvious that the homology group of (H4, dq)
in degree zero is H (?. We only have to check that the homology groups in other degrees are zero.
Assume, that for some ¢ > 0, we have H i(’i:[d, GQ) # ( and consider it as a Pol;-module. The
annihilator of this Pol;-module is contained in some maximal ideal M < Pol,. The ideal M is
of the form M = (X} —ay,..., Xy — aq) for some a = (ay,...,aq) € k%
Then the completion of H'(H,4, dq) # 0 with respect to the ideal M is nonzero. This leads to

—~

a contradiction because H'(Ha, 0q) = 0 together with Kiinneth formula implies
k[[Xl — a1, ... ,Xd — Gd]] ®P01d Hi(/]‘_[d, 6Q) = 0

Proposition 2.23 is proved in the same way. U
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