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DG-ENHANCED HECKE AND KLR ALGEBRAS

RUSLAN MAKSIMAU AND PEDRO VAZ

ABSTRACT. We construct DG-enhanced versions of the degenerate affine Hecke algebra and of
the affine q-Hecke algebra. We extend Brundan–Kleshchev and Rouquier’s isomorphism and
prove that after completion DG-enhanced versions of Hecke algebras are isomorphic to completed
DG-enhanced versions of KLR algebras for suitably defined quivers. As a byproduct, we deduce
that these DG-algebras have homologies concentrated in degree zero. These homologies are iso-
morphic respectively to the degenerate cyclotomic Hecke algebra and the cyclotomic q-Hecke
algebra.
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1. INTRODUCTION

Hecke algebras and their affine versions are fundamental objects in mathematics and have a
rich representation theory (see the review [9] for an account of some of the current trends). The
representation theory of finite dimensional Hecke algebras also carries interesting symmetries
which occur in categorification of Fock spaces and Heisenberg algebras [5, 11]
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In a series of outstanding papers, Lauda [10], Khovanov–Lauda [6, 7, 8] and independently
Rouquier [20], have constructed categorifications of quantum groups. They take the form of
2-categories whose Grothendieck rings are isomorphic to the idempotent version of the quan-
tum enveloping algebra of a Kac–Moody algebra. Both constructions were later proved to be
equivalent by Brundan [1]. As a main ingredient of the constructions by Khovanov–Lauda and
Rouquier there is a certain family of algebras, nowadays known as KLR algebras, that are con-
structed using actions of symmetric groups on polynomial spaces.

It turns out that in type A the KLR algebras are instances of affine Hecke algebras. It was
proved by Rouquier [20, Section 3.2] that KLR algebras of type A become isomorphic to affine
Hecke algebras after a suitable localization of both algebras. Independently, Brundan and Klesh-
chev [2] have proved a similar result for cyclotomic quotient algebras. This endows cyclotomic
Hecke algebras with a presentation as graded idempotented algebras. In particular, in the case
of KLR for the quiver of type A8, the isomorphism to the group algebra of the symmetric group
in d letters kSd gives the latter a graded presentation. The grading on kSd was already known
to exist (see [19]) but transporting the grading from the KLR algebras allowed to construct it
explicitly. This gave rise to a new approach to the representation theory of symmetric groups and
Hecke algebras [3]. These results are valid over an arbitrary field k.

The BKR (Brundan–Kleshchev–Rouquier) isomorphism was later extended to isomorphisms
between families of other KLR-like algebras and Hecke-like algebras. A similar isomorphism
between the Dipper-James-Mathas cyclotomic q-Schur algebra and the cyclotomic quiver Schur
algebra is given in [21]. The papers [12] and [22] have constructed a higher level version of the
affine Hecke algebra and have proved that after completion they are isomorphic to a completion
of Webster’s tensor product algebras [23]. A weighted version of this isomorphism is also given
in [22]. A similar relation between quiver Schur algebras and affine Schur algebras is given
in [13]. The paper [12] have constructed a higher level version of the affine Schur algebra and
have proved that after completion it is isomorphic to a completion of the higher level quiver
Schur algebras.

The BKR isomorphism was also generalized to other algebras. For example, in [18] it is
used to show that cyclotomic Yokonuma-Hecke algebras are particular cases of cyclotomic KLR
algebras for certain cyclic quivers, and in [17] the BKR isomophism is extended to connect affine
Hecke algebras of type B and a generalization of KLR algebras for a Weyl group of type B.

More recently, the second author and Naisse have constructed categorifications of (parabolic)
Verma modules in a series of papers [14, 15, 16]. The construction in [16], motivated by the work
of Khovanov–Lauda, Rouquier, and Kang–Kashiwara [6, 7, 20, 4], introduces DG-enhanced ver-
sions Rpνq of KLR algebras, which are some sort of resolutions of cyclotomic KLR algebras.
These can be seen as a sort of integration of cyclotomic KLR algebras into free (over the polyno-
mial ring) algebras, where the cyclotomic condition is replaced by a differential with the property
that the DG-algebras Rpνq are quasi-isomorphic to cyclotomic KLR algebras, the latter seen as
DG-algebras with zero differential. The algebrasRpνq also provide categorification of universal
Verma modules.

It seems natural to ask the following question.
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Question 1. paq Are there DG-enhanced versions of affine Hecke algebras that are quasi-iso-
morphic to cyclotomic Hecke algebras?

pbq In this case, does the BKR isomorphism extend to an isomorphism between (completions of)
DG-enhanced versions of KLR algebras and DG-enhanced versions of Hecke algebras?

In this article we answer this question affirmatively. We construct DG-enhanced versions of
the degenerate affine Hecke algebra and of the affine q-Hecke algebra.

Let us give an overview of our Hecke algebras and the main results in this article. Fix d P N
and a field k that for simplicity we consider to be algebraically closed (we follow the convention
that 0 P N, i.e., we have N “ t0, 1, 2, . . .u). We consider the Z-graded algebra sHd generated
by T1, . . . , Td´1 and X1, . . . , Xd in degree zero and θ in degree 1. The generators T1, . . . , Td´1

and X1, . . . , Xd satisfy the relations of the degenerate affine Hecke algebra sHd. The generator θ
commutes with the Xr’s and with T2, . . . , Td´1 and satisfies θ2 “ 0 and T1θT1θ ` θT1θT1 “ 0.
This implies that the subalgebra of sHd concentrated in degree zero is isomorphic to sHd. For
Q “ pQ1, . . . , Q`q P k` introduce a differential BQ by declaring that it acts as zero on sHd while
BQpθq “

ś`
r“1pX1 ´ Qrq. We denote xH̄a the completion of the algebra sHd at a sequence of

ideals depending on a P kd.
In order to make the connection to DG-enhanced versions of KLR algebras we consider a

quiver Γ with a vertex set I Ď k and with an edge i Ñ j iff j ` 1 “ i. We assume that Qr P I
for each r. We fix a P Id and we set ν and Λ such that νi and Λi are the multiplicities of i in
respectively a and Q. We have

ś`
r“1pX1 ´Qrq “

ś

iPIpX1 ´ iqΛi . Let pRpνq, dΛq be the DG-
enhanced version of the KLR algebra of type Γ with parameters ν and Λ as above and p pRpνq, dΛq

its completion.

The first main result in this article is the DG-enhanced version of the BKR isomorphism for
the degenerate affine Hecke algebra:

Theorem 4.5. There is an isomorphism of DG-algebras p pRpνq, dΛq » p
xH̄a, BQq.

Next, we give a similar construction for the affine q-Hecke algebra. Fix q P k, q ‰ 0, 1. We
consider the Z-graded algebra Hd generated by T1, . . . , Td´1 and X˘1

1 , . . . , X˘1
d in degree zero

and θ in degree 1. The generators T1, . . . , Td´1 and X˘1
1 , . . . , X˘1

d satisfy the relations of the
affine q-Hecke algebra Hd. The generator θ commutes with the Xr’s and with T2, . . . , Td´1 and
satisfies the relations θ2 “ 0 and T1θT1θ`θT1θT1 “ pq´1qθT1θ. This implies that the subalgebra
ofHd concentrated in degree zero is isomorphic to Hd. For Q “ pQ1, . . . , Q`q P pkˆq` introduce
a differential BQ by declaring that it acts as zero on Hd while BQpθq “

ś`
r“1pX1 ´ Qrq. We

denote pHa the completion of the algebraHd at a sequence of ideals depending on a P pkˆqd.
To make the connection to DG-enhanced versions of KLR algebras we consider a quiver Γ

with a vertex set I Ď kˆ with an edge i Ñ j iff i “ qj. We assume that Qr P I for each r.
Finally set ν and Λ such that νi and Λi are the multiplicities of i in respectively a and Q. We
have

ś`
r“1pX1 ´ Qrq “

ś

iPIpX1 ´ iqΛi . Let pRpνq, dΛq be the DG-enhanced version of the
KLR algebra of type Γ with ν and Λ as above and p pRpνq, dΛq its completion.



4 Ruslan Maksimau and Pedro Vaz

The second main result in this article is the DG-enhanced version of the BKR isomorphism
for the affine q-Hecke algebra:

Theorem 4.7. There is an isomorphism of DG-algebras p pRpνq, dΛq » p pHa, BQq.

The two main results above imply that we have a family of isomorphisms pRpνq » pHa between
the underlying algebras parametrized by integral dominant weights.

The DG-enhanced versions of BKR isomorphisms above allow us to compute the homology of
the DG-algebras H̄d and Hd in the following way. It is already proved in [16, Proposition 4.14]
that the DG-algebraRpνq is quasi-isomorphic to the cyclotomic KLR algebra. The most difficult
part of this proof is to show that the DG-algebra Rpνq has homology concentrated in degree
zero. The proof of this fact is quite technical and there is no obvious way to rewrite it for Hecke
algebras. So we use the following strategy: we deduce the statement for Hecke algebras from
the statement for KLR algebras using the DG-enhanced version of the BKR isomorphism.

As a corollary of Theorem 4.5 and Theorem 4.7 and [16, Proposition 4.14], the DG-algebras
p sHd, BQq and pHd, BQq are resolutions of the degenerate cyclotomic Hecke algebra sHQ

d and of
the cyclotomic q-Hecke algebra HQ

d respectively.

Proposition 2.12. The DG-algebras p sHd, BQq and p sHQ
d , 0q are quasi-isomorphic.

Proposition 2.23. The DG-algebras pHd, BQq and pHQ
d , 0q are quasi-isomorphic.

Up to our knowledge, the DG-enhanced versions of Hecke algebras we introduce are new. Propo-
sition 2.12 and Proposition 2.23 are important for a forthcoming paper.

We would also like to emphasize the fact that the algebras H̄d and Hd have triangular de-
compositions (see Remark 2.6 and Remark 2.20). This looks like an analogy with Cherednik
algebras.

Plan of the paper. In Section 2 we introduce DG-enhanced versions of the degenerate affine
Hecke algebra and of the affine q-Hecke algebra and their completions, that will be used in the
BKR isomorphism. The material in this section is new.

In Section 3 we review the DG-enhanced version of the KLR algebra introduced in [16]. We
give the minimal presentation of this algebra explained in [16, Remark 3.10], which is more
convenient to us, and present its completion, which is involved in the BKR isomorphism.

Section 4 contains the main results. We first generalize the BKR isomorphism to a class of
algebras satisfying some properties. The most important point is that to have a generalization
of the BKR isomorphism we need to construct an isomorphism between the completed polyno-
mial representation of the Hecke-like algebra and the completed polynomial representation of
the KLR-like algebra, this isomorphism must intertwine the action of the symmetric group. Our
main results, Theorem 4.5 and Theorem 4.7, are then proved by showing that our DG-enhanced
versions of Hecke algebras H̄d and Hd on one side, and the DG-enhanced versions of KLR al-
gebrasRpνq on the other satisfy the properties that are required for them to be isomorphic (after
completion). We then use the fact that the DG-algebras Rpνq are quasi-isomophic to cyclo-
tomic KLR algebras together with the DG-enhanced version of the BKR isomorphism to show
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in Corollary 4.10 that the algebras H̄d and Hd are quasi-isomorphic to degenerate cyclotomic
Hecke algebras and cyclotomic q-Hecke algebras respectively.

Acknowledgments. We thank Jonathan Grant for useful discussions. PV was supported by the
Fonds de la Recherche Scientifique - FNRS under Grant no. MIS-F.4536.19.

2. DG-ENHANCED VERSIONS OF HECKE ALGEBRAS

2.1. The polynomial rings Pold and Polld and the rings Pd and Pld. Fix an algebraically
closed field k, q P k, q ‰ 0, 1 and d P N once and for all.

2.1.1. The polynomial rings Pold and Polld. Set Pold “ krX1, . . . , Xds. Let Sd be the sym-
metric group on d letters, which we view as being generated as a Coxeter group with generators
si. These correspond to the simple transpositions pi i`1q, and we use these two descriptions
interchangeably throughout. It acts from the left on Pold by permuting the variables: for w P Sd

we have
wpXiq “ Xwpiq.

Using the Sd-action above, we introduce the Demazure operators Bi on Pd for all 1 ď i ď d´1
in the usual way, as

(1) Bipfq “
f ´ sipfq

Xi ´Xi`1

.

We have siBipfq “ Bipfq and Bipsifq “ ´Bipfq for all i, so Bi is in fact an operator from Pold
to the subring Polsid Ď Pold of invariants under the transposition pi i`1q. It is well-known that
the action of the Demazure operators on Pold satisfy the Leibniz rule

(2) Bipfgq “ Bipfqg ` sipfqBipgq,

for all f, g P Pold and for 1 ď i ď n´ 1, and the relations

B
2
i “ 0, BiBi`1Bi “ Bi`1BiBi`1,(3)

BiBj “ BjBi for |i´ j| ą 1,(4)

XiBi ´ BiXi`1 “ 1, BiXi ´Xi`1Bi “ 1.(5)

Set Polld “ krX˘1
1 , . . . , X˘1

d s. We have, Polld “ PoldrX
´1
1 , . . . , X´1

d s. Moreover, the Sd-
action on Pold can be obviously extended to a Sd-action on Polld. This means that the action of
the Demazures on Pold also extends to operators on Polld that satisfy the relations in (2) (for f
and g in Polld) and (3)-(5).

2.1.2. The rings Pd and Pld. Let θ “ pθ1, . . . , θdq and form the ring Pd “ Poldb
Ź‚
pθq, where

Ź‚
pθq is the exterior ring in the variables θ and coefficients in k. Introduce a Z-grading on Pd

denoted λp‚q and defined as λpXiq “ 0 and λpθiq “ 1. This grading is of cohomological nature
and (up to a sign) is half the grading degλ introduced in [14, §3.1].

As explained in [14, §8.3], the action of Sd on Pold extends to an action on Pd by setting

(6) sipθjq “ θj ` δi,jpXi ´Xi`1qθi`1.



6 Ruslan Maksimau and Pedro Vaz

This action respects the grading, as one easily checks.
With this Sd-action above, the action of the Demazure operators Bi on Pold given by (1)

extends to any f P Pd and defines Demazure operators on Pd, which we denote by the same
symbol.

Similarly to the operators above, Bi is an operator from Pd to the subring P si
d Ď Pd of invariants

under the transposition pi i`1q.
It was proved in [14, §8.2] that the action of the Demazure operators on Pd satisfies the Leibniz

rule (2) (with f and g in Pd), the relations (3)-(5), and

Biθk “ θkBi for k ‰ i,

Bipθi ´Xi`1θi`1q “ pθi ´Xi`1θi`1qBi,

for all i “ 1, . . . , d´ 1.
Form the supercommutative ring

Pld “ Polldb
Ź‚
pθq.

We have, Pld “ PdrX
´1
1 , . . . , X´1

d s. Moreover, the Sd-action on Pold can be obviously extended
to a Sd-action on Pld. This means that the action of the Demazures on Pld also extends to
operators on Pld that satisfy the relations in (2) (for f and g in Pld) and (3)-(5).

2.2. Degenerate version.

2.2.1. Degenerate affine Hecke algebra. The degenerate affine Hecke algebra sHd is the k-algebra
generated by T1, . . . , Td´1 and X1, . . . , Xd, with relations (7) to (9) below.

T 2
i “ 1, TiTj “ TjTi if |i´ j| ą 1, TiTi`1Ti “ Ti`1TiTi`1,(7)

XiXj “ XjXi,(8)
TiXi ´Xi`1Ti “ ´1, TiXj “ XjTi if j ´ i ‰ 0, 1.(9)

For w “ si1 ¨ ¨ ¨ sik P Sd a reduced decomposition we put Tw “ Ti1 ¨ ¨ ¨Tik . Then Tw is
independent of the choice of the reduced decomposition of w and the set

tXm1
1 ¨ ¨ ¨Xmd

d TwuwPSd,miPZě0

is a basis of the k-vector space sHd.
There is a faithful representation of sHd on Pold, where Tipfq “ sipfq ´ Bipfq. It is immediate

that sHd contains kSd and Pold as subalgebras and that for p P Pold,

Tip´ sippqTi “ ´Bippq.

Let ` be a positive integer and Q “ pQ1, . . . , Q`q be an `-tuple of elements of the field k.

Definition 2.1. The degenerate cyclotomic Hecke algebra is the quotient

H̄Q
d “ H̄d{

ź̀

r“1

pX1 ´Qrq.
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2.2.2. The algebra H̄d.

Definition 2.2. Define the algebra H̄d as the k-algebra generated by T1, . . . , Td´1 andX1, . . . , Xd

in λ-degree zero, and an extra generator θ in λ-degree 1, with relations (7) to (9) and

θ2
“ 0(10)

Xrθ “ θXr for r “ 1, . . . , d,(11)
Trθ “ θTr for r ą 1,(12)

T1θT1θ ` θT1θT1 “ 0.(13)

The algebra H̄d contains the degenerate affine Hecke algebra H̄d as a subalgebra concentrated
in λ-degree zero.

Lemma 2.3. The algebra H̄d acts faithfully on Pd by

Trpfq “ srpfq ´ Brpfq,

Xrpfq “ Xrf,

θpfq “ θ1f,

for all f P Pd and where srpfq and Brpfq are as in (6) and (1).

Proof. The defining relations of H̄d can be checked by a straightforward computation. Faithful-
ness follows from the proof of Proposition 2.5 below. �

Define ξ1, . . . , ξd P H̄d by the rules ξ1 “ θ, ξi`1 “ TiξiTi. The following is straightforward.

Lemma 2.4. The elements ξr satisfy for all r “ 1, . . . , d´ 1 and all ` “ 1, . . . , d,

ξ2
` “ 0, ξrξ` ` ξ`ξr “ 0, Trξ` “ ξsrp`qTr.

It is not hard to write a basis of H̄d in terms of the ξr’s.

Proposition 2.5. The set

tXa1
1 ¨ ¨ ¨Xad

d Twξ
b1
1 ¨ ¨ ¨ ξ

bd
d |w P Sd, pa1, . . . , adq P Nd, pb1, . . . , bdq P t0, 1u

d
u,

is a basis of the k-vector space H̄d.

Proof. First, we show that this set spans H̄d. We have no explicit commutation relations between
X’s and ξ’s. But this problem is easy to overcome because we know that θ commutes with
X’s. First, each monomial on θ, X’s and T ’s can be rewritten as a linear combination of similar
monomials with all X’s on the left. After that, we replace θ by ξ1 and we move all ξ’s to the
right. This shows that the set above spans H̄d.

The linear independence follows from Lemma 2.7 and Lemma 2.9 below. �

Remark 2.6. We see from the proposition above that the algebra H̄d has a triangular decompo-
sition (only as a vector space)

H̄d “ krX1, . . . , Xds b kSd b
Ź‚
pξ1, . . . , ξdq.
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Abusing the notation, we will write θr for the operator on Pd that multiplies each element of
Pd by θr. Set M “ t0, 1ud. Denote by 1 the sequence 1 “ p1, 1, . . . , 1q PM . For each sequence
b “ pb1, . . . , bdq P M we set θb “ θb11 . . . θbdd . For each b P M we set b “ 1 ´ b. In particular
we have θb ¨ θb “ ˘θ1θ2 . . . θd “ θ1. Set also |b| “ b1 ` b2 ` . . .` bd.

Lemma 2.7. The operators tθb; b P Mu acting on Pd are linearly independent over H̄d. More
precisely, if we have

ř

bPM hbθ
b “ 0 with hb P H̄d then we have hb “ 0 for each b PM .

Proof. Let H “
ř

bPM hbθ
b be an operator that acts by zero. Assume that H has a nonzero

coefficient. Let b0 be such that hb0 ‰ 0 and such that |b0| is minimal with this property. Then
for each element P P Pd we have Hpθb1P q “ ˘θ1hb0P . This shows that hb0 acts by zero on
θ1Pd “ θ1 Pold. But this implies hb0 “ 0 because the polynomial representation Pold of H̄d is
faithful. �

For each, k P t0, 1, . . . , du we denote by H̄ďkd the subalgebra of the algebra of operators on Pd
generated by Xi, θi for i ď k and Tr for r ă k. We mean that for k “ 0 we have H̄ď0

d “ k. The
λ-grading on Pd induces a grading on H̄ďkd that we also call λ-grading.

Lemma 2.8. The set

tXa1
1 ¨ ¨ ¨Xak

k Twθ
b1
1 ¨ ¨ ¨ θ

bk
k |w P Sk, pa1, . . . , akq P Nk, pb1, . . . , bkq P t0, 1u

k
u,

is a basis of the k-vector space H̄ďkd .

Proof. It is clear that the given set spans H̄ďkd . The linear independence follows from Lemma 2.7.
�

Similarly to the notation θb above, we set ξb “ ξb11 . . . ξbdd . For two elemtns b,b1 P M we
write b1 ă b if there is an index r P r1; ds such that br ą b1r and bt “ b1t for t ą r.

Lemma 2.9. The element ξb P H̄d acts on Pd by an operator of the form hbθ
b `

ř

b1ăb hb1θ
b1 ,

where hb, hb1 P H̄d and hb is invertible.

Proof. It is easy to see by induction that for each k P t1, 2, . . . , du the element ξk acts on Pd
by an operator of the form ck ` dkθk, where ck, dk P H̄ďk´1

d , λpckq “ 1, λpdkq “ 0 and dk is
invertible.

The element ξb can be written up to sign in the form ξirξir´1 . . . ξi1 with ir ą ir´1 ą . . . ą i1.
It acts by the operator pcir ` dirθirqpcir´1 ` dir´1θir´1q . . . pci1 ` di1θi1q. Since each θk super-
commutes with H̄ďk´1

d , we see that this operator can be rewritten as

dirdir´1 . . . di1θirθir´1 . . . θi1 `
ÿ

b1ăb

hb1θ
b1

for some hb1 P H̄d. We see that the additional terms above are indeed of the form
ř

b1ăb hb1θ
b1

from Lemma 2.8.
�
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2.2.3. DG-enhancement of H̄d. Let ` and Q be as in Section 2.2.1.

Definition 2.10. Define an operator BQ on sHd by declaring that BQ acts as zero on sHd, while

BQpθq “
ź̀

r“1

pX1 ´Qrq,

and for a, b P sHd, BQpabq “ BQpaqb` p´1qλpaqaBQpbq.

Lemma 2.11. The operator BQ is a differential on sHd.

Proof. We prove something slightly more general. Let P P krX1, . . . , Xds be a polynomial.
Define dP : sHd Ñ sHd by declaring that dP acts as zero on sHd, while dP pθq “ P , together with
the graded Leibniz rule. Then dP is a differential on sHd. To prove the claim is suffices to check
that dP pT1θT1θ ` θT1θT1q “ 0.

We have T1P “ s1pP qT1 ´ B1pP q and PT1 “ T1s1pP q ´ B1pP q, where B1 is the Demazure
operator. This also implies T1PT1 “ s1pP q ´ B1pP qT1. Note also that B1pP q is a symmetric
polynomial with respect to X1, X2, so it commutes with T1. So, we have

dP pT1θT1θ ` θT1θT1q “T1PT1θ ´ T1θT1P ` PT1θT1 ´ θT1PT1

“ps1pP qθ ´ B1pP qT1θq ´ pT1θs1pP qT1 ´ T1θB1pP qq

` pT1s1pP qθT1 ´ B1pP qθT1q ´ pθs1pP q ´ θB1pP qT1q

“0,

which proves the claim. �

The following is proved in Section 4.4.

Proposition 2.12. The DG-algebras p sHd, BQq and p sHQ
d , 0q are quasi-isomorphic.

2.2.4. Completions of H̄d. Consider the algebra of symmetric polynomials Symd “ PolSdd . We
consider it as a (central) subalgebra of H̄d.

For each d-tuple a “ pa1, . . . , adq P kd we have a character χa : Symd Ñ k given by the
evaluation Xr ÞÑ ar. It is obvious from the definition that if the d-tuples a1 is a permutation of
the d-tuple a then the characters χa and χa1 are the same. Denote by ma the kernel of χa.

Definition 2.13. Denote by xH̄a the completion of the algebra H̄d at the sequence of ideals
H̄dm

j
aH̄d.

Set also pPa “
À

bPSda
pkrrX1 ´ b1, . . . , Xd ´ bdss b

Ź‚
pθq1b. We can obviously extend the

action of H̄d on Pd to an action of xH̄a on pPa. Each finite dimensional xH̄a-moduleM decomposes
into its generalized eigenspaces M “

À

bPSda
Mb, where

Mb “ tm PM | DN P Zě0 such that pXr ´ brq
Nm “ 0 @ru.

For each b P Sda the algebra xH̄a contains an idempotent 1b that project onto Mb when applied
to M .
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Proposition 2.14. paq The xPola-module xH̄a is free with basis

tTwξ
b1
1 . . . ξbdd | w P Sd, pb1, . . . , bdq P t0, 1u

d
u.

pbq The representation xPola of xH̄a is faithful.

Proof. It is clear that the elements from the statement generate the xPola-module xH̄a. To see that
they form a basis, it is enough to remark that they act by linear independent (over xPola) operators
on the representation xPola. This proves paq. Then pbq also holds because a basis acts on xPola by
linearly independent operators. �

The algebra H̄Q
d has a decomposition H̄Q

d “ ‘aH̄
Q
a (with a finite number of nonzero terms)

such that Symd acts on each finite dimensional H̄Q
a -module with a generalized character χa.

2.3. q-version.

2.3.1. Affine q-Hecke algebra. The affine q-Hecke algebra Hd is the k-algebra generated by
T1, . . . , Td´1 and X˘1

1 , . . . , X˘1
d , with relations (14)-(16) below.

XrX
´1
r “ X´1

r Xr “ 1, XiXj “ XjXi, X˘1
i X˘1

j “ X˘1
j X˘1

i ,(14)

pTi ´ qqpTi ` 1q “ 0, TiTj “ TjTi if |i´ j| ‰ 0, TiTi`1Ti “ Ti`1TiTi`1.(15)
TiXj “ XjTi for j ´ i ‰ 0, 1, TiXiTi “ qXi`1.(16)

For w “ si1 ¨ ¨ ¨ sik P Sd a reduced decomposition we put Tw “ Ti1 ¨ ¨ ¨Tik . Then Tw is
independent of the choice of the reduced decomposition of w and the set

tXm1
1 ¨ ¨ ¨Xmd

d TwuwPSd,miPZ

is a basis of the k-vector space Hd. There is a faithful representation of Hd on Polld, where
Tipfq “ qsipfq ´ pq ´ 1qXi`1Bipfq.

Let ` be a positive integer. Let Q “ pQ1, . . . , Q`q be an `-tuple of nonzero elements of the
field k.

Definition 2.15. The cyclotomic q-Hecke algebra is the quotient

HQ
d “ Hd{

ź̀

r“1

pX1 ´Qrq.

2.3.2. The algebraHd.

Definition 2.16. The algebra Hd is the k-algebra generated by T1, . . . , Td´1 and X˘1
1 , . . . , X˘1

d

in λ-degree zero, and an extra generator θ in λ-degree 1, with relations (14) to (16) and

θ2
“ 0(17)

X˘1
r θ “ θX˘1

r for r “ 1, . . . , d,(18)
Trθ “ θTr for r ą 1,(19)

T1θT1θ ` θT1θT1 “ pq ´ 1qθT1θ.(20)
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The algebra Hd contains the affine q-Hecke algebra Hd as a subalgebra concentrated in λ-
degree zero.

Lemma 2.17. The algebraHd acts faithfully on Pld by

Trpfq “ qsrpfq ´ pq ´ 1qXr`1Brpfq,

X˘1
r pfq “ X˘1

r f,

θpfq “ θ1f,

for all f P Pd and where srpfq and Brpfq are as in (6) and (1).

Proof. The defining relations of Hd can be checked by a straightforward computation. Faithful-
ness follows from Proposition 2.19 below. �

Define ξ1, . . . , ξd P Hd by the rules ξ1 “ θ, ξi`1 “ TiξiT
´1
i . The following is straightforward.

Lemma 2.18. The elements ξr satisfy for all r “ 1, . . . , d´ 1 and all ` “ 1, . . . , d,

ξ2
` “ 0, ξrξ` ` ξ`ξr “ 0

and

T`ξr “

$

’

’

&

’

’

%

ξrT` if r ‰ `, `` 1,

ξ`T` ` pq ´ 1qpξ``1 ´ ξ`q if r “ `` 1,

ξ``1T` if r “ `.

It is not hard to write a basis ofHd in terms of the ξr’s.

Proposition 2.19. The set

tXa1
1 ¨ ¨ ¨Xad

d Twξ
b1
1 ¨ ¨ ¨ ξ

bd
d |w P Sd, pa1, . . . , adq P Zd, pb1, . . . , bdq P t0, 1u

d
u,

is a basis of the k-vector spaceHd.

Proof. Imitate the proof of Proposition 2.5. �

Remark 2.20. We see from the proposition above that the algebraHd has a triangular decompo-
sition (only as a vector space)

Hd “ krX1, . . . , Xds bH
fin
d b

Ź‚
pξ1, . . . , ξdq,

whereHfin
d is the (finite dimensional) Hecke algebra of the group Sd. More precisely, the algebra

Hfin
d is defined by generators T1, . . . , Td´1 and relations (15).

2.3.3. DG-enhancement ofHd. Let ` and Q be as in Section 2.3.1.

Definition 2.21. Define an operator BQ onHd by declaring that BQ acts as zero on Hd, while

BQpθq “
ź̀

r“1

pX1 ´Qrq,

and for a, b P sHd, BQpabq “ BQpaqb` p´1qλpaqaBQpbq.

Lemma 2.22. The operator BQ is a differential onHd.
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Proof. Similarly to the proof of Lemma 2.11, we consider a more general differential dP . We
have to check

dP pT1θT1θ ` θT1θT1q “ dP ppq ´ 1qθT1θq.

We have T1P “ s1pP qT1 ´ pq ´ 1qX2B1pP q and PT1 “ T1s1pP q ´ pq ´ 1qX2B1pP q, where
B1 is the Demazure operator. Note also that B1pP q is a symmetric polynomial with respect to
X1, X2, so it commutes with T1. So, we have

dP pT1θT1θ ` θT1θT1q “T1PT1θ ´ T1θT1P ` PT1θT1 ´ θT1PT1

“pT 2
1 s1pP qθ ´ pq ´ 1qB1pP qT1X2θq ´ pT1θs1pP qT1

´ pq ´ 1qT1θX2B1pP qq ` pT1s1pP qθT1 ´ pq ´ 1qX2B1pP qθT1q

´ pθs1pP qT
2
1 ´ pq ´ 1qθB1pP qX2T1q

“T 2
1 s1pP qθ ´ θs1pP qT

2
1

“pq ´ 1qPT1θ ´ pq ´ 1qθT1P

“dP
`

pq ´ 1qθT1θ
˘

,

which proves the claim. �

The following is proved in Section 4.4.

Proposition 2.23. The DG-algebras pHd, BQq and pHQ
d , 0q are quasi-isomorphic.

2.3.4. Completions ofHd. Similarly to Section 2.2.4, we want to define a completion of the alge-
bra Hd. Consider the algebra of symmetric Laurent polynomials Symld “ krX˘1

1 , . . . , X˘1
d s

Sd .
We consider it as a (central) subalgebra ofHd.

For each d-tuple a “ pa1, . . . , adq P pkˆqn we have a character χa : Symld Ñ k given by the
evaluation Xr ÞÑ ar. Denote by ma the kernel of χa.

Definition 2.24. Denote by pHa the completion of the algebra Hd at the sequence of ideals
Hdm

j
aHd.

Set also pPa “ krrX1 ´ a1, . . . , Xd ´ adss b
Ź‚
pθq. We can obviously extend the action ofHd

on Pd to an action of pHa on pPa. Similarly to xH̄a, the algebra pHa has idempotents 1b, b P Sda
that are defined in the same way as in Section 2.2.4.

Similar to Proposition 2.14 we have the following.

Proposition 2.25. paq The xPola-module pHa is free with basis

tTwξ
b1
1 . . . ξbdd | w P Sd, pb1, . . . , bdq P t0, 1u

d
u.

pbq The representation xPola of pHa is faithful.

The algebra HQ
d has a decomposition HQ

d “ ‘aH
Q
a (with a finite number of nonzero terms)

such that Symld acts on each finite dimensional H̄Q
a -module with a generalized character χa.
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3. DG-ENHANCED VERSIONS OF KLR ALGEBRAS

DG-enhanced versions of KLR algebras were introduced in [16] as one of the main ingredients
in the categorification of Verma modules for symmetrizable quantum Kac-Moody algebras.

Let Γ “ pI, Aq be a quiver without loops with set of vertices I and set of arrows A. We call
elements in I labels. Let also NrIs be the set of formal N-linear combinations of elements of I .
Fix ν P NrIs,

ν “
ÿ

iPI

νi ¨ i, νi P N, i P I,

and set |ν| “
ř

i νi. We allow the quiver to have infinite number of vertices. In this case only a
finite number of νi is nonzero.

For each i, j P I we denote by hi,j the number of arrows in the quiver Γ going from i to j, and
define for i ‰ j the polynomials

Qi,jpu, vq “ pu´ vqhi,jpv ´ uqhj,i .

3.1. The algebraRpνq. We give a diagrammatic definition of the algebrasR “ RpΓq from [16,
§3], corresponding to the case of minimal parabolic p. The definition we give is minimal and
equivalent to the one in the reference by [16, Remark 3.10].

Definition 3.1. For each ν P NrIs we define the k-algebraRpνq by the data below.
‚ It is generated by the KLR generators

i

. . . . . . and

i j

¨ ¨ ¨ ¨ ¨ ¨

for i, j P I , where each diagram contains νi strands labeled i, together with floating dots
which are labeled from elements of I and decorate the region immediately at the right of
the first strand (with the same label and counted from the left),

i

¨ ¨ ¨
i

‚ The multiplication is given by gluing diagrams on top of each other whenever the labels
of the strands agree, and zero otherwise, subject to the local relations (21) to (27) below,
for all i, j, k P I .
˛ The KLR relations, for all i, j, k P I:

(21)

i i

“ 0 and

i j

“ Qi,jpy1, y2q

i j

if i ‰ j
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i j

“

i j i j

“

i j

if i ‰ j,(22)

(23)

i i

´

i i

“

i i

“

i i

´

i i

ji k

“

ji k

unless i “ k ‰ j,(24)

ji i

´

ji i

“
Qi,jpy3, y2q ´Qi,jpy1, y2q

y3 ´ y1

i j i

if i ‰ j.(25)

˛ And the new relations, for all i, j P I:

(26)

i

i

i ¨ ¨ ¨ “ 0,

(27)

i j

j

i

“ ´

i j

j

i

.

Remark 3.2. A diagram with a box containing a polynomial means a polynomial in dots. The
indices in the variables indicate the strands carrying the corresponding dots. For example, for
ppy1, y2q “

ř

r,s cr,sy
r
1y

s
2 with cr,s P k we have

ppy1, y2q

i j

“
ÿ

r,s

cr,s

i

r

j

s .
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We now define a ZˆZ-grading inRpνq. Contrary to [16] we work with a single cohomological
degree λ. We declare

deg

˜

i

¸

“ p2, 0q, deg

˜

i j

¸

“

$

’

&

’

%

p´2, 0q if i “ j,

p´1, 0q if hi,j “ 1,

p0, 0q otherwise.

and

deg

˜

i

¨ ¨ ¨
i

¸

“
`

´2, 1
˘

,

where the second grading is the λ-grading, which we write λp‚q. Note that the λ-grading is (up
to a sign) half the grading degλ in [16] where we take the degλi’s equal. The defining relations
ofRpνq are homogeneous with respect to this bigrading.

Remark 3.3. The algebraRpνq contains the KLR algebra Rpνq as a subalgebra concentrated in
λ-degree zero.

For i “ i1 ¨ ¨ ¨ id define the idempotent

1i “

i1 i2

¨ ¨ ¨

id

.

Let Seqpνq be the set of all ordered sequences i “ i1i2 . . . id with each ik P I and i appearing
νi times in the sequence. For i, j P Seqpνq the idempotents 1i and 1j are orthogonal iff i ‰ j,
we have 1Rpνq “

ř

iPSeqpνq 1i, where 1Rpνq denotes the identity element inRpνq, and

Rpνq “
à

j,iPSeqpνq

1jRpνq1i.

Finally, the algebraR is defined as

R “
à

νPNrIs
Rpνq.

3.2. Polynomial action ofRpνq. We fix ν P NrIs with |ν| “ d. For each i P I let

PRi “ kry1,i, . . . , yνi,is b
Ź‚
xω1,i, . . . , ωνi,iy.

Each PRi is a bigraded superring with degpyr,iq “ p2, 0q and degpωr,iq “ p´2r, 2q, which is
isomorphic to the superring R (with the right number of variables) defined in [15, §2.1]. The
symmetric group Sνi acts on PRi by

ωpyr,iq “ yωprq,j,

skpωr,iq “ ωr,i ` δk,rpyr,i ´ yr`1,iqωr`1,i,

for ω P Sνi and sk P Sνi a simple transposition.
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Set PRI “
Â

iPI PRi where b is the supertensor product, and define

PRν “
à

iPSeqpνq

PRI1i,

where 1i is a central idempotent.
It is sometimes convenient to use a different notation for the elements of PRν . For each

1 ď r ď |ν|, denote by Yr the element of PRν determined by the condition that for each
i P Seqpνq we have Yr1i “ yr1,ir1i where r1 is such that the element ir appears r1 times among
i1, i2, . . . , ir. Similarly, we consider the element Ωr P PRν given by Ωr1i “ ωr1,ir1i, where r1 is
defined in the same way as above. It is clear from the definition that all Yr commute and all Ωr

anti-commute. Then we have PRν “
À

iPSeqpνq krY1, . . . , Y|ν|s b
Ź‚
xΩ1, . . . ,Ω|ν|y1i.

We extend the action of Sνi on PRi to an action of S|ν| on PRν where

sk : PRI1i Ñ PRI1ski,

sends

yp,i1i ÞÑ

$

’

&

’

%

yp`1,i1ski if ik “ ik`1 “ i and p “ #ts ď k|is “ iu,
yp´1,i1ski if ik “ ik`1 “ i and p “ 1`#ts ď k|is “ iu,
yp,i1ski otherwise,

and

ωp,i1i ÞÑ

#

pωp,i ` pyp,i ´ yp`1,iqωp`1,iq 1ski if ik “ ik`1 “ i and p “ #ts ď k|is “ iu,
ωp,i1ski otherwise,

with p P t1, . . . , νiu and i “ i1 . . . id.
For the comfort of the reader we also give the formulas of the S|ν|-action on PRν is terms of

Y ’s and Ω’s:
sk : PRI1i Ñ PRI1ski,

sends

Yp1i ÞÑ

$

’

&

’

%

Yk`11ski if p “ k,

Yk1ski if p “ k ` 1,

Yp1ski otherwise,

and

Ωp1i ÞÑ

$

’

’

’

&

’

’

’

%

pΩk ` pYk ´ Yk`1qΩk`1q 1ski if p “ k and ik “ ik`1 ,

Ωk`11ski if p “ k and ik ‰ ik`1 ,

Ωk1ski if p “ k ` 1 and ik ‰ ik`1 ,

Ωp1ski otherwise.

For each i, j P I , i ‰ j, we consider the polynomial Pijpu, vq “ pu´vqhi,j . Note that we have
Qi,jpu, vq “ Pi,jpu, vqPj,ipv, uq.
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In the sequel it is useful to have an algebraic presentation ofRpνq as in [2]. We set

i1

¨ ¨ ¨

ir

• ¨ ¨ ¨

id

“ Yr1i,

i1 ir ir`1 id

¨ ¨ ¨ ¨ ¨ ¨ “ τr1i,

i1

i1

i2

¨ ¨ ¨

id

“ Ω1i.

We declare that a P ekRpνqej acts as zero on PRI1i whenever j ‰ i. Otherwise

Yr1i ÞÝÑ f1i ÞÑ Yrf1i,

Ω1i ÞÝÑ f1i ÞÑ Ω1f1i,

and

τr1i ÞÝÑ f1i ÞÑ

$

’

&

’

%

f1i ´ srpf1iq

Yr ´ Yr`1

if ir “ ir`1,

Pir,ir`1pYr, Yr`1qsrpf1iq if ir ‰ ir`1.

The following is Proposition 3.8 and Theorem 3.15 in [16].

Proposition 3.4. The rules above define a faithful action ofRpνq on PRν .

We now give the basis of Rpνq, as constructed in [16, §3.3]. Fix i, j P Seqpνq. We write
jSi Ď S|ν| for the subset of permutations w satisfying wpiq “ j.

Recall [16, §3.3] that a reduced expression srk ¨ ¨ ¨ sr1 ofw P S|ν| is left-adjusted if r1`¨ ¨ ¨`rk
is minimal among all reduced expressions for w. For each w P S|ν| we fix a left-adjusted
presentation w “ srk ¨ ¨ ¨ sr1 of w.

For each r P I “ t1, ¨ ¨ ¨ , du and w as above let rm, m P t1, . . . , ku be the index such that

srm ¨ ¨ ¨ sr1prq ď srj ¨ ¨ ¨ sr1prq @j P t1, . . . , ku,

and

srm ¨ ¨ ¨ sr1prq ă srm´1 ¨ ¨ ¨ sr1prq if m ą 1,

i.e., m is the minimal index such that srm ¨ ¨ ¨ sr1prq is minimal.
Define Ωprq “ τrm´1 ¨ ¨ ¨ τ2τ1Ωτ1τ2 ¨ ¨ ¨ τrm´1 and put

τwprq “ τrk ¨ ¨ ¨ τrm`1Ω
prqτrm ¨ ¨ ¨ τr11i P 1jRpνq1i.

Now, for each I Ď I, define τwpIq by simultaneously placing all the Ωprq for r P I following
the rule above. For example, for I “ tr, r1u, with srm ¨ ¨ ¨ sr1prq and srm1 ¨ ¨ ¨ sr1pr

1q minimal with
m ă m1, we have

τwptr, r
1
uq “ τrk ¨ ¨ ¨ τrm1`1

Ωpr
1qτrm1 ¨ ¨ ¨ τrm`1Ω

prqτrm ¨ ¨ ¨ τr1 .

The following is Theorem 3.15 in [16].
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Theorem 3.5. The set

tτwpIqY
n1

1 ¨ ¨ ¨Y
n|ν|
|ν| | ω P jSi, I Ď I, n P N|ν|u

is a basis of the k-vector space 1jRpνq1i.

3.3. Completion ofRpνq. For each i P I consider the polynomial ring PolRi “ kry1,i, . . . , yνi,is.
Set also PolRI “

Â

iPI PolRi. We will consider PolRI as a subalgebra of Rpνq. Let m be the
ideal of PolRI generated by all yr,i, i P I , 1 ď r ď νi.

Definition 3.6. Denote by pRpνq the completion of the algebra Rpνq at the sequence of ideals
RpνqmjRpνq.

Now we construct a representation yPRν of pRpνq, which is a completion of the representation
PRI ofRpνq. For i P I , set

zPolRi “ krry1,i, . . . , yνi,iss and yPRi “ krry1,i, . . . , yνi,iss b
Ź‚
xω1,i, . . . , ωνi,iy.

Set also
zPolRI “

â

iPI

zPolRi, zPolRν “
à

iPSeqpνq

zPolRI1i,

and
yPRI “

â

iPI

yPRi, yPRν “
à

iPSeqpνq

yPRI1i.

The S|ν|-action on PRν extends obviously to an S|ν|-action on yPRν . Moreover, the action of
Rpνq on PRν yields an action of pRpνq on yPRν .

Lemma 3.7. paq The algebra pRpνq is free over zPolRν with basis

tτwpIq| w P jSi, I Ď I, i, j P Seqpνqu.

pbq The representation yPRν of pRpνq is fully faithful.

Proof. It is clear that the set in the statement generate the zPolRν-module pRpνq. Then this set
forms a basis because the elements τwpIq act on yPRν by linearly independent (over zPolRν)
operators. This proves paq. Then pbq is also true because a basis of pRpνq acts on yPRν by linearly
independent operators. �

3.4. Cyclotomic KLR algebras. Let Λ be a dominant integral weight of type Γ (i.e., for each
vertex i of Γ we fix a nonnegative integer Λi). Let IΛ be the 2-sided ideal of Rpνq generated by
Y

Λi1
1 1i with i P Seqpνq. In terms of diagrams, this is the 2-sided ideal generated by all diagrams

of the form

i1

Λi1

i2

¨ ¨ ¨

i|ν|

,

with i P Seqpνq.

Definition 3.8. The cyclotomic KLR algebra is the quotient RΛpνq “ Rpνq{IΛ.



DG-enhanced Hecke and KLR algebras 19

3.5. DG-enhancements ofRpνq. We turnRpνq into a DG-algebra by introducing a differential
dΛ given by

dΛp1iq “ dΛpYrq “ dΛpτkq “ 0,

dΛpΩ1iq “ p´Y1q
Λi11i,

together with the Leibniz rule dΛpabq “ dΛpaqb ` p´1qλpaqdΛpbq. This algebra is differential
graded w.r.t. the homological degree given by counting the number of floating dots.

The following is [16, Proposition 4.14].

Proposition 3.9. The DG-algebra pRpνq, dΛq is quasi-isomorphic to the cyclotomic KLR algebra
RΛpνq.

4. THE ISOMORPHISM THEOREMS

4.1. A generalization of the Brundan–Kleshchev–Rouquier isomorphisms. Choose I , Γ and
ν as in Section 3. Assume additionally that for i, j P I , i ‰ j, there is at most one arrow from i
to j.

Let PolRI be as in Section 3.3. Set PolRν “
À

iPSeqpνq PolRI 1i. Let PAν be a PolRν-
algebra (the most interesting examples for us are PAν “ PRν and PAν “ PolRν). Set also
yPAν “ zPolRν bPolRν PAν .

Fix an action of S|ν| on yPAν (by ring automorphisms) that extends the obvious S|ν|-action
on zPolRν . Assume additionally that for each simple generator sr of S|ν|, each i P Seqpνq such
that ir “ ir`1 and each f P yPAν , we have pf ´ srpfqq1i P pYr ´ Yr`1qyPAν . In particular, this
implies that the Demazure operator 1´sr

Yr´Yr`1
is well-defined on yPAν1i.

Fix a subalgebra yPA
1

ν of yPAν . Assume now that we have an algebra pApνq that has a faithful
representation on yPAν . Assume that the action of pApνq on yPAν is generated by multiplication
by elements of yPA

1

ν and by the operators τr, r P t1, 2, . . . , |ν| ´ 1u given by
‚ if ir “ ir`1, then τr acts on f1i by a (nonzero scalar) multiple of the Demazure operator,

i.e., τr sends f1i to
pf ´ srpfqq1i

Yr ´ Yr`1

,

‚ ir ÞÑ ir`1, then τr sends f1i to a (nonzero scalar) multiple of pYr ´ Yr`1qsrpf1iq,
‚ in other cases, the element τr sends f1i to a (nonzero scalar) multiple of srpf1iq.

We are going to show that in some situations, an algebra satisfying some list of properties is
automatically isomorphic to pApνq.

4.1.1. Degenerate version. Fix Q “ pQ1, . . . , Q`q P k`, as in Section 2.2.1. Now we fix some
special choice of Γ and ν. Let I be a subset of k that contains Q1, . . . , Q`. We construct the
quiver Γ with the vertex set I using the following rule: for i, j P I we have an edge iÑ j if and
only if we have j ` 1 “ i. Note that this convention for Γ is opposite to [20]. Let d be a positive
integer. Fix a P Id (see Section 2.2.4). Finally we consider ν such that νi is the multiplicity of i
in a. In particular, we see that |ν| “ d is the length of a.
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For each i P I denote by Λi the multiplicity of i in pQ1, . . . , Qrq. In particular, this implies
ś`

r“1pX1 ´Qrq “
ś

iPIpX1 ´ iq
Λi .

As above, we set Pold “ krX1, ¨ ¨ ¨ , Xds. Let PBd be an Pold-algebra. (The most interesting
examples are PBd “ Pd and PBd “ Pold.) Set xPola “

À

bPSda
krrX1 ´ b1, . . . , Xd ´ bdss1b

and yPBa “
À

bPSda
pkrrX1 ´ b1, . . . , Xd ´ bdss bPold PBdq1b. Then yPBa is a xPola-algebra.

Fix an action of Sd on PBd (by ring automorphisms) that extends the obvious Sd-action
on Pold. Assume additionally that for each simple generator sr of Sd and each f P PBd, we
have f ´ srpfq Ď pXr ´ Xr`1qPBd. In particular, this implies that the Demazure operator
Br “

1´sr
Xr´Xr`1

is well-defined on PBd. The action of Sd on Pold and PBd can be obviously

extended to an action on xPola and yPBa.
Fix a subalgebra yPB

1

a of yPBa. Now, assume that there is an algebra pB̄a that has a faith-
ful representation in yPBa that is generated by multiplication by elements of yPB

1

a and by the
operators

Tr “ sr ´ Br.

By construction, we have the isomorphism

(28) zPolRν »
xPola, Yr1i ÞÑ pXr ´ irq1i.

Moreover, this isomorphism commutes with the action of Sd. Assume that we can extend the
isomorphism zPolRν »

xPola in (28) to an Sd-invariant isomorphism yPAν » yPBa. Moreover,
we also assume that this extension restricts to an isomorphism yRA

1

ν »
yPB

1

a. Then we have the
following.

Proposition 4.1. There is an algebra isomorphism pApνq » pB̄a that intertwines the representation
in yPAν » yPBa.

Proof. We only have to show that we can write the operator τr in terms of Tr (and multiplication
by elements of yPA

1

ν »
yPB

1

a) and vice versa.
First, we express τr in terms of Tr. We can rewrite the operator Tr in the following way

Tr “ 1`
Xr ´Xr`1 ` 1

Xr ´Xr`1

psr ´ 1q.

Fix i P Seqpνq “ Sda. Assume ir “ ir`1. Then the action of the operator pXr ´Xr`1 ` 1q´11i

on yPAν » yPBa is well-defined. The element ´pXr ´Xr`1 ` 1q´1pTr ´ 1q1i acts on yPBa by
the same operator as τr1i. Now, assume that we have ir ‰ ir`1. If additionally we have no arrow
ir Ñ ir`1, we can write sr1i “ p

Xr´Xr`1

Xr´Xr`1`1
pTr´1q`1q1i. (We need the condition ir`1`1 ‰ ir

to be able to divide by pXr ´ Xr`1 ` 1q here.) The operator sr1i acts on yPAν » yPBa in the
same way as τr1i. Finally, if we have ir Ñ ir`1, then the operator pXr ´ Xr`1 ` 1qsr1i “

rpXr ´Xr`1qpTr ´ 1q ` pXr ´Xr`1 ` 1qs1i acts on yPBa in the same way as τr1i.
Now, we express Tr in terms of τr. The operator Tr1i acts by r1` pXr´Xr`1`1q

Xr´Xr`1
psr ´ 1qs1i. In

the case ir ‰ ir`1, we are allowed to divide by Xr´Xr`1 here. If we additionally have no arrow
ir Ñ ir`1, then the element sr1i acts in the same way as τr1i. If we have an arrow ir Ñ ir`1,
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then pXr ´Xr`1 ` 1qsr1i acts in the same way as τr1i. It remains to treat the case ir “ ir`1. In
this case, the element sr´1

Xr´Xr`1
acts in the same way as ´τr1i.

�

4.1.2. q-version. Fix q P k, q ‰ 0, 1. Fix also Q “ pQ1, . . . , Q`q P pkˆq`, as in Section 2.3.1.
Now we fix some special choice of Γ and ν. Let I be a subset of kˆ that contains Q1, . . . , Q`.
We construct the quiver Γ with the vertex set I using the following rule: for i, j P I we have an
edge iÑ j if and only if we have qj “ i. Note that this convention for Γ is opposite to [12] and
[20]. Fix a P Id (see Section 2.3.4). Finally we consider ν such that νi is the multiplicity of i in
a. In particular, we see that |ν| “ d is the length of a. As in the degenerate case, for each i P I
we denote by Λi the multiplicity of i in pQ1, . . . , Qrq.

Set Polld “ krX˘1
1 , ¨ ¨ ¨ , X˘1

d s. Let PBd be a Polld-algebra. (The most interesting examples
are PBd “ Pd and PBd “ Polld.) Set xPola “

À

bPSda
krrX1 ´ b1, . . . , Xd ´ bdss1b and

yPBa “
À

bPSda
pkrrX1 ´ b1, . . . , Xd ´ bdss bPolld PBdq1b. Then yPBa is a xPola-algebra.

Fix an action of Sd on PBd (by ring automorphisms) that extends the obvious Sd-action on
Poll. Assume additionally that for each simple generator sr of Sd and each f P PBd, we have
f ´ srpfq Ď pXr ´Xr`1qPld. In particular, this implies that the Demazure operator 1´sr

Xr´Xr`1
is

well-defined on Pld. The action of Sd on Polld and Pld can be obviously extended to an action
on yPolla and yPBa.

Fix a subalgebra yPB
1

a of yPBa. Now, assume that there is an algebra pBa that has a faith-
ful representation in yPBa that is generated by multiplication by elements of yPB

1

a and by the
operators

Tr “ q `
pqXr ´Xr`1q

Xr ´Xr`1

psr ´ 1q.

By construction, we have the isomorphism

(29) zPolRν »
xPola, Yr1i ÞÑ i´1

r pXr ´ irq1i.

Moreover, this isomorphism commutes with the action of Sd. Assume that we can extend the
isomorphism zPolRν »

xPola in (29) to an Sd-invariant isomorphism yPAν » yPBa. Moreover,
assume also that this extension restricts to an isomorphism yPA

1

ν »
yPB

1

a. The we have the
following.

Proposition 4.2. There is an algebra isomorphism pApνq » pBa that intertwines the representation
in yPAν » yPBa.

Proof. We only have to show that we can write the operator τr in terms of Tr (and multiplication
by elements of yPA

1

ν »
yPB

1

a) and vice versa.
First, we express τr in terms of Tr. Fix i P Seqpνq “ Sda. Assume ir “ ir`1. Then

the action of the operator pqXr ´ Xr`1q
´11i on yPAν » yPBa is well-defined. The element

´pqXr´Xr`1q
´1pTr´qq1i acts on yPBa by the same operator as τr1i. Now, assume that we have

ir ‰ ir`1. If moreover we have no arrow ir Ñ ir`1, we can write sr1i “ p
Xr´Xr`1

qXr´Xr`1
pTr´qq`1q1i

(we need the condition qir`1 ‰ ir to be able to divide by pqXr ´Xr`1q here). The operator sr1i
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acts on yPAν » yPBa in the same way as τr1i. Finally, if we have ir Ñ ir`1, then the operator
pqXr ´Xr`1qsr1i “ rpXr ´Xr`1qpTr ´ qq ` pqXr ´Xr`1qs1i acts on yPBa in the same way as
τr1i up to scalar.

Now, we express Tr in terms of τr. The operator Tr1i acts by rq ` pqXr´Xr`1q

Xr´Xr`1
psr ´ 1qs1i. In

the case ir ‰ ir`1, we are allowed to divide by Xr´Xr`1 here. If we additionally have no arrow
ir Ñ ir`1, then the element sr1i acts in the same way as τr1i. If we have an arrow ir Ñ ir`1,
then pqXr ´ Xr`1qsr1i acts up to scalar in the same way as τr1i. It remains to treat the case
ir “ ir`1. In this case, the element sr´1

Xr´Xr`1
acts in the same way as ´τr1i. �

4.2. The DG-enhanced isomorphism theorem: the degenerate version. In Proposition 4.1
we proved that we have an isomorphism of algebras pApνq » pB̄a for some algebras pApνq and pB̄a
that satisfy some list of properties. Let us show that we can apply Proposition 4.2 to the special
situation pApνq “ pRpνq and pB̄a “ xH̄a. (We assume that ν and a are related as in Section 4.1.1.)
In this case we can take yPAν “ yPRν and yPBa “ pPa. We fix the following yPA

1

ν Ď
yPAν . The

subalgebra yPA
1

ν is generated by zPolRν and Ω1. Similarly, we construct a subalgebra yPB
1

a Ď

yPBa. The subalgebra yPB
1

a is generated by xPola and θ1.
To be able to apply Proposition 4.1, we only have to construct a Sd-invariant isomorphism

α : pPa » yPRν extending the isomorphism (28) such that α restricts to an isomorphism yPB
1

a »

yPA
1

ν . First, we consider the following homomorphism α1 : xPola ÑyPRν .

1i ÞÑ 1i,
Xr1i ÞÑ pYr ` irq1i.

This homomorphism is obviously Sd-invariant.

Remark 4.3. For each 1 ď r ă d, the Demazure operator Br “ 1´sr
Xr´Xr`1

is well-defined on pPa.

Now, using the isomorphism xPola » zPolRν , we can consider it as an operator on yPRν . The
action of Br on yPRν can be given explicitly by

Brpf1iq “
f1i ´ srpfq1srpiq

Yr ´ Yr`1 ` ir ´ ir`1

, f P krrY1, . . . , Ydss.

Attention, the operator Br on yPRν should not be confused with 1´sr
Yr´Yr`1

, which is not well-
defined.

The Demazure operators Br on yPRν satisfy the relation (3), (4), (5).

Now, we want to extend α1 to a homomorphism α : pPa »yPRν . To do this, we have to choose
the images of θ1, θ2, . . . , θd in yPRν such that this images anti-commute with each other and
commute with the image of xPola (i.e., with zPolRν). Moreover, we want to make this choice in
such a way that α is bijective and Sd-invariant.

First, we set

(30) αpθ11iq “

ˆ

ź

iPI,i‰i1

pY1 ` i1 ´ iq
Λi

˙

p´1qΛi1Ω11i.
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This choice is motivated by the fact that we want α to be compatible with the DG-structure. For
r ą 1, we construct the images of other θr inductively in the following way

(31) αpθr1iq “ ´Br´1pαpθr´1qq1i “
sr´1pαpθr´1qq ´ αpθr´1q

Yr´1 ´ Yr ` ir´1 ´ ir
1i.

This choice is motivated by the fact that we want α to be Sd-invariant and we have that θr “
´Br´1pθr´1q. Equation (31) implies immediately

(32) αpsrpθrqq “ srpαpθrqq.

Lemma 4.4. The homomorphism α : pPa Ñ yPRν given by (30) and (31) is an isomorphism and
it is Sd-invariant.

Proof. Since the homomorphism α1 : xPola Ñ yPRν is obviously Sd-invariant, to show the Sd-
invariance of α, we have to show

(33) skpαpθr1iqq “ αpskpθr1iqq

for each i P Iν , each r P r1; ds and each k P r1; d ´ 1s. We induct on r. First, we prove (33) for
r “ 1. If k ą 1 and r “ 1, then (33) is obvious because θ1 and αpθ1q are sk-invariant. The case
k “ r “ 1 follows from (32).

Now, assume that r ą 1 and that (33) is already proved for smaller values of r. The case k “ r
follows from (32).

For k ‰ r, the element θr is sk-invariant. So (33) is equivalent to the sk-invariance of αpθrq.
Assume that k ą r or k ă r ´ 2. This assumption implies that sk commutes with sr´1.

Moreover, we already know by induction hypothesis that αpθr´1q is sk-invariant. So, the sk-
invariance of αpθr´1q together with (31) implies the sk-invariance of αpθrq.

Now, assume k “ r ´ 1. In this case the sr´1-invariance of αpθrq is obvious from (31).
Finally, assume k “ r ´ 2. To prove the sr´2-invariance of αpθrq, we have to show that

Br´2pαpθrqq “ 0. We have

Br´2pαpθrqq “ Br´2Br´1Br´2pαpθr´2qq “ Br´1Br´2Br´1pαpθr´2qq.

This is equal to zero because Br´1pαpθr´2qq “ 0 by the sr´1-invariance of αpθr´2q.
This completes the proof of the Sd-invariance of α.
Now, let us prove that α is an isomorphism. It is easy to see from (30) and (31) that αpθr1iq is

of the form

(34) αpθr1iq “

r
ÿ

t“1

PtΩt1i,

where Pt P yPRν1i for r P t1, 2, . . . , ru and Pr is invertible in yPRν1i. Then the bijectivity is
clear from (34) and from the fact that α restricts to a bijection xPola » zPolRν . �

Note that (30) implies that the isomorphism α identifies the subalgebra yPA
1

ν of yPAν with the
subalgebra yPB

1

a of yPBa.
This show that Proposition 4.1 is applicable. We get the following theorem.
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Theorem 4.5. There is an isomorphism of DG-algebras p pRpνq, dΛq » p
xH̄a, BQq.

Proof. The isomorphism of algebras follows immediately from Proposition 4.1. We only have to
check the DG-invariance.

Denote by γ the isomorphism of algebras γ : xH̄a Ñ pRpνq. It is obvious that γ preserves the
λ-grading. Let us check that for each h P xH̄a, we have

(35) γpBQphqq “ dΛpγphqq.

Moreover, if (35) is true for some h “ h1, h “ h2, then it is automatically true for h “ h1h2. So,
it is enough to chech (35) on generators.

The algebra xH̄ is generated by elements of λ-degree zero and by θ.
So, it is enough to check (35) for h “ θ. This follows directly from (30). (In fact, this is

exactly the reason why we define (30) in such a way.) �

Remark 4.6. We could also take yPAν “yPA
1

ν “
zPolRν and yPBa “ yPB

1

a “
xPola. Then we get

(the completion version of) the usual Brundan-Kleshchev-Rouquier isomorphism.

4.3. The DG-enhanced isomorphism theorem: the q-version. In Proposition 4.1 we proved
that we have an isomorphism of algebras pApνq » pBa for some algebras pApνq and pBa that satisfy
some list of properties. Let us show that we can apply Proposition 4.2 to the special situation
pApνq “ pRpνq and pBa “ pHa. (We assume that ν and a are related as in Section 4.1.2.) In this

case we can take yPAν “yPRν and yPBa “ pPa.
To be able to apply Proposition 4.2, we only have to construct a Sd-invariant isomorphism

α : yPRν » pPa extending the isomorphism (29) such that α restricts to an isomorphism yPA
1

ν »

yPB
1

a (we choose the subalgebras yPA
1

ν Ď
yPAν and yPB

1

a Ď
yPBa in the same way as in Sec-

tion 4.2). This can be done in the same way as in the degenerate case. However, some formulas
in this case are different from the previous section because of the difference between (28) and
(29). Here, we only give the modified formulas. The proofs are the same as in the previous
section.

We consider the Sd-invariant homomorphism α1 : xPola ÑyPRν .

1i ÞÑ 1i,
Xr1i ÞÑ irpYr ` 1q1i.

Now, we extend α1 to a homomorphism α : pPa »yPRν in the following way.

(36) αpθ11iq “

˜

ź

iPI,i‰i1

pi1pY1 ` 1q ´ iqΛi

¸

p´i1q
Λi1Ω11i.

(37) αpθr1iq “ ´Br´1pαpθr´1qq1i “
sr´1pαpθr´1qq ´ αpθr´1q

ir´1pYr´1 ` 1q ´ irpYr ` 1q
1i.

As in the previous section, we can show that α is a Sd-invariant isomorpism.
We get the following theorem.
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Theorem 4.7. There is an isomorphism of DG-algebras p pRpνq, dΛq » p pHa, BQq.

Remark 4.8. We could also take yPAν “yPA
1

ν “
zPolRν and yPBa “ yPB

1

a “
xPola. Then we get

(the completion version of) the usual Brundan-Kleshchev-Rouquier isomorphism.

4.4. The homology of H̄d andHd. We now prove Proposition 2.12 and Proposition 2.23.

Proposition 4.9. The DG-algebras p pRpνq, dΛq and pRΛpνq, 0q are quasi-isomorphic.

Proof. It is proved in [16, Proposition 4.14] that the DG-algebras pRpνq, dΛq and pRΛpνq, 0q are
quasi-isomorphic. The same proof with minor modifications applies to our case. (We just have
to replace polynomials by power series.) �

Corollary 4.10. There are quasi-isomorphisms pxH̄a, BQq » pH̄
Q
a , 0q and p pHa, BQq » pH

Q
a , 0q.

Proof. Proposition 4.9, Theorem 4.5 and the usual Brundan-Kleshchev-Rouquier isomorphism
imply

pxH̄a, BQq » p pRpνq, dΛq » pR
Λ
pνq, 0q » pH̄Q

a , 0q.

This proofs the first part. The second part is similar. �

Proof of Proposition 2.12 and Proposition 2.23. It is obvious that the homology group of pH̄d, BQq

in degree zero is H̄Q
d . We only have to check that the homology groups in other degrees are zero.

Assume, that for some i ą 0, we have H ipH̄d, BQq ‰ 0 and consider it as a Pold-module. The
annihilator of this Pold-module is contained in some maximal idealM Ď Pold. The idealM is
of the formM “ pX1 ´ a1, . . . , Xd ´ adq for some a “ pa1, . . . , adq P kd.

Then the completion of H ipH̄d, BQq ‰ 0 with respect to the idealM is nonzero. This leads to
a contradiction because H ipxH̄a, BQq “ 0 together with Künneth formula implies

krrX1 ´ a1, . . . , Xd ´ adss bPold H
i
pH̄d, BQq “ 0.

Proposition 2.23 is proved in the same way. �
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