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Dynamic pollution-adjusted inefficiency under the ty-production of bad outputs

Abstract

This article extends the by-production model to themamic context of adjustment costs
associated with investment. The empirical applocatiocuses on panel data of French suckler
cow farms over the period 1978-2014, consideringgons of greenhouse gases as bad output.
The paper estimates input and output-specific tieahrinefficiency scores in the dynamic
context and compares them with efficiency meastraa the conventional static context. Our
results reveal significant differences betweenfideihcy scores derived from the static and the
dynamic frameworks. For all variables except meatpction (the good output), the inefficiency

score is lower in the dynamic context than in tia#is context.

Key words: data envelopment analysis; by-production; adjustneests; dynamic inefficiency;
French suckler cows



1-Introduction

Productive entities operate in competitive marlegtd the production decisions they make today
will inevitably affect future outcomes. Productientities are continuously confronted with
changes in policies, new prices and new technadodM this requires Decision Making Units
(DMUs) which are able to adjust to changes in the@ivironment (Gardebroek, 2004). An
important feature of these adjustments is mateadlithrough investment strategies aiming at
firms’ structural change. Previous literature pedhtout that adjustment costs associated with
investments in quasi-fixed inputs, i.e. inputs tbah be stored or accumulated like capital,
prevent firms from making instantaneous adjustmé@atoper and Haltiwanger, 2006; Eisner et
al., 1963; Gould, 1968; Lucas, 1967). Silva anda@ieu (2003) refer to this situation as the
presence of “sluggish” adjustments in some produactactors within a productive entity. The
presence of quasi-fixed inputs causes productiansiaés to be linked intertemporally. The
foundation of dynamic economic analysis is therugoed on this distinction between variable
and quasi-fixed inputs which also implies a sepamabetween short- and long-run decisions
(Caputo, 2005; Stefanou, 2009).

The literature on efficiency and productivity args/has predominantly evolved around the static
context, which assumes that producers instantaheadgist their inputs and outputs (as opposed
to gradually) (Nemoto and Goto, 2003), or has caegbatatic technologies over time (Fare and
Grosskopf, 1997) Both approaches ignore intertemporal linkages/éen production decisions.
In the neoclassic theory, the adjustment cost malel well-known approach to cope with
intertemporally linked decision in the presencejaédsi-fixed inputs. The logic behind this idea is
that investments in capital inputs generate sonmesadent costs. These costs can be internal
(learning effects or retraining, reorganization pfoduction processes, installation costs,
administrative costs, search costs) or externab(itplete marketé)and are assumed to increase

with the level of investment. The presence of ‘sasftadjustment can explain why firms tend to

! As presented by these authors the time compan$atatic technologies can be based on the estmati the

Malmquist productivity index.

2 In this work, we assume that adjustment costsraeenal to the production system. However, theeftgyments in

this article can be easily extended to the presefhegternal adjustment costs.



conduct investments in smaller proportions, spreadr time, rather than to adjust to new
conditions instantaneously’ (Oude Lansink et alO0R p359). Generally these costs are
incorporated in the producer objective function @s intertemporal value function: cost
minimization, revenue and profit maximization) thgh (unobserved) adjustment costs (Kapelko
et al., 2014). In the presence of adjustment cwstguasi-fixed factors of production, static
efficiency measures do not correctly assess tn@diperformance (Nick and Wetzel, 2016). In
the same vein, according to Nemoto and Goto (1888)in the presence of quasi-fixed inputs, a
static measure of efficiency will lead to biasedineations where allocative efficiency is

overestimated.

Sustainable production behavior is crucial to owere environmental challenges in a situation of
competition for scarce resources. Efforts must Ipelettaken by firms to internalize the
production of environmentally detrimental outputisielr can no longer be ignored by managers.
In the same line, the International Resource Paagrecommended a two-way strategy based on
the concept of decoupling: first ‘using less resesrper unit of economic output’ and second
‘reducing the environmental impact of any resourttet are used...” (Fischer-Kowalski and
Swilling, 2011 p xiii). The double objective of emmmic and environmental efficiency associated
with this new challenge has then led to the prdposiof eco-efficiency or pollution-adjusted
efficiency tools for DMU benchmarking. In the nongmetric framework of Data Envelopment
Analysis (DEA), many approaches have been proptusadsess the technical and environmental
efficiency of production units (Fare et al., 2008ilu and Veeman, 2001; Sahoo et al., 2011).
However, as underlined and discussed in Dakpo .e{280l6), most developments have not
properly modelled the inclusion of undesirable otgpn the production technology. Only more
recently, Murty et al. (2012) introduced the cortogfpthe by-production model and showed that
this approach offers more flexibility in represaetithe production of undesirable outputs. In the
DEA framework, Dakpo (2015) has extended the byipetion approach of Murty et al. (2012)
to overcome the independence assumption maintéyéae former in their formulations. To the
best of the authors’ knowledge, no efforts havenb®ade to date to model pollution-adjusted

efficiency in the dynamic context. A better undansting of the role of undesirable outputs in the

% For more details on the literature on adjustmersts models, one can also refer to Abel et al. §)%;98pstein
(1981); Gardebroek and Oude Lansink (2004); Luh @redanou (1993); Luh and Stefanou (1996); Oudesingn
and Stefanou (1997); Treadway (1969, 1970).



dynamic production technology could provide moreights into the mechanisms behind

pollution-adjusted efficiency to policy makers asttier stakeholders.

In light of the foregoing, the aim of this article to propose a dynamic pollution-adjusted
efficiency measure which extends the approach oftyMet al. (2012) and Dakpo (2015) to the
dynamic context. For comparison purposes, dynastbrtical pollution-adjusted efficiency is
computed and analyzed along with a conventionaicstachnical pollution-adjusted efficiency
measure. The by-production model (Dakpo, 2015; drmrs2009; Murty et al., 2012) is based on
the idea that a pollution-generating technologyncarbe represented by a single reduced form
and thus requires the use of different sub-teclyies i.e. one for the production of good outputs
and another for the generation of bad outputs. Béveefit of this approach over other existing
models (such as the ones that treat pollution pstior output under the weak disposability
assumption) is the explicit representation of thféeent processes involved in a production
system. Moreover, the by-production approach prewithe right trade-offs between the different
variables involved. The empirical application foesi®n panel data of French suckler cow farms
over the period 1978-2014. The bad output congidesethe total greenhouse gas emission

associated with livestock breeding expressed inaradioxide equivalent& 0, — eq).

2-Dynamic aspects in pollution-generating technolags

Let v(t) represent a vector of variable inputs € ]R{i), k(t) a vector of quasi-fixed inputs
(k € RY), i(t) a vector of gross investmertise R%)4, f(t) a vector of fixed input§f € R3),
y(t) a vector of intended outpufy € Rf), b(t) the vector of unintended outputs € RY), N

the number of DMUs, and the time variable. The representation of pollui@merating
technology here is based on the by-production m¢aekpo, 2015; Fgrsund, 2009; Murty et al.,
2012). The approach adopted in this article iskthgproduction approach extended with some
dependence constraints developed in Dakpo (20#pwing Murty et al. (2012), inputs must

be separated into material inputs which generatatfom and non-materials inputs which do not.

* Investment can be zero for some of the quasi-firpdts.



In this work, fixed inputs(f € R$) are assumed to be immaterial i.e. they do not rgéme
pollution. The dynamic production technologfyt) can be represented by the intersection of two

dynamic sub-technologies, one for good outputsthadecond for bad outputs:

Y(t) = ¥, (t) n¥p(8) (1)

where

W, (t) = { (v(t), i(t),y(t)): (v(t), i(t)) can produce y(t) given k(t) and f(t)} (2)

and

W, (t) = {(v(t), i(t), b(t)): (v(t), i(t)) can generate b(t) given k(t) and f(t)} 3)

Properties o, (t) (Silva et al., 2015; Silva and Oude Lansink, 2(8i8;a and Stefanou, 2003)

G1 No free lunch and inactivity

G2 Input essentiality and attainability
G3  Non-emptiness and closeness
G4  Boundedness

G5  Positive monotonicity i (t): if v(t) € W, (t) andv'(t) = v(t) thenv'(t) € ¥, (t)
G6  Negative monotonicity in(t): if i(t) € W, (t) andi'(t) < i(t) theni'(t) € W, (¢)5

G7  Free disposability of good outputsyift) € W, (t) andy’(t) < y(t) theny'(t) € ¥, (t)

® PropertyG6 along with the convexity iG9 implies the presence of adjustment costs.



G8  Reverse nestedness kft) and f(t): if k(t) € ¥,(t) and k'(t) = k(t) thenk'(t) €
W, (t). Similarly, if f(t) € W, (t) andf’'(t) = f(t) thenf'(t) € W, (t)

G9  Convexity in(v(t),i(t), f(£), y(©))

Given these different properties and assuming blrieeturns to scale (VR8)he good output

sub-technology is defined under DEA as:

N
Wy(0) = (00,10, k(®), F(D, (O, : 3O < Y 30,
n=1
N N
W2 ) wlu®, O ) ulfi0 @
n=1 n=1

N N
io() = ko (D) < ) p (in(t) = 8ku(®), ) 1l =1,vn,
(w(t),i(t), k(t), f(t),y(t),b(t)) € Ri+L+L+S+Q+R}

where § is the depreciation rate vector associated withsgfixed inputk, thereforei,(t) —

&k, (t) represents the net investments.

Properties ofV;, (t)

The main property of pollution-generating technadsgs the costly disposability of pollution as
expressed in Murty et al. (2012). This property respes the fact that given a fixed level of
polluting inputs, there is a minimal amount of pdn that is jointly produced by the
technology. Poor management can create inefficiemelye production that could yield an even
higher level of undesirable outputs. An economituitron behind this costly disposability

property can be given if one considers a cost praiu function where a minimum level of cost

® In this article we present and discuss the modedier VRS. However, it can be easily extended heroteturns-to-

scale assumptions (e.g. constant returns to scale).



can be reached if price and allocative inefficiermcg eliminated. In the case of a bad output
technology, the prices in a cost frontier can bsoaisted with the abatement coefficient (more
intuition can be found in Coelli et al. (2007) witie estimation of iso-environmental lines). The
main postulates, which are polar opposite to thesoassociated with the good output sub-

technologyW, (t) are then expressed as:

Bl Negative monotonicity im(t): if v(t) € W, (t) andv’(t) < v(t) thenv'(t) € ¥, (t)
B2 Positive monotonicity i(t): if i(t) € W, (t) andi’'(t) = i(t) theni'(t) € ¥, (t)

B3  Negative monotonicity ife(t): if k(t) € W, (t) andk’(t) < k(t) thenk'(t) € W, (t)
B4 Positive monotonicity i (t): if b(t) € W, (t) andb’(t) = b(t) thenb'(t) € W, (t)
B5  Convexity in(v(t),i(t), k(t), b(t))

B6  Polluting inputs essentialiy(t), k(t)]

B7  Boundedness

B1-B7 impose the costly disposability assumptiont),i(t), k(t), f(t),y(t),b(t)) € W, (t)

then

b'(t) =b(t) AV (t)Sv(t) Ai'(t) =i(t) A k'(t) <k(t)
= (V'(6), '), k'), f(£), y(2), b'(t)) € Wp(t)

Positive monotonicity in investments (propeBg) has a very important implication since it
means that investments in quasi-fixed inputs cdp teemitigate pollution. This assumption is
understandable if one considers that new invessmambed new technologies which are cleaner
than old ones. From another perspective, givenitivastments generate good outputs in addition
to losses through adjustment costberis paribus and with the positive correlation between good
and bad outputs, it can be argued that adjustnosts indirectly create pollution mitigation. The
B6 property implies that it is not possible to getengollution without using any material inputs,
while propertyB7 reflects the fact that for each level of matermguts there is a minimum

amount of unwanted outputs that is generated.

The bad output sub-technology can be representder YRS by:



W, () = {(v(®), i), k (1), f(£), y(6), b(8)) : bo(t) = z Hn bn (),

N
vy (£) < ; 1 v, (D), )

N N
io(8) = 8ko() 2 ) pf (in(0) = 6kn(®)), ) wh=1,vn,
(w(t),i(t), k(t), f(t),y(t),b(t)) € ]Ri+L+L+S+Q+R}

To properly represent the by-production model, thféerent intensity variables associated with
each sub-technolog?, u2) have to be considered. Following Murty et al. (2Q1he overall

technology¥ (t) is represented by:

Y = {(v(0),i(0), k(®), fF([£),y(®), b)) : y,(t) < Zuﬁ V() , 1, (t)

N
2 2 ‘ng Un(t) )
n=1

£o© = ) 1 fu(0) 10 (0) = 8ko(®) < )" 1 (1n(0) = 6kn(®), ) i = 1
n=1 n=1 n=1 (6)

bo(©)= ) bu(®), () < ) K0,

io () = ko (©) 2 ) b (ia(0) = 8kn(0), ) k=1, v,

W(b), i(t), k(D), (1), y(t), b(t)) € RFHHFS+AHRY



However, as argued in Dakpo (2015), the model siglaled in(6) assumes the independence of
the two sub-technologies¥,(t),¥,(t). Dakpo (2015) recommended introducing an

interdependence constraint to link the differerft-sechnologies. An adaptation to the presence
of adjustment costs due to investment in quasdfixeputs is proposed here through the

following additional constraints:

N N
Z ﬂg vp(t) = Z .U1Z?L v, (£)
n=1 n=1

N N
D 1 (in(0) = 8kn(®©) = ) 1 (i(0) = 8len ()

(7)

The idea behind the interdependence constraintseses@d in(7) is that in order to link the
different sub-processes of a production system g to equalize the optimal values of the
common variables involved in the different sub-eyss. Dakpo (2015) refers to these constraints
as the factor band concepts, which involve a @tabetween input variables independently of
the levels of either the good or the bad outputargénd, 2009; Frisch, 1965). The dependence
constraints in(7) ensure that any projection towards the differeantiers reaches consistent
benchmarks between the different sub-technologwsived (Dakpo, 2015). Without these
constraints, it is for instance possible that teadhmark for an inefficient observation might use
fewer inputs under the good output sub-technolbgy the optimal consumption found under the
bad output sub-technology, which is not logical. rMtaver, these constraints are simply the
fulfillment of the materials balance principle whianust be verified at any point of the

production technology.

In all the previous developments, the role playgditmaterial inputs (or service inputs) has only
been limited to the good output sub-technologyrasame applications of the by-production
approach (Dakpo et al., 2017; Levkoff, 2013). Yatantly, Fgrsund (2017) has stressed the fact
that ‘a service input improves the utilization bketgiven raw materials through better process

control, fewer rejects, and increased internal clieg of waste materials’. Therefore, immaterial

" By analogy, the materials balance principle cam$sociated to the mass/energy conservation equattithe first

law of thermodynamics.

10



(service) inputs can have a direct impact on pioifugeneration through substitution possibilities
with pollution generating inputs. Earlier attempisaccounting for these latter possibilities can
be found in Chambers et al. (2014) and Serra €R@lL4). A more theoretical underpinning has
been provided by Fgrsund (2017). We propose amsixie of the bad output sub-technology

with aeighthpostulate:
B8 Positive monotonicity irf (¢): if f(t) € W, (t) andf'(t) = f(t) thenf'(t) € ¥, (t)

This property states that immaterial inputs (hared inputs) can have a direct impact in
mitigating pollution. The bad output production gebhnology in(5) is extended with
constraints on fixed inputs, #s(t) > YN_, ub £, (t). Similarly, the overall technology i) is
extended by the same constraints. To keep in litte thve interdependence between technologies

of Dakpo (2015), additional constraints on the déiguaf optimal inputs need to be considered

N1ty fo(8) = TN_q i fu(E).
3-Dynamic vs. static pollution-adjusted efficiencyestimation

The dynamic pollution-adjusted efficiency approachhis article uses the Directional Distance
Function (DDF) as proposed by Chambers et al. (L99BF has been largely used to measure
pollution-adjusted inefficiency (Berre et al., 20T2hung et al., 1997; Hampf and Kriiger, 2015;
Njuki and Bravo-Ureta, 2015). It is a generalizatiof Farrell's or Shephard’s proportional

approach, but with more flexibility (i.e. severatattion possibilities). However, the results are
sensitive to the choice of the directional vectgardanyan and Noh, 2006). Here we use a
general representation of the non-radial form of D[@Zhang and Choi, 2014) which is

summarized irf8) for its dynamic version:

D™ (v(), i(0), k(8 £(£), ¥(©), b(©); Gy G Gor G)

1
= max — +hp + by + bi
8,19, ub Ng’ [ﬂy ﬂb ﬂv :81]

(8)

N
s.t. Yo(t) + Bygy < Z 1 v, (6)
n=1

11



N
vo(t) - ﬁvgv = Z .ug vn(t)
N
ACEDWIFAG
n=1
N
i0(6) = 8lo(6) + Bids < ) kS (in() = Ska(0))
N
bo() = Bodis = ) 1 ba(®)
N
vo(t) - ﬂvgv = Z .ufl Un(t)
n=1
N
JACEDWIAAG

N
i0(6) = 8ko(®) + Bidi = ) k& (in(6) = 8len(0)

N N
PNEENCEDWIANE
n=1 n=1

N N
INAZCEWIAG
n=1

n=1

N N
PNAGCERAC) EDWAHOELING)

12



whereN; represents the number of decision variables irothective function. This means that

we give the same weight to each inefficiency scéi@. the generalization of the non-radial

approach, each of th@ inefficiencies can be individualized with the @éifént corresponding

variables(Byq, Bur. Bjvr Bu)-

The results of the dynamic pollution-adjusted éfficy model are compared with a static
pollution-adjusted efficiency model. Under the istaiechnology, the quasi-fixed inputs are
assumed to adjust instantaneously, so the objefilivetion of the DDF also includes,, the

inefficiency associated with the quasi-fixed inputs Furthermore, the static DDF has no

constraints on investments. A general formulatibthe static DDF can be found {8):

l—)’trstatic (v(t), f(@®),y(@®),b(t); Gy, G, Gv» gk)

1
= pfﬂﬁ‘,ﬁbzv_g [By + By + By + Bl
N
s.t. Yo(t) + By gy < Z 1 Yo ()
n=1
N
Uo(t) = Budo = ) K8 v ()
n=1
N
(9)
JACEDWIHAC
n=1
N
ko) = B = ) 1 k()
n=1

N
bo(5) = Bon = ) K ba(®)
n=1

N
Vo (t) - ﬁvg)v < Z .u1l?L vn(t)

13



N
JACEDYWIIAC

N
Ko(O) = B < )k ken(®
n=1

N N
Z ﬂg vp(t) = Z ﬂg v (2)
n=1 n=1

N N
PNAZCEWIAG

n=1
N N
PNAACEDWANG
n=1 n=1

N

z Uy =1

n=1

M=
Ly
I
—_

S
1l
[N

Another important difference between the statidwatson and the dynamic one is that in model
(9), the quasi-fixed inputs are treated in the samg a& variable inputs to materialize the

instantaneous adjustments.

Following Chung et al. (1997), the directional west are set as the observed values
corresponding to the DMU under evaluation for alriables except investments ig, =y, ,
G =by, Gy =0, , Jr = k,.2 For these variables, the DDF provides an inefficjescore that

can be conveniently interpreted as a percentagestiiciency.

Our analysis has been carried out for a sample Bj##8 observations. Given the high
heterogeneity in the investment variable, the dioeal vector was set to 20% of the capital stock

i.e.g; = 0.2 X k,. The inefficiency score obtained should be intetga relative to this particular

8 As previously mentioned, several other directiomdtors are possible.

14



vector. Another advantage of this vector is to @low zero values to be accounted for in the

estimation.
4-Distribution comparison

Practically, to compare for instance the resultisvben the static and the dynamic models, we
have used the density equality test of Li (199Geeded to DEA and Farrell output efficiency by
Simar and Zelenyuk (2006). This extension accouots two particular features of the
nonparametric DEA: i) the bounded support of thiciehcy scores with a concentration of
observations near the boundary; and ii) the ussstinated efficiency scores (rather than the true
efficiency) (Simar and Zelenyuk, 2006).uf andu,; are two vectors of random variables in a

population, the Li (1996)’s test evaluates:

HO : fsuy) = faauy) (10)

HA: fsag) # fawy for asetof positive measures

wheref; denotes the density distribution function of thedom variablet;. This paper uses an
algorithm developed by Simar and Zelenyuk (2006j th robust to the dimensionality problem.
Since this paper estimates inefficiency scores witbwer bound at zero (rather than efficiency

scores bounded at 1), the smoothing procedure is:

s _ [Bh+eh Lif Bh=0 (11)
" BL otherwise

el = Uniform(0,min{N;%’", a}) wherea is the a — quantile (e.g. 5%) of the empirical
distribution of B4 >0, | represents each distributiche {s,d}, and D is the dimension
associated with the convergence rate of the DEA dahodt hand. Classically,
D = card(inputs) + card(outputs (good)) + 1. However, since this paper deals with a multi-
technology approach, the global convergence rateeoby-production is defined as the smallest

convergence rate among each independent sub-tegynol

5-Empirical application

15



The empirical application uses panel data of sfieeth suckler cow farms in France (Massif
Central and its northern periphery). The farm da provided by the survey team within the
livestock economic unit of the French National ingé of Agricultural Research (INRA) located
in Clermont-Ferrand-Theix. The sample contains @,28m-year observations covering the
period 1978-2014, with an average of 86 farms par.yA total of 170 different farms have been
surveyed over the period of study, so the panehislanced (due to farms rotating in and out of
the sample). Over the 37-year period of analyaisn$ stay on average a little more than 25 years
in the sample. To better capture the dynamics,faorgier should be estimated per year, i.e. 37
different temporal frontiers. However, the non-paetric DEA approach is well-known for its
sensitivity to the curse of dimensionality whicloguces many efficient DMUs when the number
of variables is large (Cooper et al., 2007). Theseuof dimensionality suppresses the
discriminatory power of the DEA which has a vergvgslconvergence rate (Daraio and Simar,
2007). To overcome this situation, the sample wii mito three periods: 1978-1992, 1993—
2005 and 2006-2014. These periods were chosendar ¢® account for the important shifts
(reforms) in the common agricultural policy (CAR)France. Another benefit of time pooling is
to provide smooth efficiency scores exempt fromhhigter-annual variability. The major
problem of this grouping strategy is that withirclegeriod, technological change is assumed to
be absent, i.e. all changes in technology withisub-period are attributed to modifications in
technical inefficiency. It is worth noting here thihe dynamic aspect of inefficiency is captured
here through the adjustment costs associated @siments and has little if nothing to do with
year-to-year based comparison of production frostierough productivity indices (Malmquist-

Luenberger for examplé).

The empirical model distinguishes two variable itspwne quasi-fixed input, one good output
and three undesirable outputs. Fixed inputs are Vemch was measured in hectares and labor
which was measured in annual working units. Labas wssumed fixed because most of the farm
workers are family members. The quasi-fixed inputassociated with the capital stock of
machinery and equipment, buildings and land impmoeats, all measured in 2005 constant

prices. The two variable inputs are intermediatasomption and livestock units (herd size).

® Examples of this latter approach can be foundparkio et al. (2017); Arabi et al. (2017); Bampatsind Halkos
(2018); Tamini et al. (2012).
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Intermediate consumption, also measured in congtanes of 2005, is the aggregation of
different operational expenses and structural qésésl costs, veterinary, miscellaneous supplies,
other breeding costs, seeds, fertilizers, pesticifigels and lubricants, maintenance costs and
overheads). Livestock was assumed to be a variaplg as farmers can easily buy and sell
suckler cows. The herd size is expressed in livgstmits which represents a reference unit used
for the aggregation of different types of animals the basis of their nutritional or feed
requirements. One livestock unit is equivalent te alairy cow. The good output is the total
weight of live meat produced on the farm, in kilagrs, net from animal purchase. It is the only
good output considered given that all other vaesbdre related to this production. The bad
output variable is the estimated greenhouse gasG(Getnissions associated with the suckler
cows’ activity, and were measured using life cyaésessment (LCA) (Guinée et al., 2002). For
some inputs, the GHG emissions encompass all swiased flows from the cradle to the farm
gate boundary. Three GHGs are considered: methaHg),(nitrous oxide (NO) and carbon
dioxide (CQ), and these three gases are aggregated usingltbleal warming potential (GWP)

in comparison to the basis of carbon dioxide. TH&FRGfor methane and nitrous oxide are
respectively 25 and 298. Thereby, the total GHGssmn can be computed and expressed in
carbon dioxide equivalents. The descriptive siatisof the sample used for our analysis are

displayed in Table 1.

Table 1: Summary Statistics of the Pooled Sample (&rage over the Period 19782014)

Relative
Standard
_ o standard . )
Variables Mean (x) deviation o Minimum | Maximum
deviation
(8d)
(Sd/x)
Utilized land (hectares) 105.1 49.1 0.5 24.3 442.3
Labor (full-time
equivalent) 1.7 0.6 0.3 0.3 4.6
Intermediate
consumption (1000 Euro 46.4 30.0 0.6 4.7 263.8
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in 2005)

Herd size (livestock

units) 129.6 64.9 0.5 14.4 465.0
Capital (1000 Euro in
2005) 92.6 57.6 0.6 4.0 443.4
Investments (1000 Euro
in 2005) 16.3 20.8 1.3 -24.9 230.7
Meat (tons of live
weight) 38.8 22.2 0.6 5.0 173.9
Total GHG emissions
(tons of CQ-eq) 564.9 309.1 0.5 58.1 2,580.4
Number of farms 3,206 - - - -

The investment variable, which is also expressdduro constant for 2005, is characterized by a
large variation (i.e. a coefficient of variationegter than one) which might simply reflect the
heterogeneity in investment behavior among farnmieos.example, many farms prefer to lease
farm machinery (contracting services) from machinayoperatives instead of buying their own
equipment. Thus, a farmer can borrow specific eageipt (e.g. tractors) from a cooperative, but
in return the farmer is charged with a price depsman the job that has been done (e.g.
harvesting, mowing). Therefore, many farmers witis bpportunity choose to invest very little
in quasi-fixed inputs, a strategy which can paettplain the high heterogeneity for this variable.
Moreover, 1.8% of the sample exhibits disinvestmearid 9.1% zero investmerifsFigure 1
reveals an increasing tendency in investments theswhole period (1978-2014) even if this
growth rate seems to slow down from 1999 onwardsmFthis year, the average investment
levels stabilize which may imply that farmers haeached their optimal size. Investments in

machinery and equipment represent the biggest giattie total investments with at approx.

2 The negative and zeros values present in the safopkhe investments variable raise some issussciged to
the DEA approach that has been discussed in #ratitre. Indeed, DEA requires all variables to bsitiye. To be
consistent with this property, we have deletecbbBervations with negative investments. As mentipiieey only

represent 1.8% of the total sample.
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81.3%, followed by investments in buildings whiclepresent about 13.4%, and land

improvements which constitute around 5.3%.

Figure 1: Average Annual Evolution of Investments wer the Period 19782014
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In terms of GHG emissions, the average sample fpmtiuntensity decreases by 14.9 Kg of £LO

equivalent per Kg of live meat. Methane is by fa& thost important GHG with a share of 68%.
It is followed by nitrous oxide which represents¥d&nd carbon dioxide 14% of total GHG

emissions. Methane is mainly generated by entenméntation, which is associated with the
biological processes of animals. A small share @thane is also associated with manure
management. Nitrous oxide derives from the useioéral fertilizers and also manure spreading.
Carbon dioxide is produced from the consumptionfasisil combustibles but also from the

manufacture of inputs such as feed and fertiliZBsauchemin et al., 2010; Chobtang et al.,
2016; Dick et al., 2015).

6-Results
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Tables 2 and 3 present the results for the dynantt static approaches, respectively. The
inefficiency scores are displayed for each period also for the whole sample. Tables 2 and 3
also display the inefficiency associated with eeqgdut and output, except for land and labor as

they were assumed to be fixed inptits.

Table 2: Dynamic Pollution-adjusted Inefficiency Sores: Averages over Different Periods
(19781989, 19902001 and 2002013) with Service Inputs Included in the Good anthe
Bad Output Sub-technology

Inefficiencies per period

and variable 1978-1992 19932005 20062014 Whole period
Intermediate consumption 0.071 0.049 0.104 0.044
Herd size 0.059 0.042 0.034 0.049
Investments 6.223 4.836 4.019 6.783
Meat 0.010 0.025 0.015 0.021
GHG emissions 0.080 0.056 0.067 0.071
Number of observations 1,365 1,127 656 3,148

Table 3: Static Pollution-adjusted Inefficiency Scees: Averages over Different Periods
(19781992, 19932005 and 20062014) with Service Inputs Included in the Good anthe

Bad Output Sub-technology

Inefficiencies per period _
_ 1978-1992 19932005 20062014 Whole period
and variable
Intermediate consumption 0.259 0.200 0.149 0.237
Herd size 0.170 0.161 0.219 0.207
Opening capital 0.470 0.536 0.478 0.586
Meat 0.002 0.000 0.002 0.002
GHG emissions 0.249 0.227 0.265 0.284

1 All computations were made using R software (ReCbeam, 2017).
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Number of observations 1,365 1,127 656 3,148

Comparison of the results in Tables 2 and 3 pravideme interesting observations. The
inefficiency associated with the variable inputamely intermediate consumption and herd size,
are higher in the static context than in the dymacontext. Actually, under the static context, the
inefficiency associated with these variable inpigsat least 50% larger than the dynamic
pollution-adjusted inefficiency. In the dynamic text, intermediate consumption and herd size
can be decreased, by 4.4% and 4.9%, respectivélye they can be reduced by 23.7% and
20.7%, respectively, in the static context. The s@umtcome was found by Silva et al. (2015) and
Nick and Wetzel (2016), comparing static and dymamput technical efficiency. Next, Simar
and Zelenyuk (2006)’s algorithm with 2000 bootstitapations was applied to test the difference
between the inefficiencies in the dynamic and tiadicscontext. Since the comparison of each
pair of tables implie20 different tests, the algorithm was only run foe tlast column of each
table which considers the whole sample. The p-wlwerresponding to intermediate
consumption, herd size, meat and GHG emissionalbegjual t02.22 e — 16, implying there is

a statistically significant difference between istaind dynamic inefficiency scores. This result
shows that the inefficiency is significantly diféeit when accounting for adjustment costs (via

investments) in pollution-generating technologies.

For meat production, the situation is differenteTriesults show that the potential for increased
meat production is slightly larger in the dynamantext than in the static context. In the static
context, the farmers are actually almost fully @éint. More explicitly, under the dynamic
technology the meat production can be increasedalmyost 2.1%, while under the static
technology the potential for increasing output idyd).2%. When accounting for the changes in
quasi-fixed inputs, producers can produce more fogtlly taking advantage of the investment
potential in comparison to the static case.

For GHG emissions, the results go in the opposittion, i.e. the dynamic inefficiency levels
are much lower than their static counterparts. Wdmrsidering dynamic measures, the levels of
GHG can be reduced by 7.1% and this reduction piateimcreases to 28.4% in the static
context. This result suggests that adjustment castociated with gross investments are

attributed to inefficiency in the static context.
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The heterogeneity in the investment variable iarcfeom the high associated inefficiency scores
in the performance evaluation (average scores legtwleand 7 over the different periods). The
presence of farms that invest very small amountsigonot invest at all) and some which invest
large amounts can explain some of the high inefficy levels associated with investments.
However, this inefficiency can be tampered by 8plit the sample based on the ratio of
investment per capital stock. Using quartile dmttion, the sample was split into four groups
depending on the investment share (% of investrretiie opening capital). The results (see
Tables 4 and %) show that the investment inefficiency levels reglsubstantially. For example,
the inefficiency score falls to almost 0.273 fornfi@rs who invest between 4 and 11% in
proportion to their capital stock. Although the fiil@ency scores are still high (especially for
farmers who invest more than 26%), by accountimgte different strategies of farmers in terms
of investments, the heterogeneity is partly captuMevertheless, this situation might point out
serious issues associated to investments in agnieuh general and to the case of suckler cow
farms in France. The large room of potential imgroent in investment management requires a
deeper analysis of the determinants of farmer aew@sn terms of investments. In both the static
and dynamic cases, the highest inefficiencies aso@ated with the quasi-fixed inputs or
investments in those inputs. Furthermore, giverlgiiel of investment, it appears that there is no
obvious difference between the static and the dymapproach when investment levels are
lower than 11%. From 11% of investment or morereltae large differences in the inefficiency
levels obtained under both approaches. This sugdkat a dynamic approach is particularly

meaningful in the case of significant levels oféstment.

Table 4: Dynamic Pollution-adjusted Inefficiency Sores under Different Ratio of
Investment to Capital: Averages over the Period 1982014 (with Service Inputs Included

in the Good and the Bad Output Sub-technology)

Inefficiencies per ratio of investment to <4% 4-11% 11-26% > 26%

12\We have also run the Li test to compare the statitdynamic inefficiency distributions under thtfedent levels
of investments. The results reveal that exceptHerwhen the investment share is lower than 4% igvherd size,
intermediate consumption and GHG emissions aresigptificantly different), all the variables are duificantly)

different between the static and the dynamic fraoréw

22




capital

and variable
Intermediate consumption 0.266 0.250 0.186 0.042
Herd size 0.216 0.126 0.072 0.044
Investments 0.292 0.273 1.064 6.126
Meat 0.004 0.001 0.024 0.018
GHG emissions 0.280 0.202 0.124 0.061
Number of observations 818 736 795 799

Table 5: Static Pollution-adjusted Inefficiency Scees under Different Ratio of Investment

to Capital: Averages over the Period 1972014 (with Service Inputs Included in the Good

and the Bad Output Sub-technology)

Inefficiencies per ratio of

investment to capital <4% 4-11% 11-26% >26%
and variable

Intermediate consumption 0.253 0.199 0.195 0.150
Herd size 0.212 0.165 0.150 0.159
Opening capital 0.539 0.415 0.464 0.499
Meat 0.005 0.000 0.000 0.000
GHG emissions 0.275 0.220 0.222 0.222
Number of observations 818 736 795 799
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When evaluating the changes in inefficiency acrmpssods, the reader should note that the
inefficiency was measured for each input and outpldtive to period-specific frontiers. Hence,
they provide information about the extent to whible productive potential of each input and
output is utilized in each period. The evolutionstditic and dynamic inefficiency values shows
some differencedzor example, in the dynamic model, the inefficiemtyerd size management
decreases, while in the static case a major inereashe inefficiency is observed in the last
period (2006-2014). In terms of intermediate consuon, the static technology shows an
inefficiency decrease, whereas in the dynamic adasenefficiency is lowest in the period 1993—
2005 and increases in the last period (2006—20h4fhe static case, the efficiency related to
meat production peaks in the period 1993-2005 batatrops in the last period. In the dynamic
case, it is the inefficiency that reaches a peathénsecond period. In both cases (dynamic and
static), the inefficiency of GHG emissions decrsagp until the second period (1993-2005)
before it increases in the last time period. Ovethe average pollution-adjusted inefficiency
decreases in the dynamic and static context, bsitdicrease is more distinct in the dynamic
context (see also appendix 1 for yearly evolutidime inefficiency of investment decreases over
the whole period of study with the main improvenserdgalized during the last period (2006—
2014). Under the static technology, the inefficieassociated with the capital stock peaks in the
second period before dropping in the last one.

The comparison of the density plaiSigure 3 of the dynamic and static pollution-adjusted-
inefficiency also reveals large differences betwiwse two scores for the sample of suckler cow
farms. It appears that under the static technoltiyy,distribution of the inefficiency score is
highly concentrated displaying a leptokurtic disttion, while the distribution of the inefficiency
under the dynamic framework is wider and exhibiygatykurtic distribution. This last result is

again a reflection of the high heterogeneity ireisivnents.
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Figure 2: Dynamic and static Pollution-adjusted in#ficiency score density plots comparison
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7-Conclusion

This article proposes an adaptation of the by-ptdn model (Dakpo, 2015; Murty et al., 2012)
to account for adjustment costs in the presenaendésirable outputs. The paper measured and
discussed dynamic pollution-adjusted inefficieney aompared it with a model that does not
account for the presence of adjustment costssfaéic technology).

Applying the model on a sample of suckler cow fam&rance underscored the importance of
accounting for the presence of adjustment costsnwdstimating technical inefficiency. The

analysis also revealed very high inefficiency irvastments for the farms under analysis.
However, these high levels can be explained byldhge heterogeneity in investment levels
among the farms. The results also show that thesitnvent inefficiency levels decrease

substantially when splitting the sample in groupsdal on investment intensity, and that the
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differences between the static and dynamic in€ffficy levels are much smaller for farms that
have low investments. In terms of policy implicaso the Common Agricultural Policy (CAP)

has been providing farmers with financial incendiviarough second pillar investments and
modernization subsidies. The high inefficiency assted with investments suggest that these
subsidies are partly lost to poor investment cleiaed partly also through adjustment costs

associated with investments.

The results also demonstrate that the inefficiesfcihe intermediate consumption, herd size and
GHG emissions are lower under the dynamic framewiakfarms are actually performing better
compared to a static situation where adjustmergss@re not accounted for. In addition, for meat
production, the improvement potential is higher emthe dynamic technology and therefore
underestimated under the static technology. Als¢hebservations imply that it is important to
account for the presence of adjustment costs irestienation of pollution-adjusted inefficiency.
Hence, future research in modelling pollution-gatiag technologies should account for the

guasi-fixed nature of some inputs.

Finally, this work can be extended to productivéiyalysis and to the estimation of dynamic
shadow prices of pollutants (see e.g. Chamberd. §2@14) for estimation in the static by-
production context). In addition, farmers that rely machinery cooperatives will have lower
investment levels than farmers that purchase maohitdence, future research could investigate
the benefits to farmers participating in machinegoperatives in terms of their avoided

adjustment costs.
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Appendix
Appendix 1: Overall Inefficiency Evolution under the Static and Dynamic Approach over

the Period 1978-2014 for the whole Sample
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