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Dynamic pollution-adjusted inefficiency under the by-production of bad outputs 

Abstract 

This article extends the by-production model to the dynamic context of adjustment costs 

associated with investment. The empirical application focuses on panel data of French suckler 

cow farms over the period 1978–2014, considering emissions of greenhouse gases as bad output. 

The paper estimates input and output-specific technical inefficiency scores in the dynamic 

context and compares them with efficiency measures from the conventional static context. Our 

results reveal significant differences between inefficiency scores derived from the static and the 

dynamic frameworks. For all variables except meat production (the good output), the inefficiency 

score is lower in the dynamic context than in the static context. 

Key words: data envelopment analysis; by-production; adjustment costs; dynamic inefficiency; 

French suckler cows  
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1-Introduction 

Productive entities operate in competitive markets and the production decisions they make today 

will inevitably affect future outcomes. Productive entities are continuously confronted with 

changes in policies, new prices and new technologies. All this requires Decision Making Units 

(DMUs) which are able to adjust to changes in their environment (Gardebroek, 2004). An 

important feature of these adjustments is materialized through investment strategies aiming at 

firms’ structural change. Previous literature pointed out that adjustment costs associated with 

investments in quasi-fixed inputs, i.e. inputs that can be stored or accumulated like capital, 

prevent firms from making instantaneous adjustments (Cooper and Haltiwanger, 2006; Eisner et 

al., 1963; Gould, 1968; Lucas, 1967). Silva and Stefanou (2003) refer to this situation as the 

presence of “sluggish” adjustments in some production factors within a productive entity. The 

presence of quasi-fixed inputs causes production decisions to be linked intertemporally. The 

foundation of dynamic economic analysis is then grounded on this distinction between variable 

and quasi-fixed inputs which also implies a separation between short- and long-run decisions 

(Caputo, 2005; Stefanou, 2009). 

The literature on efficiency and productivity analysis has predominantly evolved around the static 

context, which assumes that producers instantaneously adjust their inputs and outputs (as opposed 

to gradually) (Nemoto and Goto, 2003), or has compared static technologies over time (Färe and 

Grosskopf, 1997)1. Both approaches ignore intertemporal linkages between production decisions. 

In the neoclassic theory, the adjustment cost model is a well-known approach to cope with 

intertemporally linked decision in the presence of quasi-fixed inputs. The logic behind this idea is 

that investments in capital inputs generate some adjustment costs. These costs can be internal 

(learning effects or retraining, reorganization of production processes, installation costs, 

administrative costs, search costs) or external (incomplete markets)2, and are assumed to increase 

with the level of investment. The presence of ‘costs of adjustment can explain why firms tend to 
                                                 

1 As presented by these authors the time comparison of static technologies can be based on the estimation of the 

Malmquist productivity index. 

2 In this work, we assume that adjustment costs are internal to the production system. However, the developments in 

this article can be easily extended to the presence of external adjustment costs. 
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conduct investments in smaller proportions, spread over time, rather than to adjust to new 

conditions instantaneously’ (Oude Lansink et al., 2001 p359). Generally these costs are 

incorporated in the producer objective function (as an intertemporal value function: cost 

minimization, revenue and profit maximization) through (unobserved) adjustment costs (Kapelko 

et al., 2014). In the presence of adjustment costs in quasi-fixed factors of production, static 

efficiency measures do not correctly assess the firm’s performance (Nick and Wetzel, 2016). In 

the same vein, according to Nemoto and Goto (1999) and in the presence of quasi-fixed inputs, a 

static measure of efficiency will lead to biased estimations where allocative efficiency is 

overestimated.3 

Sustainable production behavior is crucial to overcome environmental challenges in a situation of 

competition for scarce resources. Efforts must be undertaken by firms to internalize the 

production of environmentally detrimental outputs which can no longer be ignored by managers. 

In the same line, the International Resource Panel has recommended a two-way strategy based on 

the concept of decoupling: first ‘using less resources per unit of economic output’ and second 

‘reducing the environmental impact of any resources that are used…’ (Fischer-Kowalski and 

Swilling, 2011 p xiii). The double objective of economic and environmental efficiency associated 

with this new challenge has then led to the proposition of eco-efficiency or pollution-adjusted 

efficiency tools for DMU benchmarking. In the nonparametric framework of Data Envelopment 

Analysis (DEA), many approaches have been proposed to assess the technical and environmental 

efficiency of production units (Färe et al., 2005; Hailu and Veeman, 2001; Sahoo et al., 2011). 

However, as underlined and discussed in Dakpo et al. (2016), most developments have not 

properly modelled the inclusion of undesirable outputs in the production technology. Only more 

recently, Murty et al. (2012) introduced the concept of the by-production model and showed that 

this approach offers more flexibility in representing the production of undesirable outputs. In the 

DEA framework, Dakpo (2015) has extended the by-production approach of Murty et al. (2012) 

to overcome the independence assumption maintained by the former in their formulations. To the 

best of the authors’ knowledge, no efforts have been made to date to model pollution-adjusted 

efficiency in the dynamic context. A better understanding of the role of undesirable outputs in the 
                                                 
3 For more details on the literature on adjustment costs models, one can also refer to Abel et al. (1995); Epstein 

(1981); Gardebroek and Oude Lansink (2004); Luh and Stefanou (1993); Luh and Stefanou (1996); Oude Lansink 

and Stefanou (1997); Treadway (1969, 1970). 
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dynamic production technology could provide more insights into the mechanisms behind 

pollution-adjusted efficiency to policy makers and other stakeholders. 

In light of the foregoing, the aim of this article is to propose a dynamic pollution-adjusted 

efficiency measure which extends the approach of Murty et al. (2012) and Dakpo (2015) to the 

dynamic context. For comparison purposes, dynamic technical pollution-adjusted efficiency is 

computed and analyzed along with a conventional static technical pollution-adjusted efficiency 

measure. The by-production model (Dakpo, 2015; Førsund, 2009; Murty et al., 2012) is based on 

the idea that a pollution-generating technology cannot be represented by a single reduced form 

and thus requires the use of different sub-technologies, i.e. one for the production of good outputs 

and another for the generation of bad outputs. The benefit of this approach over other existing 

models (such as the ones that treat pollution as input or output under the weak disposability 

assumption) is the explicit representation of the different processes involved in a production 

system. Moreover, the by-production approach provides the right trade-offs between the different 

variables involved. The empirical application focuses on panel data of French suckler cow farms 

over the period 1978–2014. The bad output considered is the total greenhouse gas emission 

associated with livestock breeding expressed in carbon dioxide equivalents (��� − ��). 
 

2-Dynamic aspects in pollution-generating technologies 

Let 	(
) represent a vector of variable inputs (	 ∈ ℝ� ), �(
) a vector of quasi-fixed inputs 

(� ∈ ℝ� ), �(
) a vector of gross investments (� ∈ ℝ� )4, �(
) a vector of fixed inputs (� ∈ ℝ� ), 
�(
) a vector of intended outputs (� ∈ ℝ�), �(
) the vector of unintended outputs (� ∈ ℝ�), � 

the number of DMUs, and 
 the time variable. The representation of pollution-generating 

technology here is based on the by-production model (Dakpo, 2015; Førsund, 2009; Murty et al., 

2012). The approach adopted in this article is the by-production approach extended with some 

dependence constraints developed in Dakpo (2015). Following Murty et al. (2012), inputs must 

be separated into material inputs which generate pollution and non-materials inputs which do not. 

                                                 

4 Investment can be zero for some of the quasi-fixed inputs. 
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In this work, fixed inputs (� ∈ ℝ� ) are assumed to be immaterial i.e. they do not generate 

pollution. The dynamic production technology Ψ(
) can be represented by the intersection of two 

dynamic sub-technologies, one for good outputs and the second for bad outputs: 

 Ψ(
) = 	Ψ�(
) ∩ Ψ�(
) (1) . 

where 

 Ψ�(
) =  	!	(
), �(
), �(
)#:	!	(
), �(
)#	can	produce	�(
)	given	�(
)	and	�(
)1 (2) . 

and 

 Ψ�(
) =  !	(
), �(
), �(
)#:	!	(
), �(
)#		can	generate	�(
)	given	�(
)	and	�(
)1 (3) . 

Properties of Ψ�(
) (Silva et al., 2015; Silva and Oude Lansink, 2013; Silva and Stefanou, 2003) 

G1 No free lunch and inactivity 

G2 Input essentiality and attainability 

G3 Non-emptiness and closeness 

G4 Boundedness 

G5 Positive monotonicity in 	(
): if 	(
) ∈ Ψ�(
) and 	3(
) ≥ 	(
) then 	′(
) ∈ Ψ�(
) 
G6 Negative monotonicity in �(
): if �(
) ∈ Ψ�(
) and �3(
) ≤ �(
) then �′(
) ∈ Ψ�(
)5 
G7 Free disposability of good outputs: if �(
) ∈ Ψ�(
) and �3(
) ≤ �(
) then �′(
) ∈ Ψ�(
) 
                                                 
5 Property G6 along with the convexity in G9 implies the presence of adjustment costs. 
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G8 Reverse nestedness in �(
) and �(
): if �(
) ∈ Ψ�(
) and �3(
) ≥ �(
) then �′(
) ∈
Ψ�(
). Similarly, if �(
) ∈ Ψ�(
) and �3(
) ≥ �(
) then �′(
) ∈ Ψ�(
) 
G9 Convexity in !	(
), �(
), �(
), �(
)# 

Given these different properties and assuming variable returns to scale (VRS),6 the good output 

sub-technology is defined under DEA as: 

 

Ψ�(
) = {(	(
), �(
), �(
), �(
), �(
), �(
)) ∶ 	 �:(
) ≤ 	; <=�
>

=?@
�=(
)	,	 

	:(
) ≥ ; <=�
>

=?@
	=(
)	, �:(
) ≥ ; <=�

>

=?@
�=(
) 

�:(
) − A�:(
) ≤ ; <=�
>

=?@
!�=(
) − A�=(
)#	, ; <=�

>

=?@
= 1	, ∀D	, 

(	(
), �(
), �(
), �(
), �(
), �(
)) ∈ ℝ������} 

(4) . 

where A is the depreciation rate vector associated with quasi-fixed input �, therefore �:(
) −
A�:(
) represents the net investments. 

Properties of Ψ�(
) 
The main property of pollution-generating technologies is the costly disposability of pollution as 

expressed in Murty et al. (2012). This property expresses the fact that given a fixed level of 

polluting inputs, there is a minimal amount of pollution that is jointly produced by the 

technology. Poor management can create inefficiency in the production that could yield an even 

higher level of undesirable outputs. An economic intuition behind this costly disposability 

property can be given if one considers a cost production function where a minimum level of cost 
                                                 
6 In this article we present and discuss the models under VRS. However, it can be easily extended to other returns-to-

scale assumptions (e.g. constant returns to scale). 
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can be reached if price and allocative inefficiency are eliminated. In the case of a bad output 

technology, the prices in a cost frontier can be associated with the abatement coefficient (more 

intuition can be found in Coelli et al. (2007) with the estimation of iso-environmental lines). The 

main postulates, which are polar opposite to the ones associated with the good output sub-

technology Ψ�(
) are then expressed as: 

B1 Negative monotonicity in 	(
): if 	(
) ∈ Ψ�(
) and 	3(
) ≤ 	(
) then 	3(
) ∈ Ψ�(
) 
B2 Positive monotonicity in �(
): if �(
) ∈ Ψ�(
) and �3(
) ≥ �(
) then �3(
) ∈ Ψ�(
) 
B3 Negative monotonicity in �(
): if �(
) ∈ Ψ�(
) and �3(
) ≤ �(
) then �3(
) ∈ Ψ�(
) 
B4 Positive monotonicity in �(
): if �(
) ∈ Ψ�(
) and �3(
) ≥ �(
) then �′(
) ∈ Ψ�(
) 
B5 Convexity in !	(
), �(
), �(
), �(
)# 
B6 Polluting inputs essentiality F	(
), �(
)G 
B7 Boundedness 

B1–B7 impose the costly disposability assumption: (	(
), �(
), �(
), �(
), �(
), �(
)) ∈ Ψ�(
) 
then  

�3(
) ≥ �(
) 	∧ 		3(
) ≤ 	(
) 	∧ 	 �3(
) ≥ �(
) 	∧ 	�3(
) ≤ �(
) 	
⟹ (	′(
), �′(
), �′(
), �(
), �(
), �′(
)) ∈ Ψ�(
) 

Positive monotonicity in investments (property B2) has a very important implication since it 

means that investments in quasi-fixed inputs can help to mitigate pollution. This assumption is 

understandable if one considers that new investments embed new technologies which are cleaner 

than old ones. From another perspective, given that investments generate good outputs in addition 

to losses through adjustment costs, ceteris paribus and with the positive correlation between good 

and bad outputs, it can be argued that adjustment costs indirectly create pollution mitigation. The 

B6 property implies that it is not possible to generate pollution without using any material inputs, 

while property B7 reflects the fact that for each level of material inputs there is a minimum 

amount of unwanted outputs that is generated. 

The bad output sub-technology can be represented under VRS by: 
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Ψ�(
) = {!	(
), �(
), �(
), �(
), �(
), �(
)# ∶ 	 �:(
) ≥ 	; <=�
>

=?@
�=(
)	, 

	:(
) ≤ ; <=�
>

=?@
	=(
)	, 

�:(
) − A�:(
) ≥ ; <=�
>

=?@
!�=(
) − A�=(
)#	, ; <=�

>

=?@
= 1	, ∀D	, 

(	(
), �(
), �(
), �(
), �(
), �(
)) ∈ ℝ������} 

(5) . 

To properly represent the by-production model, two different intensity variables associated with 

each sub-technology (<=�, <=�) have to be considered. Following Murty et al. (2012), the overall 

technology Ψ(
) is represented by: 

 

Ψ(
) = 	 {!	(
), �(
), �(
), �(
), �(
), �(
)# ∶ 	 �:(
) ≤ 	; <=�
>

=?@
�=(
)	, 	:(
)

≥ ; <=�
>

=?@
	=(
)	, 

�:(
) ≥ ; <=�
>

=?@
�=(
)		, �:(
) − A�:(
) ≤ ; <=�

>

=?@
!�=(
) − A�=(
)#	, ; <=�

>

=?@
= 1 

	�:(
) ≥ 	; <=�
>

=?@
�=(
)	, 	:(
) ≤ ; <=�

>

=?@
	=(
)	, 

	�:(
) − A�:(
) ≥ ; <=�
>

=?@
!�=(
) − A�=(
)#	, ; <=�

>

=?@
= 1	, ∀D	, 

(	(
), �(
), �(
), �(
), �(
), �(
)) ∈ ℝ������} 

(6) . 
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However, as argued in Dakpo (2015), the model as displayed in (6) assumes the independence of 

the two sub-technologies Ψ�(
), Ψ�(
). Dakpo (2015) recommended introducing an 

interdependence constraint to link the different sub-technologies. An adaptation to the presence 

of adjustment costs due to investment in quasi-fixed inputs is proposed here through the 

following additional constraints: 

 

; <=�
>

=?@
	=(
) = ; <=�

>

=?@
	=(
) 

; <=�
>

=?@
!�=(
) − A�=(
)# = ; <=�

>

=?@
!�=(
) − A�=(
)# 

(7) . 

The idea behind the interdependence constraints expressed in (7) is that in order to link the 

different sub-processes of a production system one has to equalize the optimal values of the 

common variables involved in the different sub-systems. Dakpo (2015) refers to these constraints 

as the factor band concepts, which involve a relation between input variables independently of 

the levels of either the good or the bad outputs (Førsund, 2009; Frisch, 1965). The dependence 

constraints in (7) ensure that any projection towards the different frontiers reaches consistent 

benchmarks between the different sub-technologies involved (Dakpo, 2015). Without these 

constraints, it is for instance possible that the benchmark for an inefficient observation might use 

fewer inputs under the good output sub-technology than the optimal consumption found under the 

bad output sub-technology, which is not logical. Moreover, these constraints are simply the 

fulfillment of the materials balance principle which must be verified at any point of the 

production technology.7 

In all the previous developments, the role played by immaterial inputs (or service inputs) has only 

been limited to the good output sub-technology as in some applications of the by-production 

approach (Dakpo et al., 2017; Levkoff, 2013). Yet recently, Førsund (2017) has stressed the fact 

that ‘a service input improves the utilization of the given raw materials through better process 

control, fewer rejects, and increased internal recycling of waste materials’. Therefore, immaterial 

                                                 
7 By analogy, the materials balance principle can be associated to the mass/energy conservation equation of the first 

law of thermodynamics. 
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(service) inputs can have a direct impact on pollution generation through substitution possibilities 

with pollution generating inputs. Earlier attempts in accounting for these latter possibilities can 

be found in Chambers et al. (2014) and Serra et al. (2014). A more theoretical underpinning has 

been provided by Førsund (2017). We propose an extension of the bad output sub-technology 

with a eighth postulate: 

B8 Positive monotonicity in �(
): if �(
) ∈ Ψ�(
) and �3(
) ≥ �(
) then �′(
) ∈ Ψ�(
) 
This property states that immaterial inputs (here fixed inputs) can have a direct impact in 

mitigating pollution. The bad output production sub-technology in (5) is extended with 

constraints on fixed inputs, as �:(
) ≥ 	∑ <=�>=?@ �=(
). Similarly, the overall technology in (6) is 

extended by the same constraints. To keep in line with the interdependence between technologies 

of Dakpo (2015), additional constraints on the equality of optimal inputs need to be considered 

∑ <=�>=?@ �=(
) = 	∑ <=�>=?@ �=(
). 
3-Dynamic vs. static pollution-adjusted efficiency estimation 

The dynamic pollution-adjusted efficiency approach in this article uses the Directional Distance 

Function (DDF) as proposed by Chambers et al. (1998). DDF has been largely used to measure 

pollution-adjusted inefficiency (Berre et al., 2013; Chung et al., 1997; Hampf and Krüger, 2015; 

Njuki and Bravo-Ureta, 2015). It is a generalization of Farrell’s or Shephard’s proportional 

approach, but with more flexibility (i.e. several direction possibilities). However, the results are 

sensitive to the choice of the directional vector (Vardanyan and Noh, 2006). Here we use a 

general representation of the non-radial form of DDF (Zhang and Choi, 2014) which is 

summarized in (8) for its dynamic version: 

 

KLLMNOP=!	(
), �(
), �(
), �(
), �(
), �(
); RMP , RM� , RMS, RMT#
= maxW,XY,XZ

1
��LM F[P +[� + [S + [TG 

]. 
.				�:(
) + [PRMP ≤	; <=�
>

=?@
�=(
)			 

(8) . 
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			:(
) − [SRMS ≥ ; <=�
>

=?@
	=(
) 

		�:(
) ≥ ; <=�
>

=?@
�=(
) 

�:(
) − A�:(
) + [TRMT ≤ ; <=�
>

=?@
!�=(
) − A�=(
)#		 

�:(
) − [�RM� ≥	; <=�
>

=?@
�=(
)					 

	:(
) − [SRMS ≤ ; <=�
>

=?@
	=(
)	 

�:(
) ≥ 	; <=�
>

=?@
�=(
) 

�:(
) − A�:(
) + [TRMT ≥ ; <=�
>

=?@
!�=(
) − A�=(
)#	 

	; <=�
>

=?@
	=(
) = ; <=�

>

=?@
	=(
) 

; <=�
>

=?@
�=(
) = 	; <=�

>

=?@
�=(
) 

; <=�
>

=?@
!�=(
) − A�=(
)# = ; <=�

>

=?@
!�=(
) − A�=(
)# 

; <=�
>

=?@
= 1		 

	; <=�
>

=?@
= 1 
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where ��LM represents the number of decision variables in the objective function. This means that 

we give the same weight to each inefficiency score. For the generalization of the non-radial 

approach, each of the [ inefficiencies can be individualized with the different corresponding 

variables ![P_, [�`, [aS, 	[Tb#. 

The results of the dynamic pollution-adjusted efficiency model are compared with a static 

pollution-adjusted efficiency model. Under the static technology, the quasi-fixed inputs are 

assumed to adjust instantaneously, so the objective function of the DDF also includes [c, the 

inefficiency associated with the quasi-fixed inputs �. Furthermore, the static DDF has no 

constraints on investments. A general formulation of the static DDF can be found in (9): 

 

KLLMNdNeNTf!	(
), �(
), �(
), �(
); RMP , RM� , RMS, RMc#
= maxW,XY,XZ

1
��LM F[P +[� + [S + [cG 

]. 
.				�:(
) + [PRMP ≤	; <=�
>

=?@
�=(
)			 

			:(
) − [SRMS ≥ ; <=�
>

=?@
	=(
) 

		�:(
) ≥ ; <=�
>

=?@
�=(
) 

�:(
) − [cRMc ≥ ; <=�
>

=?@
�=(
)		 

�:(
) − [�RM� ≥	; <=�
>

=?@
�=(
)					 

	:(
) − [SRMS ≤ ; <=�
>

=?@
	=(
)	 

(9) . 
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�:(
) ≥ 	; <=�
>

=?@
�=(
) 

�:(
) − [cRMc ≤ ; <=�
>

=?@
�=(
)	 

	; <=�
>

=?@
	=(
) = ; <=�

>

=?@
	=(
) 

; <=�
>

=?@
�=(
) = 	; <=�

>

=?@
�=(
) 

; <=�
>

=?@
�=(
) = ; <=�

>

=?@
�=(
) 

; <=�
>

=?@
= 1		 

	; <=�
>

=?@
= 1 

Another important difference between the static evaluation and the dynamic one is that in model 

(9), the quasi-fixed inputs are treated in the same way as variable inputs to materialize the 

instantaneous adjustments. 

Following Chung et al. (1997), the directional vectors are set as the observed values 

corresponding to the DMU under evaluation for all variables except investments i.e. RMP = �:	,
RM� = �:	, RMS = 	:		, RMc = �:.8 For these variables, the DDF provides an inefficiency score that 

can be conveniently interpreted as a percentage of inefficiency.  

Our analysis has been carried out for a sample with 3,148 observations. Given the high 

heterogeneity in the investment variable, the directional vector was set to 20% of the capital stock 

i.e. RMT = 0.2 × �:. The inefficiency score obtained should be interpreted relative to this particular 
                                                 
8 As previously mentioned, several other directional vectors are possible. 
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vector. Another advantage of this vector is to also allow zero values to be accounted for in the 

estimation. 

4-Distribution comparison 

Practically, to compare for instance the results between the static and the dynamic models, we 

have used the density equality test of Li (1996) extended to DEA and Farrell output efficiency by 

Simar and Zelenyuk (2006). This extension accounts for two particular features of the 

nonparametric DEA: i) the bounded support of the efficiency scores with a concentration of 

observations near the boundary; and ii) the use of estimated efficiency scores (rather than the true 

efficiency) (Simar and Zelenyuk, 2006). If jd and jO are two vectors of random variables in a 

population, the Li (1996)’s test evaluates: 

 
k0 ∶ �d(lm) = �O(ln)																																																										 
ko ∶ 	 �d(lm) ≠ �O(ln)		for	a	set	of	positive	measures 

(10) . 

where �b denotes the density distribution function of the random variable jb. This paper uses an 

algorithm developed by Simar and Zelenyuk (2006) that is robust to the dimensionality problem. 

Since this paper estimates inefficiency scores with a lower bound at zero (rather than efficiency 

scores bounded at 1), the smoothing procedure is: 

 [s=b∗ = u[s=b + v=b 			, if		[s=b = 0
[s=b 												otherwise  

(11) . 

v=b = yD��z{|(0,min �b}� ~⁄ , �1) where � is the � − �j�D
��� (e.g. 5%) of the empirical 

distribution of [s=b > 0, � represents each distribution � ∈ 	 {], �}, and K is the dimension 

associated with the convergence rate of the DEA model at hand. Classically, 

K = card(inputs) + card(outputs	(Rzz�)) + 1. However, since this paper deals with a multi-

technology approach, the global convergence rate of the by-production is defined as the smallest 

convergence rate among each independent sub-technology.  

5-Empirical application 
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The empirical application uses panel data of specialized suckler cow farms in France (Massif 

Central and its northern periphery). The farm data are provided by the survey team within the 

livestock economic unit of the French National Institute of Agricultural Research (INRA) located 

in Clermont-Ferrand-Theix. The sample contains 3,206 farm-year observations covering the 

period 1978–2014, with an average of 86 farms per year. A total of 170 different farms have been 

surveyed over the period of study, so the panel is unbalanced (due to farms rotating in and out of 

the sample). Over the 37-year period of analysis, farms stay on average a little more than 25 years 

in the sample. To better capture the dynamics, one frontier should be estimated per year, i.e. 37 

different temporal frontiers. However, the non-parametric DEA approach is well-known for its 

sensitivity to the curse of dimensionality which produces many efficient DMUs when the number 

of variables is large (Cooper et al., 2007). The curse of dimensionality suppresses the 

discriminatory power of the DEA which has a very slow convergence rate (Daraio and Simar, 

2007). To overcome this situation, the sample was split into three periods: 1978–1992, 1993–

2005 and 2006–2014. These periods were chosen in order to account for the important shifts 

(reforms) in the common agricultural policy (CAP) in France. Another benefit of time pooling is 

to provide smooth efficiency scores exempt from high inter-annual variability. The major 

problem of this grouping strategy is that within each period, technological change is assumed to 

be absent, i.e. all changes in technology within a sub-period are attributed to modifications in 

technical inefficiency. It is worth noting here that the dynamic aspect of inefficiency is captured 

here through the adjustment costs associated to investments and has little if nothing to do with 

year-to-year based comparison of production frontiers through productivity indices (Malmquist-

Luenberger for example).9 

The empirical model distinguishes two variable inputs, one quasi-fixed input, one good output 

and three undesirable outputs. Fixed inputs are land which was measured in hectares and labor 

which was measured in annual working units. Labor was assumed fixed because most of the farm 

workers are family members. The quasi-fixed input is associated with the capital stock of 

machinery and equipment, buildings and land improvements, all measured in 2005 constant 

prices. The two variable inputs are intermediate consumption and livestock units (herd size). 

                                                 
9 Examples of this latter approach can be found in Aparicio et al. (2017); Arabi et al. (2017); Bampatsou and Halkos 

(2018); Tamini et al. (2012). 
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Intermediate consumption, also measured in constant prices of 2005, is the aggregation of 

different operational expenses and structural costs (feed costs, veterinary, miscellaneous supplies, 

other breeding costs, seeds, fertilizers, pesticides, fuels and lubricants, maintenance costs and 

overheads). Livestock was assumed to be a variable input as farmers can easily buy and sell 

suckler cows. The herd size is expressed in livestock units which represents a reference unit used 

for the aggregation of different types of animals on the basis of their nutritional or feed 

requirements. One livestock unit is equivalent to one dairy cow. The good output is the total 

weight of live meat produced on the farm, in kilograms, net from animal purchase. It is the only 

good output considered given that all other variables are related to this production. The bad 

output variable is the estimated greenhouse gas (GHG) emissions associated with the suckler 

cows’ activity, and were measured using life cycle assessment (LCA) (Guinée et al., 2002). For 

some inputs, the GHG emissions encompass all the associated flows from the cradle to the farm 

gate boundary. Three GHGs are considered: methane (CH4), nitrous oxide (N2O) and carbon 

dioxide (CO2), and these three gases are aggregated using their global warming potential (GWP) 

in comparison to the basis of carbon dioxide. The GWP for methane and nitrous oxide are 

respectively 25 and 298. Thereby, the total GHG emission can be computed and expressed in 

carbon dioxide equivalents. The descriptive statistics of the sample used for our analysis are 

displayed in Table 1. 

 

Table 1: Summary Statistics of the Pooled Sample (Average over the Period 1978–2014) 

Variables Mean (�̅) 
Standard 

deviation 

(��) 

Relative 

standard 

deviation 

(�� �̅⁄ ) 
Minimum Maximum 

Utilized land (hectares) 105.1 49.1 0.5 24.3 442.3 

Labor (full-time 

equivalent) 1.7 0.6 0.3 0.3 4.6 

Intermediate 

consumption (1000 Euro 46.4 30.0 0.6 4.7 263.8 
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in 2005) 

Herd size (livestock 

units) 129.6 64.9 0.5 14.4 465.0 

Capital (1000 Euro in 

2005) 92.6 57.6 0.6 4.0 443.4 

Investments (1000 Euro 

in 2005) 16.3 20.8 1.3 −24.9 230.7 

Meat (tons of live 

weight) 38.8 22.2 0.6 5.0 173.9 

Total GHG emissions 

(tons of CO2-eq) 564.9 309.1 0.5 58.1 2,580.4 

Number of farms 3,206 - - - - 

The investment variable, which is also expressed in Euro constant for 2005, is characterized by a 

large variation (i.e. a coefficient of variation greater than one) which might simply reflect the 

heterogeneity in investment behavior among farmers. For example, many farms prefer to lease 

farm machinery (contracting services) from machinery cooperatives instead of buying their own 

equipment. Thus, a farmer can borrow specific equipment (e.g. tractors) from a cooperative, but 

in return the farmer is charged with a price depending on the job that has been done (e.g. 

harvesting, mowing). Therefore, many farmers with this opportunity choose to invest very little 

in quasi-fixed inputs, a strategy which can partly explain the high heterogeneity for this variable. 

Moreover, 1.8% of the sample exhibits disinvestments and 9.1% zero investments.10 Figure 1 

reveals an increasing tendency in investments over the whole period (1978–2014) even if this 

growth rate seems to slow down from 1999 onwards. From this year, the average investment 

levels stabilize which may imply that farmers have reached their optimal size. Investments in 

machinery and equipment represent the biggest part of the total investments with at approx. 

                                                 
10 The negative and zeros values present in the sample for the investments variable raise some issues associated to 

the DEA approach that has been discussed in the literature. Indeed, DEA requires all variables to be positive. To be 

consistent with this property, we have deleted all observations with negative investments. As mentioned, they only 

represent 1.8% of the total sample. 
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81.3%, followed by investments in buildings which represent about 13.4%, and land 

improvements which constitute around 5.3%. 

Figure 1: Average Annual Evolution of Investments over the Period 1978–2014 

 

In terms of GHG emissions, the average sample pollution intensity decreases by 14.9 Kg of CO2 

equivalent per Kg of live meat. Methane is by far the most important GHG with a share of 68%. 

It is followed by nitrous oxide which represents 18% and carbon dioxide 14% of total GHG 

emissions. Methane is mainly generated by enteric fermentation, which is associated with the 

biological processes of animals. A small share of methane is also associated with manure 

management. Nitrous oxide derives from the use of mineral fertilizers and also manure spreading. 

Carbon dioxide is produced from the consumption of fossil combustibles but also from the 

manufacture of inputs such as feed and fertilizers (Beauchemin et al., 2010; Chobtang et al., 

2016; Dick et al., 2015). 

6-Results 
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Tables 2 and 3 present the results for the dynamic and static approaches, respectively. The 

inefficiency scores are displayed for each period and also for the whole sample. Tables 2 and 3 

also display the inefficiency associated with each input and output, except for land and labor as 

they were assumed to be fixed inputs.11  

Table 2: Dynamic Pollution-adjusted Inefficiency Scores: Averages over Different Periods 

(1978–1989, 1990–2001 and 2002–2013) with Service Inputs Included in the Good and the 

Bad Output Sub-technology 

Inefficiencies per period  

and variable 
1978–1992 1993–2005 2006–2014 Whole period 

Intermediate consumption  0.071 0.049 0.104 0.044 

Herd size  0.059 0.042 0.034 0.049 

Investments  6.223 4.836 4.019 6.783 

Meat  0.010 0.025 0.015 0.021 

GHG emissions  0.080 0.056 0.067 0.071 

Number of observations 1,365 1,127 656 3,148 

Table 3: Static Pollution-adjusted Inefficiency Scores: Averages over Different Periods 

(1978–1992, 1993–2005 and 2006–2014) with Service Inputs Included in the Good and the 

Bad Output Sub-technology 

Inefficiencies per period  

and variable 
1978–1992 1993–2005 2006–2014 Whole period 

Intermediate consumption  0.259 0.200 0.149 0.237 

Herd size  0.170 0.161 0.219 0.207 

Opening capital 0.470 0.536 0.478 0.586 

Meat  0.002 0.000 0.002 0.002 

GHG emissions  0.249 0.227 0.265 0.284 

                                                 
11 All computations were made using R software (R Core Team, 2017). 
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Number of observations 1,365 1,127 656 3,148 

Comparison of the results in Tables 2 and 3 provides some interesting observations. The 

inefficiency associated with the variable inputs, namely intermediate consumption and herd size, 

are higher in the static context than in the dynamic context. Actually, under the static context, the 

inefficiency associated with these variable inputs is at least 50% larger than the dynamic 

pollution-adjusted inefficiency. In the dynamic context, intermediate consumption and herd size 

can be decreased, by 4.4% and 4.9%, respectively, while they can be reduced by 23.7% and 

20.7%, respectively, in the static context. The same outcome was found by Silva et al. (2015) and 

Nick and Wetzel (2016), comparing static and dynamic input technical efficiency. Next, Simar 

and Zelenyuk (2006)’s algorithm with 2000 bootstrap iterations was applied to test the difference 

between the inefficiencies in the dynamic and the static context. Since the comparison of each 

pair of tables implies 20 different tests, the algorithm was only run for the last column of each 

table which considers the whole sample. The p-values corresponding to intermediate 

consumption, herd size, meat and GHG emissions are all equal to 2.22	� − 16, implying there is 

a statistically significant difference between static and dynamic inefficiency scores. This result 

shows that the inefficiency is significantly different when accounting for adjustment costs (via 

investments) in pollution-generating technologies. 

For meat production, the situation is different. The results show that the potential for increased 

meat production is slightly larger in the dynamic context than in the static context. In the static 

context, the farmers are actually almost fully efficient. More explicitly, under the dynamic 

technology the meat production can be increased by almost 2.1%, while under the static 

technology the potential for increasing output is only 0.2%. When accounting for the changes in 

quasi-fixed inputs, producers can produce more meat by fully taking advantage of the investment 

potential in comparison to the static case.  

For GHG emissions, the results go in the opposite direction, i.e. the dynamic inefficiency levels 

are much lower than their static counterparts. When considering dynamic measures, the levels of 

GHG can be reduced by 7.1% and this reduction potential increases to 28.4% in the static 

context. This result suggests that adjustment costs associated with gross investments are 

attributed to inefficiency in the static context.  
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The heterogeneity in the investment variable is clear from the high associated inefficiency scores 

in the performance evaluation (average scores between 4 and 7 over the different periods). The 

presence of farms that invest very small amounts (or do not invest at all) and some which invest 

large amounts can explain some of the high inefficiency levels associated with investments. 

However, this inefficiency can be tampered by splitting the sample based on the ratio of 

investment per capital stock. Using quartile distribution, the sample was split into four groups 

depending on the investment share (% of investment in the opening capital). The results (see 

Tables 4 and 512) show that the investment inefficiency levels reduce substantially. For example, 

the inefficiency score falls to almost 0.273 for farmers who invest between 4 and 11% in 

proportion to their capital stock. Although the inefficiency scores are still high (especially for 

farmers who invest more than 26%), by accounting for the different strategies of farmers in terms 

of investments, the heterogeneity is partly captured. Nevertheless, this situation might point out 

serious issues associated to investments in agriculture in general and to the case of suckler cow 

farms in France. The large room of potential improvement in investment management requires a 

deeper analysis of the determinants of farmer decisions in terms of investments. In both the static 

and dynamic cases, the highest inefficiencies are associated with the quasi-fixed inputs or 

investments in those inputs. Furthermore, given the level of investment, it appears that there is no 

obvious difference between the static and the dynamic approach when investment levels are 

lower than 11%. From 11% of investment or more, there are large differences in the inefficiency 

levels obtained under both approaches. This suggests that a dynamic approach is particularly 

meaningful in the case of significant levels of investment. 

Table 4: Dynamic Pollution-adjusted Inefficiency Scores under Different Ratio of 

Investment to Capital: Averages over the Period 1978–2014 (with Service Inputs Included 

in the Good and the Bad Output Sub-technology) 

Inefficiencies per ratio of investment to < 4% 4–11% 11–26% > 26% 

                                                 
12 We have also run the Li test to compare the static and dynamic inefficiency distributions under the different levels 

of investments. The results reveal that except for the when the investment share is lower than 4% (where herd size, 

intermediate consumption and GHG emissions are not significantly different), all the variables are (significantly) 

different between the static and the dynamic framework. 
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capital  

and variable 

Intermediate consumption  0.266 0.250 0.186 0.042 

Herd size  0.216 0.126 0.072 0.044 

Investments  0.292 0.273 1.064 6.126 

Meat  0.004 0.001 0.024 0.018 

GHG emissions  0.280 0.202 0.124 0.061 

Number of observations 818 736 795 799 

 

 

 

Table 5: Static Pollution-adjusted Inefficiency Scores under Different Ratio of Investment 

to Capital: Averages over the Period 1978–2014 (with Service Inputs Included in the Good 

and the Bad Output Sub-technology) 

Inefficiencies per ratio of 

investment to capital  

and variable 

< 4% 4–11%  11–26% >26% 

Intermediate consumption  0.253 0.199 0.195 0.150 

Herd size  0.212 0.165 0.150 0.159 

Opening capital 0.539 0.415 0.464 0.499 

Meat  0.005 0.000 0.000 0.000 

GHG emissions  0.275 0.220 0.222 0.222 

Number of observations 818 736 795 799 
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When evaluating the changes in inefficiency across periods, the reader should note that the 

inefficiency was measured for each input and output relative to period-specific frontiers. Hence, 

they provide information about the extent to which the productive potential of each input and 

output is utilized in each period. The evolution of static and dynamic inefficiency values shows 

some differences. For example, in the dynamic model, the inefficiency in herd size management 

decreases, while in the static case a major increase in the inefficiency is observed in the last 

period (2006–2014). In terms of intermediate consumption, the static technology shows an 

inefficiency decrease, whereas in the dynamic case, the inefficiency is lowest in the period 1993–

2005 and increases in the last period (2006–2014). In the static case, the efficiency related to 

meat production peaks in the period 1993–2005 before it drops in the last period. In the dynamic 

case, it is the inefficiency that reaches a peak in the second period. In both cases (dynamic and 

static), the inefficiency of GHG emissions decreases up until the second period (1993–2005) 

before it increases in the last time period. Overall, the average pollution-adjusted inefficiency 

decreases in the dynamic and static context, but this decrease is more distinct in the dynamic 

context (see also appendix 1 for yearly evolution). The inefficiency of investment decreases over 

the whole period of study with the main improvements realized during the last period (2006–

2014). Under the static technology, the inefficiency associated with the capital stock peaks in the 

second period before dropping in the last one. 

The comparison of the density plots (Figure 2) of the dynamic and static pollution-adjusted-

inefficiency also reveals large differences between these two scores for the sample of suckler cow 

farms. It appears that under the static technology, the distribution of the inefficiency score is 

highly concentrated displaying a leptokurtic distribution, while the distribution of the inefficiency 

under the dynamic framework is wider and exhibits a platykurtic distribution. This last result is 

again a reflection of the high heterogeneity in investments. 
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Figure 2: Dynamic and static Pollution-adjusted inefficiency score density plots comparison 

 

 

7-Conclusion 

This article proposes an adaptation of the by-production model (Dakpo, 2015; Murty et al., 2012) 

to account for adjustment costs in the presence of undesirable outputs. The paper measured and 

discussed dynamic pollution-adjusted inefficiency and compared it with a model that does not 

account for the presence of adjustment costs (i.e. static technology).  

Applying the model on a sample of suckler cow farms in France underscored the importance of 

accounting for the presence of adjustment costs when estimating technical inefficiency. The 

analysis also revealed very high inefficiency in investments for the farms under analysis. 

However, these high levels can be explained by the large heterogeneity in investment levels 

among the farms. The results also show that the investment inefficiency levels decrease 

substantially when splitting the sample in groups based on investment intensity, and that the 
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differences between the static and dynamic inefficiency levels are much smaller for farms that 

have low investments. In terms of policy implications, the Common Agricultural Policy (CAP) 

has been providing farmers with financial incentives through second pillar investments and 

modernization subsidies. The high inefficiency associated with investments suggest that these 

subsidies are partly lost to poor investment choices and partly also through adjustment costs 

associated with investments. 

The results also demonstrate that the inefficiency of the intermediate consumption, herd size and 

GHG emissions are lower under the dynamic framework, i.e. farms are actually performing better 

compared to a static situation where adjustments costs are not accounted for. In addition, for meat 

production, the improvement potential is higher under the dynamic technology and therefore 

underestimated under the static technology. All these observations imply that it is important to 

account for the presence of adjustment costs in the estimation of pollution-adjusted inefficiency. 

Hence, future research in modelling pollution-generating technologies should account for the 

quasi-fixed nature of some inputs. 

Finally, this work can be extended to productivity analysis and to the estimation of dynamic 

shadow prices of pollutants (see e.g. Chambers et al. (2014) for estimation in the static by-

production context). In addition, farmers that rely on machinery cooperatives will have lower 

investment levels than farmers that purchase machinery. Hence, future research could investigate 

the benefits to farmers participating in machinery cooperatives in terms of their avoided 

adjustment costs.  
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