
HAL Id: hal-02163697
https://hal.science/hal-02163697

Submitted on 28 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Style-Based Model Transformation for Early
Extrafunctional Analysis of Distributed Systems

Julien Mallet, Siegfried Rouvrais

To cite this version:
Julien Mallet, Siegfried Rouvrais. Style-Based Model Transformation for Early Extrafunctional Anal-
ysis of Distributed Systems. QoSA ’08 : international conference on quality of software architecture,
Oct 2008, Karlsruhe, Germany. pp.55 - 70. �hal-02163697�

https://hal.science/hal-02163697
https://hal.archives-ouvertes.fr

Style-Based Model Transformation

for Early Extrafunctional Analysis
of Distributed Systems

Julien Mallet and Siegfried Rouvrais

Institut TELECOM; TELECOM Bretagne
Technopole Brest-Iroise, CS 83818, 29238 Brest Cedex 3, France
{julien.mallet,siegfried.rouvrais}@telecom-bretagne.eu

Abstract. In distributed environments, client-server, publish-subscribe,
and peer-to-peer architecture styles are largely employed. However, style
selection often remains implicit, relying on the designer’s know-how re-
garding requirements. In this paper, we propose a framework to explic-
itly specify distributed architectural styles, as independent models of
the application functionalities. To justify feasibility and further benefits
of our approach, we formally define three classical distributed architec-
tural styles in a process calculus. Our proposal then opens up the way
to a systematic composition of functional models with architectural style
models as an endogenous transformation. Comparative analysis of extra-
functional properties could then be proposed at the early design stages
to guide the architect in stylistic choices.

1 Introduction

Architectural styles build up conventional structures for designing large systems
at a software architecture level. Different architectural styles enforce different
quality attributes for a system [1]. Within distributed systems, an application
often relies on an architectural style which defines connections between applica-
tion components (e.g. simple message interaction models, client-server, publish-
subscribe, peer-to-peer). Most often, style selection remains implicit and tacit [2],
relying on the architect’s know-how regarding requirements. Choosing an inap-
propriate architectural style can lead to major impacts on the properties of a
system or application [3]. Moreover, extrafunctional properties such as security,
performance, reliability or scalability are not easily grasped at an abstract de-
scription level. Such concerns thus tend to be forwarded to the end of the design
process lifecycle, though they are rough to manage once a style has been selected
and a system designed. They are however the critical selection criteria to bet-
ter manage the development process, regarding system’s internal and external
properties.

Specifying a distributed system’s software architecture classically requires to
model architectural components and connectors, and some of their extrafunc-
tional properties. However connectors, as communication mediums, are parts

of distributed styles having their own comprehensive, intrinsic, and emergent
properties. To manage extrafunctional properties at early design stages, we pro-
pose to specify distributed architectural styles independently of the functional
model. By separating concerns in a framework, we then propose a model trans-
formation corresponding to a composition of an abstract functional model with
styles predefined in a repository. Functional and especially extrafunctional anal-
ysis could then be investigated to compare models and guide the architect faced
with several distributed design alternatives. To justify the approach, we restrict
to three common distributed styles descriptions in this paper, using structure
diagrams and process calculus: client-server [4], publish-subscribe [5] and peer-
to-peer [6]. A distributed version control system with its functional model is
proposed as a case study.

The remainder of this paper is organised as follows. Section 2 introduces
our framework and proposes some common distributed architectural styles and
their specifications using a process calculus. Section 3 presents an independent
functional model and proposes a specification example on the version control
system case study. The systematic composition of a functional model with an
architecture style model is described in section 4 through the application exam-
ple. Section 5 addresses extrafunctional properties integration in the framework,
while section 6 presents related work. Finally, section 7 concludes this paper
with a summary and an outline of further research.

2 A Framework with Distributed Architectural Styles

The motivation of the proposed framework presented in figure 1 is to guide
the architect in choosing the right distributed architecture style in conformance
with extrafunctional requirements. It follows a model driven engineering ap-
proach [7] and addresses the quality of the target system’s software architecture
for early design decisions. First, the designer specifies system functionality using

Extrafunctional

requirements

(style−based composition)

Early
analysis

Endogeneous Model Transformation

Analysis
Architecture model

(SDM)

(SSM)

Styles repository

(SIM)

Style−independant
functional model

Fig. 1. The overall framework

a style-independent model (SIM). This model is purely functional: the services
are provided in an ideal structureless-environment. However, application com-
ponents in a distributed system require some interaction mechanisms for co-
ordination and communication. As early proposed in the software architecture
community [8], architectural styles provide conventional structures for building
large systems [9,10]. Such structures are the primary models for distributed in-
teractions. Connectors, as interaction mechanisms, are the principal structural
elements for a boxology [3] of distributed architectural styles. Within distributed
systems, the client-server architectural style [4], based on the request-reply pro-
tocol, is still predominant. With Web generalisation, related styles like service-
oriented or Representational State Transfer (REST [11]) architectures are now
taking a major position. So far, mechanisms for coordination and communica-
tion based on push-like models (e.g. message sending) or pull-like models (e.g.
request-reply) are structural elements of architectural styles. Thus, we propose
to gather distributed architecture styles in a repository of style definition models
(SDM). Those models, having their own extrafunctional characteristics, can be
early analysed in light of extrafunctional requirements.

Extrafunctional properties (e.g. security, performance, scalability) are key el-
ements to guide the design decisions. Our transformation model consists in com-
posing the required functional services with a given distributed style available in
the repository. A distributed architectural style candidate can first be selected
in front of quality attributes. The resulting style specific model (SSM) repre-
sents a possible system’s architecture model which can be compared with other
SSMs using functional and extrafunctional analysis. The framework makes it
possible to choose, at upper stages, possible styles thanks to the extrafunctional
properties. After analysis, if a proposed style specific model does not guarantee
the extrafunctional requirements, the architect may modify or weaken some of
the requirements until finding an appropriate style, or introduce specific mech-
anisms (e.g. patterns) in the specified system’s software architecture to satisfy
requirements.

2.1 Three Classical Distributed Architecture Style Models

Client-server, publish-subscribe, and peer-to-peer styles are largely used for dis-
tributed applications. Such styles encourage reusability, system comprehension,
and analysis by using well-known interaction mechanisms. These mechanisms
predominantly rely on push or pull models. Style variants exist, but they share
common characteristics at an abstract level. In the classical client-server style,
a client component requests a service through a remote invocation to a server
component. Often synchronous, this interaction mechanism follows a pull model
based on a request-reply protocol. In the publish-subscribe style, components
are either announcers or listeners of events. By registering through an event
manager, listeners are asynchronously informed of events most often through a
push model. In the decentralised peer-to-peer style, where a peer represents a
component, overlays, as logical networks, are dynamically constructed or main-
tained. For instance, by using a pure pull model between peer neighbours or by

combining the pull with a push model restricted in depth, this style is much
adopted in mobile or ubiquitous environments.

The distributed architecture styles have emergent extrafunctional properties.
For example, the publish-subscribe and peer-to-peer styles are mostly known to
be scalable and reliable. Moreover, the publish-subscribe style generally guaran-
tees the anonymity of the announcers. However, these intrinsic properties mainly
arise from empirical studies and not from systematic evaluations on style models.

2.2 Modelling Architectural Styles

Magee and Kramer [12] provide elements of style specification using the Finite
State Processes (FSP) process calculus. For our purpose, we expand their style
examples to create a first repository of distributed styles, independent of any
application functionalities. Other formal approaches could have been addressed,
but FSP process calculus, with its associated LTSA tool (i.e. model-checker), is
suitable for a comprehensible demonstrator for a model transformation. For the
sake of clarity, the three classical distributed styles addressed in this paper are
shown hereafter as structure diagrams of processes (i.e. components as boxes
in figures) and ports or events (i.e. bullets in figures). Note that the structure
diagrams are only graphical representations of the FSP expressions as defined
in [12] (e.g. the notion of provided/required ports does not exist). Elements of
syntactical FSP expressions for client-server and publish-subscribe styles can be
found in [12]. We detail the FSP expression only for the client-server style.

Figure 2 presents the generic client-server style, through the structure dia-
gram, where several clients call services from the server and obtain the associ-
ated result. The clients are introduced by the processes CLIENT (stacked boxes
represent identical processes). A given client will always request the same service

call[s]

wait[d]

call[s]

reply[d]

request[s]

reply[d]

process_service[s][d]service[s][d]

CLIENT(s) SERVER

set Data = {d1,d2,d3,d4}
set ServiceId = {s1,s2}
set Clients ={c1,c2,c3}
CLIENT(S=’si)

= (call[S] −> wait[d:Data] −> service[S][d] −> CLIENT)+{call[ServiceId]}.
SERVER

= (request[s:ServiceId] −> process service[s][d:Data] −> reply[d] −> SERVER).
||CS EX

= (c1:CLIENT(’s1) || c2:CLIENT(’s2) || c3:CLIENT(’s1) || Clients:SERVER)
/{forall [c:Clients]{[c].call/[c].request,[c].reply/[c].wait}}.

Fig. 2. Structure diagram and FSP expression of a client-server style

(introduced by its parameter s). Furthermore, each CLIENT process is statically
linked with one distinct SERVER process that responds to its request (there are
as many SERVER as CLIENT processes). For model transformation, in order to
further compose the style-independent and style definition models, the clients
provide a service[s][d] event corresponding to an external call to the service s that
returns a result d, and the server offers a process service event corresponding to
an external service computation.

In addition, figure 2 presents the corresponding FSP expression and an ex-
ample of an instanced client-server style (process ||CS EX). Three sets are intro-
duced: Data as the possible results, ServiceId as the service names offered by the
server and Clients as the identifiers of the client processes. A CLIENT process
calls the service (event call[S]), then awaits synchronously the result (event wait),
forwards it through the service event to external components and iterates. Simi-
larly to [12], the CLIENT process uses the alphabet extension operator (noted +)
in order to ensure a suitable synchronisation between the clients and the server
and takes the service name as parameter (its default value is si). The SERVER
process awaits a service request (event request), then requests the result com-
putation (event process service) and returns the result (event reply). Finally, the
||CS EX client-server style example is the parallel composition of the clients (in
our case, three clients: c1, c2 and c3) with as many server processes prefixed
by the identifier of the corresponding client (expression Clients:SERVER). Cor-
responding to architectural attachments, the mapping between client and server
events associates, respectively, the call and wait events of the client with the
request and reply events of the corresponding server.

Note that the definition of the client-server style is generic : we just have to
define the Data, Client and ServiceId specific sets in order to instanciate the style
to a client-server application.

Relying on [12], figure 3 presents the publish-subscribe style where one
announcer (process ANNOUNCER) publishes events to zero or more listeners
(process LISTENER). The EVENTMANAGER process carries out the event broad-
casting. A listener can register his/her interest in a particular pattern p with the
event manager through the register[p] event. Each time the announcer produces
the pattern, only the registered listener is notified. Finally, a listener can dereg-
ister himself through the deregister event. In order to specify this style in FSP,
one event manager process is introduced per listener. When an event announce-
ment is produced, the event managers forward it to their associated registered
listeners.

register[p] register[p]

event[p]

deregister deregister

event[p]

announce[p]

EVENTMANAGER

announce[p]

ANNOUNCER

service[p] process_service[p]

LISTENER(p)

Fig. 3. Structure diagram of a publish-subscribe style

request[p][s]

reply[p][d]process_service[s][d]

service[s][d]

begin_flood[j][s]

end_flood[j][d]

end_flood[j][d]

call[i][s]

wait[i][d]

begin_flood[j][s]

PEER(i)

FLOODER(i,j)

Fig. 4. Structure diagram of a pure peer-to-peer style

Finally, figure 4 presents the peer-to-peer style in its flooding version where
peers collaborate through a pull model (e.g. like in the Gnutella scheme). Since
many variants of peer-to-peer styles exist, we limit our example to the simple
flooding version. Each peer is represented by a PEER process taking its number as
parameter. It offers two services as interface: service[s][d] for requesting a service
s returning the result d and process service[s][d] for requesting external compo-
nents. A FLOODER process per peer is associated with each link between peers.
In the figure 4, the peers of number i and j are neighbouring. The FLOODER
sends the requests to the peer neighbours (event call) then awaits the response
from the latter (event wait). Therefore, the topology of the considered peer-to-
peer network is modelled by the FLOODER and PEER links. At the time of a
service[s][d] event, the PEER process initiates the flood request to its neighbours
with the begin flood event. The FLOODER process carries out the flood, then ob-
tains the result d thanks to the wait[i][d] event. Finally, a PEER process receives
the result through the end flood event and transmits it to the requester.

The styles presented above and contained in the repository are distributed
architecture styles rather than communication ones in the sense that they de-
scribe interaction between components. Due to the style transformation (pre-
sented section 4), the intended interaction mechanisms will be introduced into
the functional model using the selected style model.

3 Functional Model

In the framework, the designer first specifies his system in a style-independent
model, with a pure functional point of view set in an ideal non-constrained envi-
ronment: extrafunctional properties are not taken into account, and architectural
stylistic elements are abstracted.

Thereafter, we exemplify this principle on a version control system as a clas-
sical distributed case study. A version control system (e.g. CVS) allows several
users/developers to modify a set of shared files concurrently. Each developer has
a copy of the files (most often in a repository) which he/she can modify locally,
using a write command. The local modifications are spread to other developers

with a commit command, using the versioning system. Update command brings
local copies up-to-date with the last shared version.

3.1 Pure Functional Model of a Versioning System

The style-independent functional model of a distributed application is defined
by introducing, for each user, the three following components (defined by one or
more processes as the application requires):

– User: operations from the user’s point of view (i.e. update, write, and com-
mit in the example). It introduces the available services thanks to shared
events;

– RemoteState: operations for data information obtained from other users
due to distribution (i.e. future components for interaction mechanisms);

– Safe: business rules specified through authorised sequences of events in the
system, to guarantee application requirements in functional terms.

Our abstract level approach is general and can be applied to other distributed
applications as long as they could be decomposed into the three previous com-
ponents. For our case study, each preceding component is specified by one FSP
process (i.e. User, RemoteState, Safe) as presented in the structure diagram of
figure 5. Each User process of the system takes a unique user number I as pa-
rameter. It holds and updates the state of its local copy of the repository (i.e.
either it is identical to the reference repository or it contains some update). Any
user can modify the file locally (event write), update his/her local copy with
the repository (event update) or update the repository with his/her local copy
(event commit). Moreover, the User process offers a service to read its local state
thanks to the localState event. In the structure diagram, the User(I) and User(J)
are similar except for their number. We distinguish them in order to present the
specific shared events between User and RemoteState processes.

localState[I][ls]

write[I]

update[I]

localState[I][ls]

Safe(I)

remoteState[I][rs]

commit[I]

write[I]

update[I]

remoteState[I][rs]

RemoteState(I)

update[I]

commit[J]

commit[I]

commit[J]

User(I)

User(J)

VC_FUNCTIONAL

Fig. 5. Functional structure diagram of a source control management system

The RemoteState(I) process abstracts the overall remote state for the ith User
process. The remote state is either remotely non modified (other users have not
modified the repository since the last local update) or remotely modified (one
or more other user has modified the repository). So, when another User(J) pro-
cess, distinct from User(I), performs a commit, the remote state associated with
I becomes remotely modified. When User(I) produces an update event, the re-
mote state becomes remotely non-modified. Furthermore, RemoteState provides
a service allowing its state to be read (event remoteState).

Finally, Safe(I) processes ensure the right update policy (i.e. each User(I)
process has to obtain a local copy that is consistent with the repository before
updating the repository with its changes). These processes define the functional
properties that the whole system has to ensure by specifying the authorised
sequences of events.

There are several implementations of versioning systems, introducing archi-
tectural styles more or less implicitly (e.g. CVS and Subversion rely on the
client-server style, SVK uses the peer-to-peer style). As we can see in our case
study, the functional model does not imply any style.

3.2 Facilitating Functional Model Generation

We propose to formally specify style-independent models at an abstract level
using a process calculus. A functional model is a composition of processes having
remote states definitions. However, specifying processes could be difficult for the
designer unfamiliar with formal methods. Tools supporting functional model
elaboration have been designed in the process calculus community. For instance,
based on scenarios specified as sequence diagrams or message sequence charts,
FSP expressions could be generated to assist the architect [13].

4 Functional and Style-Based Model Transformation

Once a functional model of the system has been specified by the designer, it
can be related to a certain architectural style model taken from the repository.
Thanks to process calculus specifications, the transformation is achieved by pro-
cess composition and event renaming. This model transformation is endogenous,
i.e. the source and target models are still FSP processes. The generic transfor-
mation process is based on the following steps:

1. Choice of an architectural style in the repository (note that the designer
could be egged on a choice due to early analysis on style models);

2. Selection of functional model event(s) in order to introduce the style;
3. Definition of event relabelling between functional model and style.

These above steps are devolved to the designer. Then, based on them, a sys-
tematic transformation can be applied in order to obtain the style specific model.
The target style specific model is simply a process parallel composition, where
events have been relabelled. We detail two generic transformations on our case

study, respectively to produce client-server and publish-subscribe style specific
models. The transformation will link the external events of a style (e.g. service
and process service for the client-server style) with shared events of the func-
tional model (e.g. commit, update and remoteState for the case study). These
later events can be seen as join points for the style introduction.

4.1 Two Style Specific Models of the Case Study

A Client-Server Versioning System. The client-server style is introduced
through the remoteState, update and commit events shared by the User, Safe
and RemoteState processes from the functional model detailed in section 3. The
events are transformed into a request-reply interaction between clients and a
server. The resulting structure diagram is given in figure 6. Three kinds of com-
ponents are identified: CS GEN, VC CLIENTS, and VC SERVER. CS GEN is the
client-server process described in section 2. VC CLIENTS represents the n clients
of the distributed versioning system, each one maintaining the state of the lo-
cal copy of a user and ensuring the access policy to the repository. Finally,
VC SERVER is the system server that holds and maintains the remote state of
each user.

Figure 7 presents the FSP expression (for simplicity, only the components
previously described are given). The processes from the functional model are
unchanged (i.e. User, Safe and RemoteSate). In this case, the system is com-
posed of three users identified by u0, u1 and u2. ServiceId is the set of events
used as join points in order to introduce the style. The ||CS GEN component
contains a CLIENT process per event and user. Thus, for the remoteState event,
there are three CLIENT processes, prefixed by u1.remoteState, u2.remoteState
and u3.remoteState respectively. The ||VC CLIENTS component is the parallel
composition of the User and Safe processes. Events are relabelled in order to

remoteState[I][rs]

RemoteState(I)

update[I]

commit[J]service[s][d] process_service[s][d]

localState[I][ls] localState[I][ls]

Safe(I)

User(I)

commit[I]

User(J)
commit[J]

remoteState[I][rs]

commit[I]

write[I] write[I]

update[I]update[I]

VC_CLIENTS

VC_SERVERCS_GEN

call[s]

reply[d]

request[s]

reply[d]

SERVER

call[s]

wait[d]

CLIENT(s)

Fig. 6. Structure diagram of the client-server specific model

set Users = {u0,u1,u2}
const NUser = #Users
range U =0..NUser−1
set ServiceId = {remoteState,update,commit}
||CS GEN

= (forall[c:Users](forall[s:ServiceId]([c].[s]:CLIENT(s)))
|| Users[s:ServiceId]:SERVER)

/{forall [c:Users]{forall [s:ServiceId]{
[c].[s].call/[c].[s].request,[c].[s].reply/[c].[s].wait}}}.

||VC CLIENTS
= forall[i:U](User(i)||Safe(i))

/{forall[j:U]{[@(Users,j)].remoteState.service[’remoteState]/remoteState[j],
[@(Users,j)].update.service[’update]/update[j],
[@(Users,j)].commit.service[’commit]/commit[j]}}.

||VC SERVER
= (forall[i:U](RemoteState(i)))

/{forall[j:U]{[@(Users,j)].remoteState.process service[’remoteState]/remoteState[j],
[@(Users,j)].update.process service[’update]/update[j],
[@(Users,j)].commit.process service[’commit]/commit[j]}}.

||VC CS =(VC CLIENTS || CS GEN || VC SERVER).

Fig. 7. Case study client-server FSP expression

match the style events. For instance, the remoteState[0] event of User(0) is re-
labelled u0.remoteState.service[’remoteState] (in FSP, the expression @(Users, j)
denotes the jth element of Users). The ||VC SERVER component composes the
RemoteState processes and relabels events equally. Finally, the ||VC CS final sys-
tem is the parallel composition of the three previous components.

A Publish-Subscribe Versioning System. For the publish-subscribe style,
we choose the commit event shared by the User and RemoteState processes in
order to introduce the style. This event is transformed into a push mode inter-
action: each User notifies all the others that he/she has modified the repository.
The resulting structure diagram is given in figure 8. Three kinds of compo-
nent are introduced: VC ANNOUNCERS, VC LISTENERS and PS GEN for the
style. The first one contains the User processes that act as announcers of com-
mit events. The VC LISTENERS component contains the RemoteState processes
acting as listeners of the same events. At commit time, the User(J) process an-
nounces the commit[J] event to the event manager, which broadcasts it to all
the RemoteState processes. The users communicate through the event manager
to notify repository updates.

We have shown throughout this example that a functional model could be
systematically composed with different styles provided in a common repository.
Nowadays, the transformations are handmade; we have not yet an automatic tool
that produces the target style specific model but we plan to describe formally
the style transformation as a FSP expression transformation. Indeed, the trans-
formation consists in composing the FSP expression of the functional model with

announce[p]

ANNOUNCER

service[p] register[p]

event[p]

deregister

announce[p]

EVENTMANAGER

register[p]

deregister

event[p]

process_service[p]

LISTENER(p)

localState[I][ls] localState[I][ls]

Safe(I)

User(I)

commit[I]

User(J)
commit[J]

remoteState[I][rs]

commit[I]

write[I] write[I]

update[I]update[I]

VC_ANNOUNCERS

PS_GEN

VC_LISTENERS

remoteState[I][rs]

RemoteState(I)

update[I]
commit[J]

Fig. 8. Structure diagram of the publish-subscribe specific model

the chosen style one and relabelling the events in order to match the functional
model ones with the external events of the style.

Further, style variants are also to be considered. In fact, RemoteState could
be distributed either locally on a User or within a particular component. A
range of style interaction models can then be made available according to the
required distribution. After composition, a model checker is the primary tool
used to verify conformity with functional requirements. A generated model can
be verified through a LTSA model checker (e.g. liveness, progress). For the ver-
sioning system example, we can check that the update policy is preserved after
the style introduction (i.e. there is no deadlock due to the SAFE processes). But
extrafunctional properties should be the key concerns for selection.

5 Preparing Architecture Quality Analysis

For the moment, our framework focuses mainly on the functional services and
properties of the system’s software architecture. However, extrafunctional prop-
erties are also to be taken into account in the style definition models and in
style-specific models so as to compare architectural choices. Some styles are in-
trinsically known to meet extrafunctional requirements more easily. In particular,
peer-to-peer distributed systems are well recognised for scalability and reliabil-
ity characteristics; publish-subscribe systems support extensibility, anonymity of
actors and dynamicity of incoming/outgoing participants; client-server systems
are often considered better for flexibility but worst for availability due to single
points of failure.

Using our approach, some security properties such as message authenticity,
confidentiality and integrity may be early verified, e.g. based on earlier formal
work of Schneider [14]. Pursuant to this proposition, the system is specified in
the CSP process calculus (quite similar to FSP) and includes an additional en-
emy process in order to model potential security attacks (e.g. message leakage,
message alteration). The security properties are then introduced as properties
on event traces. For example, for message confidentiality, it can be stated that
each message received by the enemy process must have been sent to it before.
This ensures that the message can only be accessed by the component which
was intended to receive it. Security analysis on a style model could then warn
anonymity weaknesses in face of strong security requirements. The designer could
then have a look at other styles or investigate the introduction of security mech-
anisms after model transformation. In order to preserve architecture quality af-
ter refinement by introducing such mechanisms, cross-cutting concerns between
extrafunctional properties need to be addressed. Extrafunctional properties in-
fluence each other [15] and can lead to conflicts in face of requirements (e.g. a
security mechanism impacts performance issues).

On the other hand, extensions to process algebras allow to introduce a timed
interpretation, i.e. to specify time performance properties as computing time
or message transfer time. These existing works seem a good starting point
to introduce extrafunctional properties into the framework. Their integration
and the extension to other properties (e.g. scalability, dependability) are under
investigation.

6 Related Work

An application can rely on several styles. As an early example, Garlan and
Shaw [8] have defined a collection of architectural styles showing how different
architectural solutions for a same problem offer different benefits. For exam-
ple, they outline four distinct architectural designs for the Key Word In Con-
text (KWIC) system (i.e. shared data, abstract data types, implicit invocation,
and pipes and filters). However, their early proposal does not open up the way
to a systematic transformation of functional models with different styles. In a
distributed system, selected interaction mechanisms impact locally on extra-
functional properties of a point-to-point interaction. But the choice of the right
architectural style also broadly depends on the emergent properties addressed
by the overall structure. To guide the selection, a formal specification of com-
mon distributed styles is a prerequisite for early analysis. Moreover, styles could
be combined [16] to meet specific requirements, encouraging analysis assistance.
Our proposal tends to go one step further in this direction.

In the last ten years, a number of architecture description languages have
been proposed to represent software architectures (e.g. [17,18,19]). More re-
cently, development and deployment of large distributed systems also conduce to
rely on component models with dedicated languages (e.g. CCM, Fractal, GCM).
Some of those architecture description languages open up the way to analysis by

incorporating formal specifications (e.g. CSP or pi-calculus, Z, OCL, types, graph
grammars or chemical abstract machine). However, their usage does not directly
dissociate styles from system models and therefore limits the definition of a fixed
repository of styles independent of the architect’s know-how.

To the best of our knowledge, three mature frameworks provide some architec-
ture stylistic guidance. Morisawa and Torii [20] have restricted their exploration
to the client-server style alternatives and propose to evaluate them under some
of the ISO 9126 quality issues (e.g. data security, reply to user for time perfor-
mance). Metrics with maximum range are fixed on properties. The target style
may be selected thanks to size and distance functions regarding requirement cri-
teria. It is worth noting that several extrafunctional characteristics are not taken
into account at the level of early design choices. By separating concerns, the ISO
42010:2007 recommended practice [21] now provides some elements within a con-
ceptual framework for describing and analysing complex architectures in terms
of architectural viewpoints. However, there is still a recognised gap between re-
quirements and architectural description phases.

The NFR framework [22] considers extrafunctional goals to guide the de-
signer and cover a far-reaching area of extrafunctional requirements. A nonfunc-
tional requirement is defined in a tree description as a combination of lower
level requirements (e.g. security is a combination of confidentiality, integrity and
availability) and pattern-mechanisms to meet them (e.g. confidentiality can be
ensured by using authentication and access matrix). Informal positive and neg-
ative contributions between mechanisms and requirements are elaborated by an
expert to guide the selection. Architectural patterns can also be attached to a
tree, based on property contributions known by experience. In this case, an ar-
chitecture guidance is a mechanisms and patterns proposal in conformance with
requirements.

After identifying actors and goals for a system, the i∗ framework [23] permits
to represent dependencies between components (e.g. tasks, resources) and then
elaborates alternative architectures. By selecting predefined architectural pat-
terns corresponding to quality attributes, refined solutions of an instance system
are then evaluated through metrics (actor-based and dependency-based). This
framework, used for system reengineering (i.e. SARiM and PRiM methods) un-
der quality issues, fruitfully distinguishes functional and extrafunctional aspects.
However, its pattern-based approach is flexible but less rigorous than a formal
transformation, and stylistic choices remain handmade at a pattern-level rather
than at a high structural one.

7 Conclusion and Perspective

Designing software architecture of good quality, satisfying requirements, is recog-
nised as a complex task. To facilitate construction in the lifecycle, well-known
architectural abstractions could be employed at the early design stages. How-
ever, a style choice could considerably impact extrafunctional properties in the
rest of the design cycle with sometimes large influences at the implementation
stages. Requirement specifications do not always impose or promote style models.

Depending on the functional and extrafunctional properties, an architect faced
with alternatives could rely on his/her know-how. Thus, alternatives scope and
criteria for style selection often remain implicit [2] and tend to be put forward
in the design process.

It is critical to better manage extrafunctional properties in the architecture
design as an engineering discipline. Architecture analysis at the early stages
is crucial to satisfy requirements in the final application or system and limits
tacit choices for the architect. By specifying the behaviour of an application
only in terms of functional concerns, independently of a style, our conjecture
prepares for the separation of distribution concerns. Indeed, some extrafunctional
properties [15] are intrinsic to specific styles [16] (e.g. reliability in client-server
or scalability in peer-to-peer).

Therefore, we have proposed in this paper a model-driven framework to shed
light on the appropriateness of separating functional system concerns from dis-
tributed architectural style. Relying on a process calculus, our formal design pro-
cess enables different architectural solutions to be systematically generated by
a transformation model. We tackled style independent and style specific models
at an abstract specification level, and have shown through a classical distributed
application that functional models could be expressed by a designer indepen-
dently of interaction mechanisms. Based on an expandable repository of styles,
a functional model of an application could be systematically composed with
alternative styles for further comparative analysis before development. The ap-
plicability of our approach has been justified, through three distributed styles,
with a classical distributed version control system case study. For the architect
faced with design alternatives, our framework thus provides early formal support
and allows to address the software architecture quality at higher design stages.

Following the NFR framework [22] proposal for quality attributes, future work
will take into consideration other extrafunctional properties for styles and anal-
yse their impact on the composition process. Is a property simply intrinsic or
not to a style? How to match the extrafunctional requirements with the re-
sults of analysis in our approach? Noting that resulting models are analysable
with respect to some extrafunctional properties, they could be extended with
patterns of mechanisms to meet requirements. Finally, a process calculus is not
ideally suited to all of the extrafunctional concerns. Further, it might restrict the
expandableness of the style repository (e.g. in order to address more dynamic
notions). Other formalisms could also be considered in our framework to meet
requirement specifications and to increase the expressiveness of style description.

References

1. Bhattacharya, S., Perry, D.E.: Predicting architectural styles from component spec-
ifications. In: Proceedings of the 5th Working IEEE/IFIP Conf. on Software Ar-
chitecture, pp. 231–232. IEEE Computer Society Press, Los Alamitos (2005)

2. Kruchten, P., Lago, P., van Vliet, H., Wolf, T.: Building up and exploiting architec-
tural knowledge. In: Hofmeister, C., Crnkovic, I., Reussner, R. (eds.) QoSA 2006.
LNCS, vol. 4214. pp. 43–58. Springer, Heidelberg (2006)

3. Shaw, M.: Comparing architectural design styles. IEEE Software 12(6), 27–41
(1995)

4. Orfali, R., Harkey, D., Edwards, J.: The essential client/server survival guide. John
Wiley and Sons, Chichester (1996)

5. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Computing Surveys 35(2), 114–131 (2003)

6. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distri-
bution technologies. ACM Computing Surveys 36(4), 335–371 (2004)

7. OMG: Object Management Group (Lillerand, J., Mukerji, J. (eds.)) Model Driven
Architecture Guide, version 1.0.1 (June 2003),
http://www.omg.org/docs/omg/03-06-01.pdf

8. Garlan, D., Shaw, M.: An introduction to software architecture. Advances in Soft-
ware Engineering and Knowledge Engineering 2, 1–39 (1993)

9. Bushmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A system of patterns. John Wiley and Sons, Chich-
ester (1996)

10. Shaw, M., Clements, P.: Toward boxology: preliminary classification of architec-
tural styles. In: Proceedings of the second international software architecture work-
shop (ISAW-2) on SIGSOFT 1996 workshops, pp. 50–54. IEEE Computer Society
Press, Los Alamitos (1996)

11. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture.
ACM Trans. Internet Technol. 2(2), 115–150 (2002)

12. Magee, J., Kramer, J.: Concurrency: State Models and Java Programs. John Wiley
and Sons, Chichester (2006)

13. Uchitel, S., Chatley, R., Kramer, J., Magee, J.: LTSA-MSC: Tool support for be-
haviour model elaboration using implied scenarios. In: Garavel, H., Hatcliff, J.
(eds.) ETAPS 2003 and TACAS 2003. LNCS, vol. 2619. pp. 597–601. Springer,
Heidelberg (2003)

14. Schneider, S.: Security properties and CSP. In: Proceedings of the 1996 IEEE
Symposium on Security and Privacy, pp. 174–187. IEEE Computer Society Press,
Los Alamitos (1996)

15. Chung, L., Nixon, B.A., Yu, E.: Using non-functional requirements to system-
atically select among alternatives in architectural design. In: First International
Workshop on Architectures for Software Systems (IWASS), pp. 31–43 (1995)

16. Mehta, N., Medvidovic, N.: Composing architectural styles from architectural
primitives. In: Proceedings of the 9th European Software Engineering Conference
(ESEC), pp. 347–350. ACM press, New York (2003)

17. Magee, J., Kramer, J.: Modelling distributed software architectures. In: First In-
ternational Workshop on Architectures for Software Systems (IWASS) (1995)

18. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Transactions on Software Engineer-
ing 26(1), 70–93 (2000)

19. Zhang, S., Goddard, S.: xsadl: An architecture description language to specify
component-based systems. In: Proceedings of the IEEE Int. Conference on Infor-
mation Technology: Coding and Computing, pp. 443–448. IEEE Computer Society,
Los Alamitos (2005)

20. Morisawa, Y., Torii, K.: An architectural style of product lines for distributed
processing systems, and practical selection method. In: ESEC/FSE-9: Proceedings
of the 8th European software engineering conference held jointly with 9th ACM
SIGSOFT international symposium on Foundations of software engineering, pp.
11–20. ACM, New York (2001)

http://www.omg.org/docs/omg/03-06-01.pdf

21. ISO: International Organization for Standardization: Systems and Software Engi-
neering – Recommended practice for architectural description of software-intensive
systems. ISO/IEC DIS 42010, 90.92 review stage (December 2007)

22. Chung, L., Gross, D., Yu, E.: Architectural design to meet stakeholder require-
ments. In: Donohue, P. (ed.) Software Architecture, First Working IFIP Confer-
ence on Software Architecture (WICSA1), Vienna, Austria, pp. 545–564. Kluwer
Academic Publishers, Dordrecht (1999)

23. Grau, G., Franch, X.: A goal-oriented approach for the generation and evaluation
of alternative architectures. In: Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758.
pp. 139–155. Springer, Heidelberg (2007)

View publication statsView publication stats

https://www.researchgate.net/publication/221146403

	Introduction
	A Framework with Distributed Architectural Styles
	Three Classical Distributed Architecture Style Models
	Modelling Architectural Styles

	Functional Model
	Pure Functional Model of a Versioning System
	Facilitating Functional Model Generation

	Functional and Style-Based Model Transformation
	Two Style Specific Models of the Case Study

	Preparing Architecture Quality Analysis
	Related Work
	Conclusion and Perspective

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

