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Abstract

Purpose – The purpose of this paper is to develop a new formulation using spectral approach, which
can predict the wave behavior to uncertain parameters in mid and high frequencies.
Design/methodology/approach – The work presented is based on a hybridization of a spectral
method called the “wave finite element (WFE)” method and a non-intrusive probabilistic approach called
the “polynomial chaos expansion (PCE).” The WFE formulation for coupled structures is detailed in this
paper. The direct connection with the conventional finite element method allows to identify the diffusion
relation for a straight waveguide containing a mechanical or geometric discontinuity. Knowing that the
uncertainties play a fundamental role in mid and high frequencies, the PCE is applied to identify
uncertainty propagation in periodic structures with periodic uncertain parameters. The approach
proposed allows the evaluation of the dispersion of kinematic and energetic parameters.
Findings – The authors have found that even though this approach was originally designed to deal
with uncertainty propagation in structures it can be competitive with its low time consumption.
The Latin Hypercube Sampling (LHS) is also employed to minimize CPU time.
Originality/value – The approach proposed is quite new and very simple to apply to any periodic
structures containing variabilities in its mechanical parameters. The Stochastic Wave Finite Element
can predict the dynamic behavior from wave sensitivity of any uncertain media. The approach
presented is validated for two different cases: coupled waveguides with and without section modes.
The presented results are verified vs Monte Carlo simulations.
Keywords Uncertainty propagation, Diffusion relation, Random coupled structures,
Mid and high frequencies, Monte Carlo simulations, Polynomial chaos expansion
Paper type Research paper

1. Introduction
Wave propagation in structures is one of the important subject treated in this last decade.
Wave characteristics (wavenumber, velocities, deformed shapes) can be identified by different
methods such as spectral finite element (SFE) and the wave finite element method (WFE).

The authors gratefully acknowledge the ITN Marie Curie project GA-214909 “Mid-Frequency
CAE Methodologies for Mid-Frequency Analysis in Vibration and Acoustics”.
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The wave finite element is a spectral method developed for phononic and photonic
media and for wave propagation in crystal lattices (Brillouin, 1946). Zhong and
Williams (1995) extended this approach for wave propagation in periodic structures
which is composed by identical sub-elements. This formulation, with direct connection
with the conventional finite element method, allows to predict wave characteristics
(propagation constant, deformed shapes, etc.). This spectral study starts from the
discretization of one sub-element with the conventional FEM, then a spectral
eigenvalue problem is formulated regarding the periodicity of the media. The general
formulation is proposed by Mead (1973). The WFE is then extended for different
problems: Mace et al. (2005) and Mencik and Ichchou (2005) used the WFE to identify
the characteristics of free structural vibration. In addition, forced dynamic response
with harmonic load (Duhamel et al., 2006) and general load (Renno and Mace, 2010)
was investigated.

The WFE formulation is based on an principal assumption: the periodicity of the
structure. In reality, structures can contain some irregularities or section changes; in general
manner, every discontinuity of mechanical impedance can be modeled as a mechanical
discontinuity. In this case, the WFE must be modified to predict the behavior of waves
regarding these discontinuities. Many researchers studied wave scattering and tried to
express the expression of the diffusion coefficients using analytical procedure (Mace, 1984;
Mei et al., 2006). Mencik and Ichchou (2005) developed a Diffusion Matrix Model (DMM)
which is based on the hybridization of the conventional finite element method and the
WFE. This formulation allows us to obtain the reflection and transmission coefficients
of waves encountering mechanical discontinuities. This formulation is then used and
validated by different researchers (Ichchou et al., 2009; Zhou et al., 2009). Bareille et al. (2012)
applied the DMM to identify the size and location of defects onmetallic pipelines. The DMM
approach allows building a numerical cartography regarding the different sizes of the
defect. This cartography will be used regarding experimental reflection coefficients.

Knowing that uncertainties play an important role in high frequencies, the WFE
which uses deterministic inputs, will be penalized for structures with uncertain
parameters. For this purpose, the exploration of probabilistic and non-probabilistic
approaches is needed. These approaches take into account the variability of physical
parameters which can modify the mechanical behavior of structures in high-frequency
range. In order to identify the level of variability in non-deterministic systems
(Blanchard et al., 2009), different mathematical approaches are used such as Fuzzy
theory (Moens and Hanss, 2011; Giannini and Hanss, 2008), interval arithmetic
(Dessombz et al., 2001), Bayesian theory (Goller and Schueller, 2011), parametric
(Ghanem and Spanos, 1991) and non-parametric approaches (Soize, 2000, 2005).
The aim of these stochastic methods is to reduce the gap among the simulated and
the experimental results. The polynomial chaos expansion (PCE) is an efficient
probabilistic tool to quantify the uncertainty propagation in structures. This theory is
based on the expansion of a second order process into orthogonal polynomes.
This approach allows the separation of the deterministic and the stochastic component
of the original process. Two different approaches are often used to evaluate the
stochastic modes; intrusive and non-intrusive approaches. The intrusive one is based
on Galerkin projection which allows the expansion of the stochastic equation
into deterministic ones, so the formulation is modified for each studied problem.
The non-intrusive approach is more efficient because it is based on some iterations
of the deterministic code. Finally, an adequate post-traitement is then used to
quantify the uncertainty propagation in the structure studied.
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The parametric probabilistic approach consists in developing the stochastic random
variables on a series by decoupling the mean and the fluctuation parts. The WFE is
already extended to uncertain structures using a parametric probabilistic approach.
Ichchou et al. (2011) uses the first-order perturbation to express variability as an other
dimension of the spectral problem. The presented work offered an explicit expressions
of statistics of wave characteristics (propagation constant, mode shapes, group
velocity). Ben Souf et al. (2013a) used the WFE and the Stochastic Finite Element
Method (SFEM) to express the variabilities' effects on the coupling loss factors for two
periodic waveguides connected through a junction with mechanical and geometrical
variability. This study begins by the evaluation of the dispersion of the kinematic and
energetic diffusion coefficients. This study is then extended to predict the forced
response of stochastic coupled structures (Ben Souf et al., 2013b).

In previous works, the first-order perturbation is used to quantify the uncertainty
effects on the wave propagation in periodic structures. The approach developed proves its
efficiency by expressing kinematic and energetic parameters for uncertain and periodic
structures. Although, it was limited for low dispersion and for few number of uncertain
parameters. The main novelty in this paper consist in the hybridization of the WFE
(spectral and forced response formulations) and the Generalized Polynomial Chaos
Expansion (GPCE). The main assumption in this work, that the uncertainties are periodic
as well as the structure (The mechanical parameters variabilities are periodic because the
deterministic spectral formulation is based on the periodicity of media). The presented
formulation tries to identify the wave sensitivity on the uncertain inputs. The use of
a non-intrusive approach allows to identify the stochastic modes with no changes in the
deterministic code. This paper is composed by three different parts: the first one is a
general presentation of the deterministic WFE for periodic media. Section 2 deals with the
forced response of coupled structures and wave behavior regarding to mechanical
discontinuities. Section 3 presents the Generalized PCE. Finally, different studied cases are
presented in the last section and validated vs Monte Carlo simulations.

2. The WFE
The spectral WFE is a numerical method which helps to identify wave characteristics
in periodic structures. It is applicable for media composed by identical sub-elements
connected along a specific direction. The studied structure is supposed to be linear,
dissipative and elastic (Figure 1).

This study begins with the discretisation of one sub-element of length d of the
structure to express the dynamic stiffness matrix is using the extracted mass M and
stiffness K matrices from the FEM model and condensed into the left (denoted by L)
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Figure 1.
An illustration of a
periodic waveguide
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and right (denoted by R) sides as:

DLL DLR

DRL DRR

!

qL

qR

 !

¼
FL

FR

 !

(1)

where q and FR represent the displacement and the forces vectors, respectively.
Let's define two state vectors in the left and the right side of each element as:

uL¼ ((qL)
T(−FL)

T)T and uR¼ ((qR)
T(FR)

T)T. These vectors are related by a 2n× 2n
symplectic matrix S as:

SuL ¼ uR (2)
where:

S ¼
�D�1

LRDLL �D�1
LR

DRL � DRRD
�1
LRDLL �DRRD

�1
LR

!

(3)

The dynamic of the global system is formulated from the description of the waves
propagating along the x – axis. Using the periodicity and the Bloch’s theorem, a
spectral eigenvalue problem is formulated as (Mencik and Ichchou, 2005):

SFi ¼ miFi - 9S�miI2n9 ¼ 0: (4)

To face out numerical problems, this eigenvalue problem can be solved using the
approach proposed by Zhong and Williams (1995).

The resolution of Equation (4) leads to identify the propagation constant and the
mode shapes. Since the structure is dissipative, the waves can be classified as an

incident 9minci 9o1
� �

and reflected ones 9mrefi 941
� �

. Consequently, the wave basis Φ

composed by the eigenvectors, can be expressed as follows:

F ¼
F

inc
q F

ref
q

F
inc
F F

ref
F

!

(5)

where Finc
q , Finc

F , Fref
q and Fref

F are n× nmatrices and q and F refers to the displacement

and the force component of the eigenvectors.
Finally, the dynamics of the global system is formulated from the projection of the

kinematic variables for the kth element on the wave basis as:

qðkÞ ¼ F
inc
q F

ref
q

� � Qinc

Qref

 !ðkÞ

and FðkÞ ¼ F
inc
F F

ref
F

� � Qinc

Qref

 !ðkÞ

(6)

where
Qinc

Qref

!ðkÞ

represents the amplitude of waves in the kth element.

3. Forced response for coupled structures through a spectral approach
The dynamic behavior of two finite structures connected through a coupling element is
presented in this section. The formulation presented is a solution for loss of periodicity
of the structure. The first step consists on expressing wave behavior near junction, the
formulation for the forced response of the whole media is then offered.
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3.1 Wave behavior regarding discontinuities
This part deals with prediction of wave behavior regarding mechanical and
geometric singularities. In general manner any mechanical impedance in structures,
causes a reflection and transmission waves from generated ones. The presented
formulation is based on the hybridization of the conventional finite element method
and the Wave finite element. The formulation developed called the Diffusion Matrix
Model (DMM) (Mencik and Ichchou, 2005; Ichchou et al., 2009; Renno and Mace, 2012)
which model the junction as coupling stiffness and helps to quantify the reflection
and transmission coefficients. Bareille et al. (2012) and Zhou et al. (2009) used the
DMM formulation to identify the location and the size of discontinuities in pipelines
regarding experimental results. In this paper, the deterministic formulation is shortly
presented.

Let us define two semi-infinite structures connected through a coupling element.
This junction could be a crack, an elbow, etc. In a general manner, it is considered
as discontinuity of mechanical impedance caused by mechanical or geometrical
changes (Figure 2).

The DMM formulation begins by the expression of the dynamical equation, condensed
into the right and the left sides, of the coupling element and the sub-elements directly
connected to the junction which can be written as:

DðiÞ q
ðiÞ
L

q
ðiÞ
R

0

@

1

A ¼
F
ðiÞ
L

F
ðiÞ
R

0

@

1

A ði¼ 1; 2Þ and K

qc
1

qc
2

 !

¼
Fc
1

Fc
2

 !

(7)

where matrix K stands for the dynamical stiffness of the coupling element qc
1;F

c
1

� �

and
ðqc

2;F
c
2Þ represent the displacements and the forces applied at the dof ’s of the coupling

element on surfaces Γ1 and Γ2 , respectively. The coupling conditions can then be
expressed on the interface in the matrix form as:

qc
G1

qc
G2

 !

¼
q
ð1Þ
G1

q
ð2Þ
G2

0

@

1

A;
F
ð1Þ
G1

F
ð2Þ
G2

0

@

1

A ¼ �
Fc
G1

Fc
G2

 !

(8)

Assuming that the that the left and the right cross-sections of the given subsystem
contains the same number of degrees of freedom, Equations (8) and (7) lead to the relation:

�K
q
ð1Þ
G1

q
ð2Þ
G2

0

@

1

A ¼
F
ð1Þ
G1

F
ð2Þ
G2

0

@

1

A (9)

Guide 1 Guide 2

Coupling element

d1 dc d2

Figure 2.
Two E-B beam
connected through
a stochastic
coupling element

5



In addition, the projection of the state vectors into the wave basis Φ(1) and Φ(2),
respectively, for the waveguide 1 and 2, allows to appear the amplitude of
waves as:

q
ð1Þ
R

F
ð1Þ
R

0

@

1

A ¼
U

incð1Þ
q U

refð1Þ
q

U
incð1Þ
F U

refð1Þ
F

0

@

1

A

Qincð1Þ

Qrefð1Þ

 !

;

q
ð2Þ
L

F
ð2Þ
L

0

@

1

A ¼
U

incð2Þ
q U

refð2Þ
q

U
incð2Þ
F U

refð2Þ
F

0

@

1

A

Qincð2Þ

Qrefð2Þ

 !

(10)

Indeed, using the Equations (9) and (8) we can write a relationship between the
amplitude of waves incident to and reflected by the junction as follows:

KW
inc
q þWinc

F 9 KW
ref
q þWref

F

� �

Qincð1Þ

Qincð2Þ

Qrefð1Þ

Qrefð2Þ

0

B

B

B

B

@

1

C

C

C

C

A

¼ 0 (11)

where, Winc
q , Wref

q , Winc
F and Wref

F are expressed as follows:

W
inc
q ¼

U
incð1Þ
q 0

0 U
incð2Þ
q

0

@

1

A; W
ref
q ¼

U
refð1Þ
q 0

0 U
refð2Þ
q

0

@

1

A

W
inc
F ¼

U
incð1Þ
F 0

0 U
incð2Þ
F

0

@

1

A; W
ref
F ¼

U
refð1Þ
F 0

0 U
refð2Þ
F

0

@

1

A

(12)

Finally, the diffusion relation can be expressed:

Qrefð1Þ

Qrefð2Þ

 !

¼ ℂ
Qincð1Þ

Qincð2Þ

 !

(13)

where:

ℂ ¼ � KW
ref
q þWref

F

h iþ
KC

inc
q þC

inc
F

h i

(14)

where + is the pseudo-inverse.

3.2 Forced response and energy densities in periodic structures
This section deals with the forced response of finite coupled structures to harmonic
force excitation using a spectral approach. The approach used is based on wave
approach. The dynamics of the global system is described through o projection of
kinematic variables on wave basis constructed using the WFE.
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Let us consider two waveguides with different lengths L1 and L2 and composed,
respectively, by N1 and N2 sub-elements with two different origins of coordinates.

The first step consist on performing the WFE for two sub-elements for each
waveguide to identify different waves. Then the DMM is used to express the relation
between the reflected and incident waves in waveguide 1 and waveguide 2) as:

Qref
I

Qref
II

 !

¼
C11 C12

C21 C22

!

Qinc
I

Qinc
II

 !

(15)

where I and II refer to the first and second waveguide, respectively.
In order to evaluate kinematic variables in each node in the periodic media, this

step consist in identifying the amplitude of waves in the first sub-element for two
waveguides by applying the general wave-mode expansion for boundary conditions
(forced-clamped coupled structures Figure 3).

Hence, for the first waveguide, the boundary and transfer conditions on x1¼ 0 and
on x1¼L1, respectively, can be expressed using wave mode amplitude as:

U
inc
F

� �

I Q
incð1Þ
I þ U

ref
F

� �

I Q
refð1Þ
I ¼ �F� (16)

Q
ref N1 þ 1ð Þ
I ¼ C11Q

incðN1 þ 1Þ
I þC12Q

incðN2þ 1Þ
II (17)

Equivalently for the second waveguide, the boundary and transfer conditions on x2¼ 0
and on x2¼L2 , respectively, can be expressed using wave mode amplitude as:

U
inc
q

� �

II
Q

incð1Þ
II þ U

inc
q

� �

II
Q

refð1Þ
II ¼ q� (18)

F

X1 Z1

Y1

Couplin
g element X2

Z2

Y2

Figure 3.
Two coupled
periodic waveguides
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Q
refðN2þ 1Þ
II ¼ C21Q

incðN1þ 1Þ
I þC22Q

incðN2 þ 1Þ
II (19)

According to the Bloch’s theorem, the stochastic wave amplitude on kth element can be
obtained from the amplitude of waves on the first sub-element as:

QðkÞ ¼
minc 0

0 mref

!ðk�1Þ

Qð1Þ (20)

Finally, the boundary conditions can be express in matrix form as:

U
inc
F

� �

I U
ref
F

� �

I 0 0

�C11 mincI

� �N1
mrefI

� �N1
0 �C12 mincII

� �N2

�C21 mincI

� �N1
0 mrefI

� �N2 �C22 mincII

� �N2

0 0 U
ref
q

� �

II
U

inc
q

� �

II

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

Q
incð1Þ
I

Q
refð1Þ
I

Q
refð1Þ
II

Q
incð1Þ
II

0

B

B

B

B

B

@

1

C

C

C

C

C

A

¼

�F�

0

0

q�

0

B

B

B

B

@

1

C

C

C

C

A

(21)

The direct inverse of the presented matrix is impossible regarding its diagonal
components, so an appropriate scaling is needed by decoupling the ill-conditioned
matrix into two matrices (well conditioned and diagonal one). This equation leads to
identify the wave amplitude of waves in x1¼ 0 and x2¼ 0.

Using Equation (20), the amplitude of waves can be calculated for each node and the
displacements can be easily expressed for kth element as:

qð ÞðkÞi ¼
U

inc
q U

ref
q

U
inc
q minc U

ref
q mref

0

@

1

A

i

ðQÞðkÞi ; i ¼ fI; IIg (22)

Assuming that the length of the sub-elements is sufficiently small, different energy
densities can be approximated for discrete structures:

E kð Þ
c ¼ o2

4d

qL

qR

 ! kð ÞH

M
qL

qR

 ! kð Þ

(23)

for the kinematic energy density, and the strain energy density can be expressed as:

EðkÞ
p ¼ 1

4d

qL

qR

!ðkÞH

K
qL

qR

 !ðkÞ

(24)

where qL and qR represent the displacements in the left and the right sides on the
sub-element k.

8



4. GPCE
The PCE is an efficient tool to describe uncertainty propagation in mechanical systems.
The theory, developed by Wiener (1938), helps to expand any second order process u
(with finite variance) in a series of orthogonal polynomes as:

u ¼ u0H 0þ
X

1

i1¼1

ui1H 1ðxi1 Þþ
X

1

i1¼1

X

i1

i2¼1

ui1i2H 2ðxi1 ; xi2 Þ

þ
X

1

i1¼1

X

i1

i2¼1

X

i2

i3¼1

ui1i2i2H 3ðxi1 ; xi2 ; xi3 Þþ � � � (25)

where H pðxi1 ; . . .; xipÞ represents orthogonal polynomes (chaos polynomes) of order p.
In a compact form, Equation (25) can be expressed as:

u�
X

P

i¼0

uiCiðxÞ; P ¼
X

p

k¼0

Ck
M þ k�1 ¼

ðMþpÞ!
M !p!

(26)

where x ¼ ½xi1 ; � � � ; xip �
T , and M denoting the number of the uncertain parameters.

The PCE is used to develop the Stochastic Spectral Finite Element Method (SSFEM)
by Ghanem and Spanos (1991), used for instance, in fluid analysis (Najm, 2009),
etc. Since in most applications the stochastic input variables are not normal, Xiu and
Karniadakis (2002) proposed a generalized form of Hermite PCE using other orthogonal
polynomes in terms of non-Gaussian random variables called Wiener-Askey. Table I
resumes usual random variables and their orthogonal polynomials.

When the input parameters have not a non-Gaussian behavior, the parameterization
of the problem is quite difficult. Rosenblatt (1952) proposed simple transformations of
non-Gaussian distributions to Gaussian ones.

Let us define Y¼ [Y1,…, Yn]
T and U¼ [U1 ,…,Un]

T a random vector with
dependent variables and normal vector, respectively. The probabilistic transformation
U¼Tr(Y) can be obtained using:

ui ¼ F
�1 QY i

yið Þ
� �

(27)

where Φ−1 is the inverse cumulative distribution function (CDF) of standard normal
variable. QY i

is the CDF corresponds to the ith random variable Yi and y¼ [ y1,…, yn]
T

Random variable ξ Winer-Askey chaos Ψ(ξ) Support

Continue distributions
Gaussian Hermite (−∞, + ∞)
Uniform Legendre [a, b]

Discrete distribution
Gamma Laguerre [0, ∞]
Beta Jacobi [a, b]
Poisson Charlier {0, 1, …,}
Binomial Krawtchouk {0, 1,…,N}

Table I.
Polynomes and
distributions of usual
random variables
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and u¼ [u1,…, un]
T are the Y and U realizations. Some analytical transformations are

mentioned in the following table: (Table II) with erf ðxÞ ¼ 2
ffiffiffi

P
p
R x
0 e

�t2dt.

4.1 Intrusive/non-intrusive approach
Expressing the output variables using the PCE requires the estimation of the
coefficients to quantify the uncertainty propagation on the studied structure.
Two different methods are often used: intrusive and non-intrusive methods.

The intrusive approach is based on Galerkin projection of the stochastic equation
using the the orthogonality of the polynomial chaos basis. The original problem is
reduced to a linear (N × P) system where N is the number of dofs and P represents
the number of terms in the PCE. This method needs a specific implementation for
each studied problem. For complex systems, this method requires an important
computational time and memory. In order to face out these problems, non-intrusive
schemes will be used.

4.1.1 Non-intrusive methods. The non-intrusive methods allow us the evaluation of
the polynomial chaos coefficients using the deterministic code without any specific
modifications. In addition, a pre-processing affecting the random input variables is
necessary. Two different approaches are proposed: the projection and the regression
approaches.

To illustrate these approaches, let us assume that a second order random variable is
presented onto a generalized PCE as follows:

SðyÞ ¼
X

P�1

j¼0

sjCj fxðyÞgMk¼1

� �

(28)

The projection approach consists in using of the orthogonality of the Polynomial Chaos
basis. By premultiplying Equation (28) par Ci fxðyÞgMk¼1

� �

and taking the expectation,

the coefficients sj can be obtained as:

si ¼
E½SCj�
E½C2

j �
(29)

To evaluate sj, the numerator must be calculated in numerical way (denominator is well
known). The numerator can be expressed in integral form as:

E½SCj� ¼
Z

RM
SðxÞCjjM ðxÞdx (30)

Distribution Transformation

Uniform (a, b) aþðb�aÞ 0:5þ0:5erf ðx=
ffiffiffi

2
p

Þ
� �

Normal (μ, σ) μ + σξ

Lognormal (μ, σ) exp(μ + σξ)
Gamma (a, b) ab x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
9a þ 1 � 1

9a

� �

q� �3

Exponential (λ) �1
l
log 1

2 þ 1
2erf x=

ffiffiffi

2
p� �� �

Table II.
Random variables

and transformations
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In order to evaluate this integral, different methods are used such as Monte Carlo
simulations or multidimensional quadrature schemes.

The regression approach is based on the minimization, in the sense of least square
measure, the difference ΔS between the infinite development of stochastic parameter
and the truncated one regarding the coefficients {si, i¼ 1,…, P − 1}, and:

DS ¼
X

n

i¼1

~S
ðiÞ�

X

P�1

j¼0

sjCj fxðyÞgMk¼1

� �

 !2

(31)

So, the minimization is obtained as:

dDS
dS l

¼ 0; 8lA 0; � � � ; P�1f g (32)

In explicit form, Equation (32) can be written as:

X

n

i¼1

ClðfxðiÞk g
M
k¼1Þ ~S

ðiÞ�
X

P�1

j¼0

sjCjðfxðiÞk g
M
k¼1Þ

!

¼ 0; 8lA 0; � � � ; P�1f g (33)

Finally a system of equations can be solved:

X

P�1

j¼0

sj
X

n

i¼1

ClðfxðiÞk g
M
k¼1ÞCjðfxðiÞk g

M
k¼1Þ

" #

¼
X

n

i¼1

SðiÞ
ClðfxðiÞk g

M
k¼1Þ; 8lA 0; � � � ; P�1f g

(34)
In matrix form, the Equation (34) can be expressed as:

X

n

i¼1

C0ðfxðiÞk g
M
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M
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^ & ^
X

n

i¼1
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(35)

This formulation, developed by Berveiller (2005), allows the identification of the
coefficients by evaluating the deterministic term S(i)¼ S(X(i)) where X(i) represents
a realization of random input parameters. The direct inversion can cause some
numerical problems regarding the ill-conditioned matrix. Isukapalli (1999) proposed to
build an experimental design based on the roots of orthogonal polynomes. Berveiller
(2005) proved that n ≃ (M−1)P is an optimal size of the experimental design to obtain
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accurate coefficients. Finally, an appropriate post-treatment leads to identify statistical
moments as (Berveiller, 2005):

• Mean: E[S]¼ s0

• Variance: Var½S� ¼ s2S ¼
P

P�1

i¼1
E½C2

i �s2i

• Skewness: dS ¼ 1
s3
S

P

P�1

i¼1

P

P�1

j¼1

P

P�1

k¼1
dijksisjsk

5. Validation cases
This section deals with numerical validations of the formulation proposed to identify
uncertainty propagation through a spectral method. Two different cases are tested:
the first one treat the case of two identical waveguides with classical propagating
waves. The second case studied is based on two waveguides with hollow rectangular
sections which are the seat of a lot of propagating waves (classical and sectional
ones). For two cases, the uncertainties is supposed to be periodic as well as the
studied structure.

5.1 Two connected waveguides with rectangular cross section
Let us define two identical waveguides with L¼ 1m of length and composed by N
identical sub-elements with d¼ 1 cm of length. The mechanical characteristics of
studied waveguides are: density ρ¼ 7,800 kg/m3, Young's modulus E¼ 2 × 1011 Pa,
Poisson’s ratio ν¼ 0.3, structural damping η¼ 1 percent. The dimensions of the cross
section area are: 3 × 10−2m × 2 × 10−2m. The finite element model is presented in the
Figure 4. The waveguides and the coupling element are discretized using a 3D block

F
X1Z1

Y1

Couplin
g element

X2

Z2
Y2

XZ

Y

Figure 4.
Finite element model

of connected
waveguides with
rectangular cross

section
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element with linear interpolation and contains 7,272 degrees of freedom. The structure
studied is supposed to be excited in x1¼ 0m and clamped in x2¼ 0m.

The first step consist on evaluating the propagating waves on the structures
studied. The direct application of the deterministic WFE proves that waveguides are
the seat of only classical waves in the whole studied frequency range.

Assuming that the uncertainties are homogenous in the media, the second step
consist in evaluating the effect of uncertain parameters on the spectral behavior
regarding the coupled waveguides. The Table III summarizes the used random
parameters and their distributions. This concerns five uncertain parameters (excitation
force and mechanical properties).

Let's define n realizations of ffxðiÞk g
M
k¼1; i¼ 1; � � � ; ng. Using the iso-probabilistic

transformations, we can obtain the n realizations of the input random variables
{X(1),…, X(n)}. For every realization, the deterministic WFE is used to evaluate the
output variables to identify the coefficients of the PCE series. The regression approach
is used to quantify the uncertainty effects on kinematic and energetic parameters. In
order to reduce time consuming, the Latin Hypercube Sampling (LHS) is used which
represents a type of stratified Monte Carlo sampling.

The structure studied contains a mechanical discontinuity which is modeled
as a junction between two waveguides. When waves propagate, the impedance
discontinuity generates reflected and transmitted waves. Figure 5 represents the
reflection and the transmission coefficients for propagating waves in waveguides
(1: flexural 1, 2: flexural 2, 3: torsional, 4: longitudinal). The mean value, calculated by
WFE (- -) and MC (*), represents the evolution of propagating waves regarding the
coupling element. The yellow areas quantify the level of dispersion of wavenumbers
regarding random inputs.

From the knowledge of the wave behavior through a junction, the global behavior is
then observed. The Figures 6 and 7 represent the mean of the displacement evaluated
in x1¼ 0.25 m and x2¼ 0.25 m. Figure 6 represents the mean and the envelop (min-max)
constructed using the PCE. The use of the Monte Carlo simulations presents a good
agreement with the proposed approach using the fourth order expansion. The colored
envelop is larger in mid and high frequencies which proves the important effect of
uncertainties of mechanical behavior in this frequency range.

Figure 7 represents the standard deviation of displacement evaluated in
x1¼ 0.25 m and x2¼ 0.25 m. It's represents the dispersion of kinematic output
variables due to uncertain input parameters. The convergence of the approach
proposed is studied here. The third order PCE is first tested (dashed line). We remark
that even the frequency increases, the results of the third order expansion does
not converge to the reference results, so, the use of the fourth order expansion
is more accurate to predict the variance of kinematic variables especially in
high-frequency range.

Random variables Type of distribution Mean SD (%)

Young's modulus (Pa) Lognormal 21011 3
Density (kg m−3) Lognormal 7,800 5
Damping Uniform 0.01 10
Force (N) Normal 1 5
Stiffness of coupling element (N/m) Uniform 2 × 1010 3

Table III.
Random variables
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As presented in the theoretical part, it is interesting to evaluate the variance of
energetic parameters in the periodic structure and their dispersion regarding uncertain
inputs. Assuming that the energy densities weakly varies in one layer of the structure
(length of sub-element is small regard to wavelength), so the stochastic energy densities
can easily expressed using discrete kinematic variables. Figure 8 represents the mean
and the standard deviation of the kinematic energy density, respectively, in x1¼ 0.25 (m).
For these two cases, the fourth order expansion can predict the energetic behavior of
the coupled structures. These results are validated by Monte Carlo simulations using
3,000 samples.

5.2 Two coupled structures with hollow section
This second validation case deals with a waveguide with hollow section which contains
a mechanical discontinuity. This structure will be modeled as two periodic waveguides
connected through a junction. The mean difference vs the previous case, this type of
media has, even classical modes, a lot of sectional modes. The prediction of the random
behavior of this type of modes, which can exchange energy with conventional ones,
represents a numerical challenge (Figure 9).
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Figure 10.
Wavenumbers of
propagating waves

Shape Type of mode Curve number

Figure 11 (a) Section mode (Figure 10) 1
Figure 11 (b) Section mode (Figure 10) 2
Figure 11 (c) Section mode (Figure 10) 3
Figure 11 (d) Section mode (Figure 10) 4
Figure 11 (e) Section mode (Figure 10) 5
Figure 11 (f) shear mode (Figure 10) 6
Figure 11 (g) shear mode (Figure 10) 7
Figure 11 (h) Flexural 2 (Figure 10) 8
Figure 11 (i) Flexural 1 (Figure 10) 9
Figure 11 ( j) Torsion (Figure 10) 10
Figure 11 (k) Longitudinal (Figure 10) 11

Table IV.
Different
propagating
waves and their
deformed shapes
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Figure 11.
Deformed shape of
conventional and
sectional waves
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For this purpose, let us define two identical hollow waveguides connected through
a coupling element. The studied structure is discretized using SHELL63 element.
The waveguides mechanical characteristics are: density ρ¼ 7,800 kg/m3, Young's
modulus E¼ 2 × 1011 Pa, Poisson’s ratio ν¼ 0.3, structural damping η¼ 1 percent,
dimensions of cross section area: 3 · 10−2m × 2 · 10−2m and the thickness¼ 1 mm.

The first step consists in identifying propagating waves, so the deterministic WFE
is applied for one layer. Figure 10 represents the wavenumbers of different propagating
waves. Below 2150 Hz, we have only classical waves. Going higher in frequency, the
successive triggering of sectional waves modifies the wave behavior. Figure 10
emphasizes the energy exchanged between waves in the propagating phase. For
example, waves 6 and 7 (shear modes) interact with torsional wave (10) and modify its
behavior beyond 2150 Hz (normally linear). Table IV resumes the different waves and
their deformed shapes (Figure 11).

Now, let us consider that the structure studied contains some random variables
(Table V). These uncertain parameters affect directly the kinematic and energetic
behavior of the structure studied. The same process, as previous case, is used to
quantify the variance of output parameters.

Figure 12 represents the mean and the standard deviation of the displacement in
x1¼ 0.25 m. The yellow envelop which represents the effect of random input
parameters, is larger in high frequencies. The standard deviation, calculated by the
formulation presented, can predict correctly the stochastic behavior of the structure
and coincide with the reference results (Monte Carlo simulations) in all frequency range.

Figures 13 and 14 represents the statistics of kinematic and potential energy
densities (mean and standard deviation) evaluated in x1¼ 0.25 m, respectively. The
presented formulation proves its efficiency (using the fourth order expansion)
regarding the Monte Carlo simulations, while, some fluctuations can be identified for
the standard deviation. This behavior, in high frequency, can be explained by the
number of the random inputs and the level of uncertainties and their effects in this
frequency range.

6. Conclusion
In this paper, the uncertainty propagation in periodic coupled structure is presented
and validated. This uncertainty is quantified through a spectral method using a
constructed wave basis to describe the dynamic behavior of structures. Hybridization
between the WFE and a parametric probabilistic approach was presented. It has been
applied for two different cases: connected waveguides without sectional modes and
connected structures with section modes. In the two cases, the formulation presented
proves a good agreement with reference method.

In our case, the non-intrusive approach was used, so no changes in the deterministic
code are required. Just an adequate post-processing allows us to express the variance of

Random variables Type of distribution Mean SD (%)

Young's modulus (Pa) Lognormal 2 × 1011 2
Density (kg m−3) Lognormal 7,800 3
Damping Uniform 0.01 10
Force (N) Normal 1 5
Stiffness of coupling element (N/m) Uniform 2 × 1011 2

Table V.
Random variables
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random output variables. The presented formulation presents an alternative stochastic
approach with low time and memory consuming. The presented formulation can
predict the parametric uncertainties on structures. The PDF of stochastic inputs can be
identified using experiments. But, the formulation presented can not take into account
the model uncertainties. In this case, an other approach, such as non-parametric
approach, can be used.

As a future work, this formulation can be coupled with other dynamics problem
such as control process, defects detection, vibro-acoustics and energetic methods for
high-frequency vibrations.
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