
HAL Id: hal-02163518
https://hal.science/hal-02163518v1

Submitted on 24 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uncertainty in measuring laminar burning velocity from
expanding methane-air flames at low pressures

Pierre Brequigny, H Uesaka, Z Sliti, D Segawa, Fabrice Foucher, Guillaume
Dayma, Christine Mounaïm-Rousselle

To cite this version:
Pierre Brequigny, H Uesaka, Z Sliti, D Segawa, Fabrice Foucher, et al.. Uncertainty in measuring
laminar burning velocity from expanding methane-air flames at low pressures. 11th Mediterranean
Combustion Symposium, Jun 2019, Tenerife, Spain. �hal-02163518�

https://hal.science/hal-02163518v1
https://hal.archives-ouvertes.fr


MCS11 Tenerife, Spain, 16-20 June 2019 
 

Uncertainty in measuring laminar burning velocity from 

expanding methane-air flames at low pressures 
P. Brequigny*, H. Uesaka**, Z. Sliti*, D. Segawa**,  F. Foucher*,G. Dayma***, C. Mounaïm-Rousselle* 

pierre.brequigny@univ-orleans.fr 

* Univ. Orléans, INSA-CVL, PRISME, EA 4229, F45072, Orléans, France  

** Department of Mechanical Engineering, Osaka Prefecture University, Japan 

*** CNRS-INSIS, Institut de Combustion, Aérothermique, Réactivité et Environnement, F45071, Orléans, 

France 

 

Abstract 

The experimental determination of laminar burning velocity remains essential to evaluate the 

combustion potential of any fuels but also to validate kinetic mechanisms. Recently, researchers 

are making great efforts to improve the accuracy of the different set-ups and techniques to 

determine this parameter. This work proposes an attempt to summarize the different factors 

contributing to the uncertainty of the expanding spherical flame method. In particular, the 

validity of two hypothesis (adiabatic flame propagation and thin flame front) is discussed in the 

case of stoichiometric methane-air flames in low-pressure environment (from 0.2 to 2 bar). 

Last, the effect of spark electrode diameters was also considered (0.2, 0.5 and 1 mm). 
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Introduction 

The unstretched Laminar Burning Velocity (LBV) is the one of main properties to evaluate 

combustion process as in the case of spark-ignition engines, to predict the burning rate. 

Moreover, accurate measurements of the unstretched LBV remain necessary to improve 

kinetics model but also to provide correlations for CFD purpose especially for complex fuels 

or fuel blends.  

The experimental estimate of unstretched LBV can be done following different techniques [1] 

and flame set-ups as Bunsen flame [2,3], counter-flow flame [4,5],  flat flame burner [6,7], or 

outwardly expanding spherical flame with optical diagnostics [8,9] or measurement techniques 

(heat flux [6,7], pressure signal [10,11]). Since the 1980’s the scatters in LBV measurements 

decrease a lot thanks to the formulation of the stretched flame theory [12]. In the case of 

outwardly expanding and counter-flow flames, initially the unstretched LBV was obtained from 

the following linear equation [13]: 

𝑆𝑏
0 = 𝑆𝑏 − 𝐿𝑏𝐾           (1) 

With 𝑆𝑏
0 the unstretched flame speed related to the burnt gases, 𝑆𝑏 the stretched flame speed, 

𝐿𝑏 the Markstein length representing the mixture stretch sensitivity and 𝐾 the flame stretch. 

The unstretched laminar burning velocity, 𝑆𝐿
0 is then obtainedby:  

𝑆𝐿
0 =

𝜌𝑏

𝜌𝑢
∗ 𝑆𝑏

0            (2) 

With 𝜌𝑏 and 𝜌𝑢 respectively the burnt and unburnt gas density.  

More recently, Kelley and Law [14] proposed a Non-Linear Extrapolation (NLE) based on the 

theoretical work of Tien and Matalon [15] and applied to the outwardly spherical flame 

technique [16] as follows: 

(
𝑆𝑏

𝑆𝑏
0)

2

ln (
𝑆𝑏

𝑆𝑏
0) = −

2𝐿𝑏𝐾

𝑆𝑏
0           (3) 

Recently, several authors tested a wide range of different extrapolation methods for the 

outwardly spherical expanding flames [17,18] in order to quantify the uncertainties generated 

by the extrapolation method. These studies mainly concluded that as function of the 

fuel/mixture properties, especially the Lewis number, the extrapolation method has to be 



carefully chosen. Wu et al. [18] concluded that if the controlling parameter defined as the 

Markstein number, obtained from linear extrapolation multiplied by the normalized stretch 

value at middle point of the data, is in the range of -0.05 to 0.15, any extrapolation method can 

be used. On the other hand, Li et al. [17] proposed a new NLE for Lewis number greater or 

close to unity. They also showed that the choice of the extrapolation method would affect 

differently the estimate of the unstretched LBV, depending on the flame radius range used for 

the extrapolation.  

Studies regarding the uncertainty quantifications caused by the experimental set-up and data 

processing are quite sparse. Recently Beeckmann et al. [19] did a collaborative study on 

different experimental set-ups to understand the origin of the discrepancies. They showed that 

LBV values of stoichiometric methane-air mixtures at 1 bar, 300 K obtained from heat flux 

burner and counter-flow flames are slightly higher than for the spherical vessel except when 

LBV is obtained from the fresh gases [9]. Alekseev et al. [7] recently studied in depth the 

uncertainties to determine LBV with the heat flux burner technique: more than 20 sources of 

uncertainties were identified. Some of them are specific to this technique itself but others can 

be considered for any techniques (as fuel purity, air composition, mass flow controllers, mixing 

process, initial mixture temperature and pressure control, flame surface area …). Until now, no 

studies dedicated to the uncertainty quantification for the outwardly spherical expanding flame 

technique can be found in the literature. Therefore, the objective of this work is to study the 

uncertainty origins to display experimental data with relevant uncertainty values. This paper 

will also highlight the difficulty of measuring accurately LBV at low pressure due to the thin 

flame hypothesis and the spark electrode effect. The uncertainties will be estimated in the case 

of stoichiometric methane/air mixture for different initial pressures (from 0.2 to 2 bar) at an 

initial temperature of 298 K. 

 

Experimental setup 

Experiments were carried out in a spherical stainless steel combustion chamber with an inner 

volume of 4.2 L (inner diameter 200 mm) fully described by Galmiche et al. [20]. A heater wire 

resistance located on the outer surface of the sphere maintains the initial gases temperature at 

chosen value. The device is equipped with a vacuum pump to achieve a residual pressure lower 

than 0.003 bar before fill the chamber. The volumes of synthetic air (79.1% N2 and 20.9% O2 

vol.) and pure CH4 (99.99%) were introduced thanks to thermal flowmeters (Brooks 5850S, 2 

NL/min for air, and 0.5 NL/min for methane). One fan is used to mix homogenously the gases 

and stopped 5s before ignition to avoid any perturbation during the flame propagation 

experiments. A piezoelectric pressure transducer and a K-type thermocouple are used to check 

the pressure level and the initial temperature before ignition. Two tungsten electrodes, with a 

1-mm gap, linked to a conventional capacitive discharge ignition system generate a spark at the 

center of the chamber. Three electrodes diameters were tested: 0.2, 0.5 and 1 mm. The duration 

of coil charge for ignition was fixed at 3ms, to ensure a similar ignition energy. 

The flame propagation was visualized using a double Schlieren view method through two 

opposite and transparent pairs of windows (diameter 70 mm) installed on the chamber. A 

scheme of the set-up is presented in Fig.1. Both, side and front views are recorded by the high-

speed camera (Phantom v1610) thanks to a prism assembly at 10000 images per second, with 

0.1025 mm/pixel magnification ratio and a resolution of 640x800 pixels² for each view. The 

double Schlieren set-up enables to visualize the flame propagation in both directions mainly to 

observe the impact of electrodes on the flame sphericity: as it can be seen in Table 1. 



 
Figure 1. Schematic overview of the set-up. L1,L2 : LED lamps ; PM: Parabolic mirror (864 

mm focal length); FM: Focal metric; LE: Lenses (focal length: 200 mm and 160 mm 

respectively). 

 

The instantaneous flame front radius, 𝑅𝑓was obtained from image processing and the laminar 

flame speed 𝑆𝑏 from its temporal derivative, as 𝑆𝑏 = 𝑑𝑅f/d𝑡. By using Eq.3, i.e. NLE, the 

unstretched laminar flame propagation velocity 𝑆𝑏
0 is deduced, as the use of this nonlinear 

equation yields better results mainly under fuel-lean conditions, where the Markstein length 

from burnt gases side reaches or exceeds 1 mm [16]. For spherically expanding laminar flames, 

the total stretch K acting on the flame is equal to 2 ∗ 𝑆𝑏/𝑅𝑓. 𝜌𝑢 and 𝜌𝑏 needed to determine 𝑆𝐿
0, 

from Eq. (2) were computed using the EQUIL code from the CHEMKIN package[21]. 

 

Table 1. Example of flame evolution from front and side view images for different electrode 

diameters. (stoichiometric CH4-air, 0.5 bar, 298 K). 

Electrode 
diameter 

1 mm 0.5 mm 0.2 mm 

Front view (15 
ms after spark) 

   

Side view (10 
ms after spark) 

   



Side view (15 
ms after spark) 

   
 

Experimental errors and uncertainty quantification  

As the purpose here is to identify all sources of experimental errors in order to suggest a method 

as described by Moffat [22], based on the combination of experimental and statistical errors 

detailed in Table 2. The global uncertainty (or ‘bias’), 𝐵𝑆𝐿
0 can be calculated as Eq. 4,  

𝐵𝑆𝐿
0 = √(

𝛥𝑆𝐿
0

𝑆𝐿
0 )

𝑃,𝑇,𝜈𝑂2

2

+ (
𝛥𝑆𝐿

0

𝑆𝐿
0 )

𝑖𝑚𝑎𝑔𝑖𝑛𝑔

2

+ (
𝛥𝑆𝐿

0

𝑆𝐿
0 )

𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙

2

                    (4) 

Table 2. Names and origins of the errors 

Formula Name Origin of errors 

(
𝛥𝑆𝐿

0

𝑆𝐿
0 )

𝑃,𝑇,𝜈𝑂2

 
Experimental hardware errors control of the initial conditions 

(
𝛥𝑆𝐿

0

𝑆𝐿
0 )

𝑖𝑚𝑎𝑔𝑖𝑛𝑔

 
Imaging errors the imaging technique and processing 

(
𝛥𝑆𝐿

0

𝑆𝐿
0 )

𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙

2

 
Statistical error evaluated by running several identical tests 

 Experimental hardware errors 

From Eq. 5 (Metghalchi and Keck’s correlation [10]), this experimental error due to the 

accuracy of the initial conditions (as 𝑃, pressure, 𝑇, temperature and 𝜈𝑂2
, oxygen rate) can be 

deduced as Eq.6 (subscript 𝑟𝑒𝑓 = reference conditions) : 

𝑆𝐿
0 = 𝑆𝐿,𝑟𝑒𝑓

0 (
𝑇

𝑇𝑟𝑒𝑓
)

𝛼

(
𝑃

𝑃𝑟𝑒𝑓
)

𝛽

(
𝜈𝑂2

𝜈𝑂2,𝑟𝑒𝑓

)

𝛾

        (5) 

(
Δ𝑆𝐿

0

𝑆𝐿
0 )

𝑃,𝑇,𝜈𝑂2

= |𝛼|
Δ𝑇

𝑇
 + |𝛽|

Δ𝑃

𝑃
+ |𝛾|

Δ𝜈𝑂2

𝜈𝑂2

         (6) 

As the coefficients 𝛼, 𝛽, and 𝛾 depend on the equivalence ratio, to evaluate the errors, the 

‘worst’ values have to be considered for those coefficients. From previous studies [23], the 

coefficients 𝛼, 𝛽, 𝛾 were determined as respectively 1.89, -0.41, 2.67. The Relative errors for 

the initial pressure, temperature and oxygen from the present set-up are respectively 1, 0.7 and 

0.6% and induce a global experimental hardware error of 1.2%.  

Imaging errors 

Another cause of experimental errors is due to the set-up of the camera itself (i.e. frame speed 

and size). Beeckmann et al. [19] showed that the relative errors generated by the resolution on 

the flame speed are below 1.5 %. Moreover, another error due to the image processing to detect 

flame contour has also to be considered. For that, as the smallest flame circle can contain a 2x2 

pixels² square, when detecting the contour, the maximum detection error corresponds to the 

largest distance in a pixel, i.e. the diagonal. Therefore, the detection error on the radius, Δ𝑅𝑓 is 

√2 pixel. Two minimum and maximum radii are then defined as follows: 

𝑅𝑓,𝑚𝑖𝑛 = 𝑅𝑓 − Δ𝑅 and 𝑅𝑓,𝑚𝑎𝑥 = 𝑅𝑓 + Δ𝑅       (7) 



The flame speed and stretch can be calculated from the evolution of 𝑅𝑓 , 𝑅𝑓,𝑚𝑖𝑛 and 𝑅𝑓,𝑚𝑎𝑥 and 

NLE (Eq. 3) applied for those 3 evolutions to provide 3 values of unstretched laminar flame 

speed 𝑆𝑏
0, 𝑆𝑏,−

0 and 𝑆𝑏,+
0  respectively. This uncertainty on 𝑅𝑓 is then max (

|𝑆𝑏
0−𝑆𝑏,−

0 |

𝑆𝑏
0 ;

|𝑆𝑏
0−𝑆𝑏,+

0 |

𝑆𝑏
0 ). For 

experimental set-up here, this estimate leads to 1% error, and thus a global imaging error of 2.5 

% is estimated by adding the 1.5% implied by the resolution error described previously. 

Statistical error 

As discussed previously, the statistical error needs to be calculated not only to check the 

repeatability of the measurement but also to include it in the uncertainty calculation of Eq. 4. 

From several tests done for the same experimental conditions, the mean value is first calculated 

as follows: �̅� =
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1  , with 𝑛 the number of tests and 𝑋𝑖, the value of the test numbered 𝑖. 

The standard deviation is obtained as usual 𝜎𝑥 = √
1

𝑛
∑ (𝑋𝑖 − �̅� )2𝑛

𝑖=1  . 

The interval of confidence is then given using the Student’s law as follows: 

�̅� − 𝑡
𝜎𝑥

√𝑛
≤ �̅� ≤ �̅� + 𝑡

𝜎𝑥

√𝑛
         (8) 

with 𝑡 the value of the Student’s density function. 

With the determination of 𝑡 from Student’s table, the statistical error is then obtained and 

included in the global uncertainty estimate through Eq.4. The method described here will be 

applied to the following results obtained for stoichiometric methane-air combustion at sub-

atmospheric pressures.  

Results and discussion 

When the unstretched laminar burning speed is determined from spherical expanding flame, 

several hypothesis are done [9]. Among them, the adiabatic flame as well as the thin flame are 

of importance. The flame speed measurement has to be done when the flame is far from the 

walls of the vessel to avoid heat losses effect and consider the adiabatic flame hypothesis, but 

also to consider the constant pressure during the flame expansion. In this study, it was limited 

to for flame diameters below 50 mm, corresponding to a burnt gases volume less than 1.6% of 

the chamber volume. In the other hand, the effects of the ignition and electrodes themselves 

have to be also avoid, thereafter only images corresponding to a flame front radius greater than 

6.5 mm were used [24]. In the case of sub-atmospheric flames, heat losses with electrodes in 

comparison to the flame energy could be critical, moreover as the flame is thickened, the flame 

speed estimate from the flame front radius evolution based on thin flame thickness can be less 

accurate. To study these both effects in the case of sub-atmospheric environment, 

stoichiometric methane-air mixture was chosen to avoid thermo-diffusive instability and 3 

different diameters of tungsten electrodes (namely 0.2, 0.5 and 1.0 mm) to evaluate the impact 

of heat loss through the electrodes. At fixed initial temperature (298 K), experiments were 

carried out for 8 different initial pressures (0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, and 2.0 bar). For all 

experiments presented in following, the results are the average of 3 experiments and the error 

bars corresponding to the global uncertainty bias, 𝐵𝑆𝐿
0 calculated from Eq.4. 

Electrodes effect 

Fig. 2 displays the laminar burning speed as a function of pressure for the three different sizes 

of electrodes in comparison with the previous work of Konnov et al. [25]. It can be seen that 

for pressures equal to 1 and 2 bar, the results obtained with any electrode diameter are in a good 

agreement with the data provided by Konnov et al. The variations for different electrode 

diameters, lower than 1 cm/s are in the range of the uncertainty. But for sub-atmospheric initial 

pressure, the difference between the data of Konnov et al. obtained with heat flux burner 

increase as a function of pressure decrease. Moreover, until 0.4 bar, the difference between 0.5 

and 1 mm diameter is really low but below 0.4 bar, the flame was ignited only for the two lower 



electrode diameters, due to the too strong heat losses towards the electrodes compared to the 

flame energy whereas the 0.5 mm electrodes enabled to ignite mixture down to 0.2 bar.  

 

 
Figure 2. Laminar Burning speed as a 

function of pressure for 3 electrode 

diameters and from Konnov et al. [25]. 

 
Figure 3. Normalized Flame Speed 𝑆𝐿

0/𝑆𝐿
0 

(Konnov) versus pressure. 

 

In order to highlight the differences with the data of Konnov et al., our LBV values were 

normalized by Konnov et al values as displayed in Fig. 3. It can be seen that at 1 bar, the results 

obtained with all the electrodes are really similar to those of Konnov et al. As the pressure 

decreases, the normalized flame speed decreases down to 0.83 (in the case of 0.5 mm electrode 

diameter). The use of 0.5 mm electrodes instead of 1 mm electrodes is less impacting on flame 

speed values but it enables to ignite at lower pressure. However, when using the 0.2 mm 

electrodes, the normalize flame speed is slightly increased and the uncertainty decreases due to 

a lower standard deviation thus improving the quality of the results. Nevertheless, taking into 

account the uncertainty does not allow to values similar to what Konnov et al. measured at low-

pressure. Other values from literature can be extracted: at 0.167 (Ombrello et al. [26]) and 0.25 

bar (Egolfopoulos et al. [4]) providing LBV of 57.01 and 61.25 cm/s respectively which is even 

higher than the results of Konnov et al. For the sake of comparison, the correlation proposed by 

Hinton et al. [27] is presented. This correlation was validated using experimental data covering 

a range of pressure from 0.25 to 20 bar and more precisely at low pressure with the data of 

Hassan et al. [28] at 0.25 and 0.5 bar and Taylor [29] at 0.5 bar. The correlation shows a good 

agreement with the present dataset down to 0.8 bar. From 0.6 bar, the correlation agrees better 

with the data of Konnov et al. However it seems that below 0.2 bar, the correlation 

overestimates the LBV compared to the experimental values of Konnov et al. 

Thanks to the double Schlieren set-up described in Fig. 1, the heat losses toward the electrodes 

can be observed for both views as in Table 1. From the front view, 15 ms after the Start of Spark 

Ignition (SSI), no effect on electrode diameter can be identified on the flame shape but from 

the side view, the effect of the electrodes is clearly visible especially earlier, i.e 10 ms after SSI. 

Indeed, for the 1 mm electrodes, the flame, affected by electrodes heat losses, looks like a 

combination of 2 half circles whereas for smaller electrodes the flame shape is more 

continuously circular. The deformation of the flame shape is not distinguishable with the 

decrease of electrode diameter especially as a function of the flame growth (as 15 ms after SSI 

and a flame diameter around 40 mm). The deformation corresponding to the heat losses from 

the flame kernel towards the electrodes induces a non-homogeneous local flame speed altering 

the accuracy of the burning speed estimate from this technique. It is then clearly demonstrated 

that as a function of the initial pressure, the ignition device characteristics have to be taken into 

account to consider discrepancies of flame speed data from literature.  



Taylor [29] showed that as a function of electrodes size, the minimum radius considered for the 

extrapolation should be adjusted due to a “volumetric error” linked to the heat loss towards the 

electrodes. The flame radius will increase quicker than expected because the electrodes occupy 

a part of the burnt gas volume. It is clear that this influence becomes negligible as the flame 

grows. The magnitude of the volumetric error can be estimated by representing the electrodes 

by a single rod passing through the center of the flame. The ratio of rod volume to flame volume 

is 1.5(𝑅𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒𝑠 𝑅𝑓⁄  )
2
 with 𝑅𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒𝑠 the radius of the electrodes. To discount the electrode 

effects the above ratio should be lower than 0.01 according to Taylor. As a consequence, the 

minimum flame radius that must be considered in the present work is 6.1 mm, 3 mm and 1.2 

mm for electrode diameter of 1, 0.5 and 0.2 mm respectively. Since the minimum radius chosen 

for the extrapolation is 6.5 mm that implies that, the effect of the electrodes could be neglected. 

Flame thickness hypothesis 

Taking into account the flame thickness in the experimental determination of LBV is a quite 

old issue [30]. Recently Liang et al. [31] proposed a new extrapolation expression based on the 

work of Frankel and Sivashinsky[32] and Chen and Ju[33] to take into account the flame 

thickness. From the asymptotic solution allowing the finite flame thickness developed by 

Frankel and Sivashinsky, Chen and Ju presented this expression  

(𝑈 +
2

𝑅
) ln (𝑈 +

2

𝑅
) =

(𝑍−2)

𝑅
(

1

𝐿𝑒
− 1)        (9) 

with 𝑈, R, 𝐿𝑒, and 𝑍 respectively the normalized flame speed, the normalized flame radius, the 

Lewis Number and the Zel’dovich number. Therefore this equation can be written in a 

dimensional form called “Flame Thickness Expression” (FTE) as : 

(
𝑆𝑏

𝑆𝑏
0 +

𝛿𝐿
0

𝑅𝑓
) ln (

𝑆𝑏

𝑆𝑏
0 +

𝛿𝐿
0

𝑅𝑓
)  = −

2(𝐿𝑏−𝛿𝐿
0)

𝑅𝑓
        (10) 

with 𝛿𝐿
0, the flame thickness. This expression is similar to the nonlinear extrapolation of Eq. 3 

and in the limit of a very thin flame the term corresponding to the flame thickness in Eq. 10 

vanishes. However, as 𝛿𝐿
0 increases with the pressure decrease, the thin flame hypothesis 

becomes less and less valid for the burning speed measurement using the spherical expanding 

flame technique. A new post-process based on this new expression was done to quantify this 

effect of the flame thickness on LBV estimate at low pressure. To evaluate the impact of 𝛿𝐿
0 on 

𝑆𝑏
0 experimental estimate, the flame thickness value was arbitrary varied from 0 to 0.5 cm as 

presented in Fig. 4 for an initial pressure of 0.2 bar. A variation of the flame thickness from 0 

to 0.5 cm modifies the unstretched flame speed value up to 11 cm/s thus leading to a difference 

of 3.25 %, on the unstretched LBV. It can be noted that 𝑆𝑏
0 estimate reaches a maximum value 

for a flame thickness of 0.16 cm which corresponds to the theoretical flame thickness calculated 

for those conditions by using the classical expression 𝑇𝑎𝑑 − 𝑇𝑢/max (𝑑𝑇 𝑑𝑥)⁄  with GRI-Mech 

3.0 [34] as indicated Table 2.  

 

 
Figure 4. Unstretched laminar flame speed as a function of arbitrary flame thickness value.  



The comparison between the two extrapolation methods, namely NLE (Eq. 3) and FTE (Eq. 

10) by taking the 𝛿𝐿
0 estimate is then presented in Table 3 for 4 pressures values and an electrode 

diameter of 0.2 mm. It can be noted that FTE method provides higher LBV values than NLE 

method. However, this increase is not sufficiently important to reach Konnov et al. values. As 

a conclusion, by taking into account the flame thickness and by using the thinnest electrodes 

appear to be not sufficient to fill the gap between the present data and those of Konnov et al. or 

also those predicted by GRI-Mech 3.0 (given in Table 3), 5% lower than Konnov et al. 

measurements. 

Table 3. Comparison of different laminar burning speed estimates and flame thickness versus 

pressure. Stoichiometric methane-air, 298K. 

Pressure 

(bar) 

Flame 

Thickness 

from GRi 

3.0 (mm) 

LBV from 

GRI 3.0 

(cm/s) 

LBV 

Konnov 

et al. 

(cm/s) 

LBV 

Present Work 

NLE 

(cm/s) 

LBV 

Present 

Work FTE  

(cm/s) 

0.2 1.62 56.70 53.07 45.18 ± 1.43 46.08 ± 1.65 

0.3 1.17 52.39 50.06 43.40 ± 0.97 44.02 ± 1.00 

0.4 0.926 49.11 47.30 42.26 ± 0.83 42.58 ± 0.98 

0.5 0.773 46.45 44.80 41.42 ± 0.86 41.27 ± 0.81 

 

As a result, the experimental setup and methods used seem to present some limitations to 

determine with high accuracy unstretched laminar burning speed in such conditions, either the 

flame thickness is not properly taken into account or other hypothesis used in flame speed 

measurement need to be investigated. Indeed, as the pressure decreases, the flame thickness 

increases thus affecting the flame temperature profile. Varea et al.[9] showed on normalized 

temperature profiles calculated from PREMIX that the distance to reach the equilibrium state 

increases as decreases the initial pressure. For pressure set investigated in the present study, the 

temperature profiles normalized by the equilibrium temperature, calculated with GRI-Mech 3.0 

on PREMIX, are reported in Fig. 5. 

 

 
Figure 5. Normalized simulated temperature profiles for stoichiometric methane-air flames at 

initial temperature of 298 K and various initial pressures. 

 

Fig. 5 shows that at 1 bar, the flame reaches the equilibrium state, identified for 0.99 of 

normalized temperature at 1.5 cm, whereas at 0.8 bar, it needs 3 cm and 12 cm for the 0.2 bar 

flame. Therefore, the low-pressure flames investigated in the present study cannot be 

considered in the equilibrium state, which is one strong hypothesis of the spherical expanding 



flame method. This results in an overestimate of the density ratio used in the calculation of 𝑆𝐿
0. 

The following method is proposed for a first way to estimate what could be the actual density 

ratio for those low-pressure flames. By considering that at 1 bar, the flame reaches the 

equilibrium at 1.5 cm, the density ratios of the flame at lower pressure are calculated at the 

same distance and used for the calculation of 𝑆𝐿
0 like in Eq. 2. The different values of density 

ratios are reported in Table 4. The relative difference in terms of density ratios between a 

normalized temperature of 0.99 and the equilibrium is only 1.5 %. The potential change in the 

laminar burning velocity will be then about 0.5 cm/s and neglected in the case of pressure higher 

than 0.8 bar. 

Table 4. Density ratios estimate for stoichiometric methane-air flames at initial temperatures 

of 298K. 

Pressure [bar] 
𝜌𝑏 𝜌𝑢⁄  at the 

equilibrium 
𝜌𝑏 𝜌𝑢⁄  at X=1.5 cm 

Relative difference 

with the 

equilibrium [%] 

0.8 0.1336 0.1365 2.17 

0.6 0.1339 0.1389 3.73 

0.5 0.1341 0.1408 5.00 

0.4 0.1344 0.1436 6.85 

0.3 0.1348 0.1478 9.64 

0.2 0.1353 0.1541 13.90 

In Fig 6, the effect of correcting the density ratio on the laminar burning velocity measurement 

by using the values at 1.5 cm as presented in Table 4 is plotted. As expected, the current data 

present a better agreement with the results of Konnov et al. especially the general trend in the 

laminar burning speed as a function of pressure is better captured. Moreover by using the FTE 

model, the data of Konnov et al. are even included in the error bars, except for 0.4 and 0.3 bar. 

Compared with the results of Table 3, the correction of the density ratios brings improvement 

with less than 10% of difference with GRI-Mech 3.0 for both NLE and FTE cases and for 

pressures below 0.4 bar using the FTE extrapolation about 7% of difference as FTE is beneficial 

when pressure is below 0.4 bar (as seen in Table 3). This demonstrates that a proper estimation 

of the density ratio is required when dealing with low-pressure flame and its effect is here 

clearly highlighted. 

 

 
Figure 6. Laminar Burning speed estimate as a function of pressure for 3 electrode diameters, 

from 2 different extrapolation methods and equilibrium and corrected density ratios.  

 



Conclusion 

Accurate measurements of LBV remain of primary importance in order to validate kinetic 

mechanisms or to provide correlations for CFD modelling especially for complex and/or blend 

fuels. The objective of this study was to analyze different uncertainties sources in LBV 

measurements done using the outwardly expanding flame configuration in a closed vessel and 

to provide rigorous method to estimate them. The method enables to display averaged LBV 

values together with more realistic error bars corresponding to experimental uncertainties. In 

the worst case of this study (intake pressure of 0.3 bar with a spark electrode diameter of 

0.5mm), the uncertainty was estimated about 6.5%. 

The uncertainty method was then applied to sub-atmospheric stoichiometric methane-air 

premixed flame for which the adiabatic flame and thin flame thickness hypotheses could be 

invalid. In order to investigate the adiabatic flame hypothesis, different sizes of electrodes were 

used. Results showed that using electrodes with diameter less than 0.5 mm enables to ignite 

mixtures at lower pressure and presents higher LBV values for pressure below 0.5 bar, due to 

the heat losses occurring from the flame towards the surface that lead to a flame distortion and 

a modification of the flame speed locally. Since the results obtained with the smallest electrode 

size were still far from those of Konnov et al. [25] or predicted by GRI-Mech 3.0, the flame 

thickness hypothesis was investigated using the extrapolation method proposed by Liang et al. 

[31]. Results showed that taking into account the flame thickness in the extrapolation of the 

unstretched flame speed values has a low impact on the results in the most critical condition 

(LBV increased by 3.25 % in the best case). Taking into account the flame thickness showed 

some improvements (1.5 % in the best case) in LBV values but not sufficiently to explain the 

differebce with Konnov et al. values (up to 20% of difference). Finally, the choice of 

equilibrium density ratio has been discussed. The simulated flame temperature profiles clearly 

showed that the equilibrium is probably not reached for sub atmospheric flames and that a 

proper estimate of the real density ratio for those outwardly expanding flames is required or at 

least a correction for the density ratio to provide a better estimate of the LBV. 

To conclude, the outwardly spherical expanding flame does not seem to be the most 

accurate technique for measuring LBV at low pressure. The flame thickness is not properly 

considered or some other hypothesis still need to be improved. For future work, the flame 

thickness could be considered as an output of the extrapolation method as initially implemented 

by Liang et al. in order to see how the improvement of result is. Other mixtures, with thin flame 

thickness even at low pressure could be also investigated in order to verify which parameter is 

the most impacting in such conditions between the flame thickness and the density ratio. 
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