
HAL Id: hal-02163502
https://hal.science/hal-02163502

Submitted on 2 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On a Computational Strategy with Time-Space
Homogenization for Heterogeneous Materials

Anthony Nouy, Pierre Ladevèze

To cite this version:
Anthony Nouy, Pierre Ladevèze. On a Computational Strategy with Time-Space Homogenization for
Heterogeneous Materials. Journal of the Mechanical Behavior of Materials, 2009, 19 (2-3), pp.115-124.
�10.1515/JMBM.2009.19.2-3.151�. �hal-02163502�

https://hal.science/hal-02163502
https://hal.archives-ouvertes.fr


On a Computational Strategy with Time-Space 
Homogenization for Heterogeneous Materials 

Anthony Nouy 
LMJ'-Cachan (ENS Cachan I CNRS I Universite Paris VI) 

61 Avenue du President Wilson, F-94235 Cachan CEDEX, France 

Pierre Ladeveze 

LMI'-Cachan (ENS Cachan I CNRS I Universite Paris VI) 

61 Avenue du President Wilson, F-94235 Cachan CEDEX, France 

pierre.ladeveze@lmt. ens-cachanfr 

SUMMARY 

A new multiscale computational strategy was recently proposed for the analysis of structures described 

both on a fine space scale and a fine time scale. This strategy, which involves homogenization in space as 

well as in time, could replace in several domains of application the standard homogenization techniques, 

which are generally limited to the space domain and present some drawbacks. It is an iterative strategy which 

calls for the resolution of problems on both a micro (fine) scale and a macro (homogenized) scale. Here, we 

review the bases of this approach and present improved approximation techniques to solve the micro and 

macro problems. 

INTRODUCTION 

When a precise solution is required in the analysis of heterogeneous structures, such as reinforced or 

composite structures, the calculation must be performed on a fine discretization of the structure (on the 

micro-level). Since the constituents often have very different mechanical characteristics, the resulting 

structure is highly heterogeneous and the local solution displays phenomena with a short length of variation. 

This type of situation leads to problems with very large number of degrees of freedom and the calculation 

cost is generally prohibitive if one uses classical FE codes. Our objective is to reduce the calculation cost

drastically while, at the same time, trying to improve the robustness. 

The theory of periodic media homogenization initiated by Sanchez-Palencia [I] is one of the possible 

strategies to achieve this goal, especially for linear problems. Modified versions have been developed to 
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handle nonlinear problems [2-5]. However, all these theories are valid only for small ratios between the small 

scales and the large scales. Moreover, a specific treatment is required at the boundaries, where the material 

cannot be homogenized. 

An answer to this challenge is a new micro-macro computational strategy [6-9] which includes an 

homogenization technique in both space and time while avoiding the drawbacks of the classical 

homogenization theory. It is iterative and works over the entire space-time domain. Homogenization is 

automatically performed along iterations. This approach can be seen also as an alternative to classical 

homogenization theories. Here, this strategy is detailed for (visco)plastic materials and optional unilateral 

contact with or without friction. 

The first feature of the method consists of partitioning the space-time domain. The structure is an 

assembly of substructures and interfaces. Each component has its own variables and its own equations. The 

junction between the "macro" and the "micro" scales takes place only at the interfaces. "Macro" and "micro" 

quantities are sort of mean values over both space and time. The resulting structure can be interpreted as a 

Cosserat-like medium. 

The method's second feature is the use of the so-called LATIN method, a non-incremental iterative 

computational strategy applied over the entire time interval being studied [ l O]. At each iteration, one must 

solve a "macro" problem, defined on the entire structure and the entire time interval, along with a family of 

independent linear problems each defined on a composite cell and its boundary. These are "micro" problems, 

unlike the "macro" problem which corresponds to the entire homogenized structure both in time and in space. 

Here, we focus first on the basic aspects of this approach and in particular on the homogenization 

procedure in space and in time. Further works are also presented, which help reduce the computation cost. A 

first improvement consists of intoducing a third scale to build an approximation of the "macro" problem. 

Another improvement concerns the resolution over the space-time domain of the "micro" problems for which 

a "radial-type" approximation [I O] is introduced. 

Several numerical examples illustrate the possibilities of the approach presented. 

THE REFERENCE PROBLEM 

We consider a standard boundary value problem under the assumptions of small perturbations and 

isothermal, quasi-static state. The inelastic strain Ep is considered separately from the other internal 

variables, denoted X. The conjugate variable of X is Y; thus, the dissipation rate is Taip]-Y ·X, where

u denotes the stress field. From the free energy, under usual decoupling assumptions, we obtain a "normal" 

formulation [10] of the state equations. 

The first step of the multiscale computational strategy consists of describing the structure as an assembly 

of simple components: substructures and interfaces [ 10]. Each component has its own variables and 
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equations. A substructure 0. E, E e E, is subjected to the action of its environment (the neighboring

interfaces) defined by a force distribution FE and a velocity distribution w, on its boundary an • .  An

interface r EEO between two substructures E and E' transfers both the velocity and the force distributions:

w. , w. and FE, FEo. The set of unknowns on a substructure and its boundary is denoted s E .

sE =(&£,X£,CT£,YE) is said E-admissible if it verifies the equilibrium equations, the compatibility

equations, the state equations and the initial conditions. 

The reference problem can be reformulated as follows: Find s = U EeE s E which verifies the E-

admissibility of S£ , the constitutive relation describing the state evolution and the behavior at the interfaces.

DESCRIPTION OF QUANTITIES ON THE MACROSCALE AND ON THE MICROSCALE IN 

THE SPACE-TIME DOMAIN 

The distinction between the micro and macro levels is made only at the interfaces. For space, the macro 

scale is defined by the characteristic length of the interfaces, which is a priori much larger than the 

discretization scale. For time, the macro scale is associated with a coarse partitioning of the time interval 

rho = {t� = 0, tF, ... , t� = T} being studied, included in a finer partitioning Th. For example, one could

talce, on the space level, affine functions on an interface for macro forces and displacements lf.M and £!"' 
and, on the time level, piecewise polynomial functions of degree p for the grid T1io: the corresponding space

is denoted by z�O,TJ . The expression of work is taken in the sense of the Galerkin discontinuous method [ 11]. 

The micro parts are E"'=E-£1"' and lf.m =lf.-lr.M . "Macro" and "micro" parts of forces and displacements 

on the interface are uniquely defined by the following decoupling property 

J F·WdSdt= J (FM.wM+Em.wm}t.s-dt
[EE Cx(O,T] [EE Cx[O,T] 

(1) 

The rationale adopted for the definition of the macro quantities is physically sound: these quantities are 

mean values in space as well as in time. More precisely, they are the best approximations in the sense of the 

work bilinear form. 

Another important feature of the multiscale computational strategy presented here is that the transmission 

conditions at the interfaces are partially verified a priori. The macro forces are required to systematically 

verify the transmission conditions, including the boundary conditions. These conditions remain unchanged 

under unilateral contact. 
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MULTISCALE COMPUTATIONAL STRATEGY WITH SPACE AND TIME HOMOGENIZATION 

o Principle

Partial verification a priori of the transmission conditions at the interfaces leads to the following 

reformulation of the reference problem: Find s = U EeE s E which verifies:

(- sE is E-admissible, VE E E 

Ad 
- the transmission condition of macro forces 

- the constitutive relation describing the state evolution 
r - the behavior at the interfaces 

(O,Y,t:) 

Fig. 1: Scheme of one iteration 

r represents a set of (possibly nonlinear) equations which are local in the space and time variables. Ad 
is a set of global linear equations. With this partitioning, it is possible to apply the LATIN method, a general 

computational strategy for time-dependent nonlinear problems which operates globally over the entire time­

space domain. This method, described in [I O], relies on some remarkable properties which are verified by 

most models encountered in structural mechanics. Figure I shows the scheme for one iteration, which 

consists of two steps. 

o Tire local stage at iteration n 

The problem consists of building sn+l/2 Er knowing Sn EA<]. (sn+l/2 -sn) must follow a search

direction E+. The local step presents no difficulty. The problems to be solved are local in the space and time 

variables and, therefore, lend themselves to the highest degree of parallelism. 

O Tire li11ear stage at iteration n 
The problem consists of building Sn+l E A<J knowing Sn+l/2 Er . (sn+I -Sn+l/2} must follow a search

direction E-. 

In practise, we introduce a Lagrange multiplier WM to ensure the admissibility of the macro forces.

Then, the linear stage can be split into two parts. 

• The micro problem defined on substructure OE and its boundary i!lE and on [0,1]

The micro problem associated with substructure E can be written as: find s E E-admissible which

4



verifies the search direction E-. The solution to the micro problem related to substructure E depends only on 

the known quantities l.d1nE' S£,n+J/2' on the given initial condition and on the value of w� at the

boundary iJ QE which, at this stage, is unknown. The "macro" part of the solution can be written as follows:

(2) 

where fr� d depends on f E, S£ n+I/i and on the initial conditions. LE is a linear operator which can be-. -din · 

interpreted as a homogenized behavior operator over the space-time substructure QE x[O,T]. It is calculated 

with zero initial conditions at a relatively low cost because W� on OQE x[O,T] depends on only a few 

scalar parameters. 4: represents the coupling effect among the different scales. 

The micro problems defined on n Ex Jti ,ti+ 1 [ ,  E e E and i e { O, ... ,N± I} are independent. However, for 

each substructure E, their resolution must be incremental. This step lends itself to parallelism very well. 

At each iteration and for each substructure, we need to solve micro problems which are evolution 
equations defined on QE x[O,T] . When a precise solution is required both in space and in time, the cost of 

solving these problems with standard incremental methods can be prohibitive. We propose to introduce an 

approximation technique for the resolution of these problems, based on the concept of generalized radial 

functions [ 9, 10]. 

• The macro problem defined on Qx[O,T]

Relation (2) and the admissibility of the "macro" forces lead to the macro problem, which is an

homogenized problem on the entire space-time domain Qx [O,T] . The macro problem yields WM and

f_M • Then, using the micro problem again, one can determine Sn+l completely.

Macro quantities are defined only at the interfaces; by treating the medium as a Cosserat material, one can 
define macrostresses, macrostrains, inside a substructure QE. 

If the number of macro space-time substructures QEx]t' i,t'i+J [ is large, the cost of solving the macro 

problem can be prohibitive. I lere, we also propose to build an approximation of its solution inspired from the 

kinematics of a Cosserat medium [6, 9]. 

Example 

Let us consider the 2D problem of a composite structure containing cracks (unilateral contact with 

friction with a friction parameter µ=0.2) (Figure 2). It is fixed on the bottom and subjected to prescribed 
forces .E.1 and fa (Figure 3). The structure is made of two types of cells, denoted I and II. The materials are

viscoelastic with Young's modulus E;, Poisson's ratio Va and viscosity 7]i. The Type-II cell is homogeneous
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with a Type-1 material whose characteristics are EI =50 GP a, v1 =0.3 and 111=1 Os . The Type-I cell consists 

of a matrix of Type-1 material and inclusions of Type-2 material whose characteristics are £2=250 GPa, 

v2 =O .2 and 112 =I OOOs . 

F2 
llll !!lllll --+ _ c .. c1cs wtth 

--+ friction 
--+ (µ.0.2) 
--+ 

F 
--+ 

1--+ 
--+ 
--+ 
--+ 
--+ 

--+ 

Typ&·llCells 

Fig. 2: Description of the problem Fig. 3: Loadings .E1 and .E2 

The time interval being considered is [O,lOs] and is discretized with 60 identical micro intervals and 3 

identical macro intervals. The "macro" spaces contain affine functions per interface on the space level and 

functions of type Z�·T] for the grid 'Cho On the time level. The "micro" spaces contain functions of type

z�O,T) for the grid 'Ch. 

Figures 4, 5, 6, and 7 show the good agreement between macro and total forces over space and time , also 

in high gradient zones (in the middle of the heterogeneous zone and around the cracks). Let us remark that 

unilateral contact conditions are satisfied by the total quantities and satisfied in a mean sense by the macro 

quantities. The same results occur for displacements. 

• 100 102 104 106 106 110 112 

Sf*9(mm) 0 2 4 8 
Tme(s) 

8 10 

Fig. 4: Space distribution of normal component of Fig. s: Time evolution of normal component of 
macro and total forces on four vertical macro and total forces on a point of an 
interfaces in the middle of the heterogeneous 

zone 
interface in the middle of the heterogeneous 

zone 

6



....... 

• 1ao 102 tD4 ta. 11• tto uz 
Spoool"""' 

Fig. 6: Space distribution of normal component of Fig. 7: Time evolution of normal component of

macro and total forces on four horizontal macro and total forces on a point of the right 

interfaces around the right crack crack 

Figure 8 shows the evolution of the error with the number of iterations of the LA TIN method. The

algorithm converges towards a good solution very quickly (relative error less than 1/100 after 10 iterations). 

tcf' 
I 
I 

to'" 

1�0'--��5��,o��,�,�-=���,...-� 
-

Fig. 8: Evolution with the number of iterations of an error based on interface quantities

CONCLUSION 

The improved method presented here led to significant performance gains in the resolution of the linear 

stage. The first improvement was the introduction, for composite structures, of a third scale and the use of an 

approximation technique for the macro problem: this approximation is based on an analogy between the 

macro homogenized structure and a Cosserat medium. The second improvement was the introduction of the 

radial loading approximation to solve the micro problems. This strategy extends the approximation 

classically used in the LA TIN method for quasi-static problems [7]. The gain obtained by these two 

improvements becomes significant as one has to deal with a large number of composite cells and needs to 
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calculate a detailed solution in the time domain. The techniques Clescribed here can be used only with global 

methods in space and in time, which excludes classical incremental methods. 
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