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Abstract

We study the problem of searching for a hidden target in an environment that is modeled
by an edge-weighted graph. A sequence of edges is chosen starting from a given root vertex
such that each edge is adjacent to a previously chosen edge. This search paradigm, known as
expanding search was recently introduced by Alpern and Lidbetter (2013) for modeling problems
such as searching for coal or minesweeping in which the cost of re-exploration is negligible. It
can also be used to model a team of searchers successively splitting up in the search for a hidden
adversary or explosive device, for example. We define the search ratio of an expanding search as
the maximum over all vertices of the ratio of the time taken to reach the vertex and the shortest-
path cost to it from the root. This can be interpreted as a measure of the multiplicative regret
incurred in searching, and similar objectives have previously been studied in the context of
conventional (pathwise) search. In this paper we address algorithmic and computational issues
of minimizing the search ratio over all expanding searches, for a variety of search environments,
including general graphs, trees and star-like graphs. Our main results focus on the problem of
finding the randomized expanding search with minimum expected search ratio, which is equivalent
to solving a zero-sum game between a Searcher and a Hider. We solve these problems for certain
classes of graphs, and obtain constant-factor approximations for others.

1 Introduction

We consider the problem faced by a Searcher of locating a stationary target or Hider located at a
vertex of a connected edge-weighted graph G. We interpret the weight of an edge as the time taken
to search that edge. The search must start at a given vertex O called the root and consists of a
sequence of edges chosen in such a way that every edge must be adjacent to some previous edge, so
that the set of edges that have been searched at any point forms a connected subgraph of G. For
a given search and a given vertex v at which the Hider is located, the search time of v is the time
taken to search all the edges up to and including the first edge that is incident to v.

This paradigm of search, recently introduced by Alpern and Lidbetter (2013) is known as
expanding search, in contrast to the more usual search paradigm, referred to here as pathwise
search in which a search corresponds to a walk in a graph. The expanding search paradigm is an
appropriate model for situations in which the cost of “re-exploration” is negligible compared to the
cost of searching, for example when mining coal: here digging into a new site is far more costly
than moving the drill through an area that has already been dug. Another situation to which this
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Figure 1: The graph G.

principle applies is securing a dangerous area from hidden explosives; once the area is deemed clear,
the searchers can navigate through it at a much lower cost. An alternative interpretation, described
in detail in Alpern and Lidbetter (2013), is that of a team of searchers splitting up in the search
for a target.

We illustrate the concept of expanding search on a graph with an example. Consider the graph
G depicted in Figure 1 with root O; vertices A, B, C and D; and edges OA, OB, BC and BD
of lengths 3, 2, 2 and 1, respectively. An example of an expanding search on G, which we will
denote by S, is the sequence of edges, OB, OA, BD, BC. Under S, the search time of vertex D is
2 + 3 + 1 = 6.

Alpern and Lidbetter (2013) take the approach of seeking randomized search strategies that
minimize the expected search time in the worst case: that is, the maximum expected search time
over all vertices. They also consider the problem of determining the search that minimizes some
weighted average of the search times of the vertices. In this paper, we take an alternative approach
by considering a normalized version of the search time obtained by dividing the search time of a
vertex v by the length of the shortest path from O to v. For example, in the graph G depicted in
Figure 1, the normalized search time under S of vertex D is 6/3 = 2 since D is at a distance of
2 + 1 = 3 from the root. The maximum the normalized search time takes over all vertices of the
graph is called the search ratio. In G, the normalized search time of S is maximized at B, where
it is equal to (3 + 2)/2 = 2.5, so this is the search ratio of S. This paper studies the problem of
finding an expanding search with minimum search ratio.

Our choice of the search ratio as the objective for expanding search is motivated by earlier work
by Koutsoupias et al. (1996), who introduced this objective in the context of pathwise search. Their
approach is analogous to the competitive analysis of online algorithms, in which the performance
of an online algorithm is measured against the performance of an optimal offline algorithm; more
precisely, the optimal offline algorithm corresponds to simply taking the shortest path to the target.
As in Koutsoupias et al. (1996), we consider not only deterministic searches, but also randomized
searches, with the aim of finding the randomized expanding search that minimizes the expected
value of the normalized search time in the worst case. Equivalently, we view this problem as a
zero-sum game between a Hider who chooses a vertex of the graph and a Searcher who chooses an
expanding search. The payoff, which the Hider seeks to maximize and the Searcher to minimize, is
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the normalized search time. This puts our work in the broader category of search games, a more
general framework for games played between a Hider who chooses a point in some search space and
a Searcher who makes some choice of how to navigate through the space with the aim of minimizing
a given cost function.

It is worth mentioning that normalized cost formulations very similar to the search ratio have
also been previously studied in the context of searching in unbounded domains (see, e.g., the early
work of Beck and Newman (1970) on the linear search problem as well as the work of Gal (1972)
in the context of star search). In such domains, the Hider can ensure the search time is arbitrarily
large by choosing positions arbitrarily far from the root. This observation motivates the need for
normalizing the search cost, which is accomplished by dividing this cost by the shortest-path cost
from the root to the Hider.

In the spirit of the work of Koutsoupias et al. (1996), in this paper we focus on computational
and algorithmic issues of expanding search. We note that Alpern and Lidbetter (2013) follow
a purely mathematical approach to analyzing expanding search, with an emphasis on evaluating
the value of the corresponding zero-sum games; computational and algorithmic issues are not
considered. Table 1 illustrates the context of our work with respect to previous work. We note
that the problem of minimizing the average search time of the vertices of a graph assuming the
pathwise search formulation is precisely the well-known problem of minimizing the latency of a
graph, also known as the Traveling Repairman problem (see Blum et al. (1994), Goemans and
Kleinberg (1998), Arora and Karakostas (2003), Sitters (2002) for some representative results on
this problem). The problem of choosing the randomized (pathwise) search that minimizes the
maximum expected search time of points of a network was formalized by Gal (1979), and has been
extensively studied, as discussed in Subsection 1.1.

Table 1: Previous work and relations between search paradigms and objectives.
Objective

Average search time Maximum expected search time Search ratio
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Min. Latency problem
((Blum et al. (1994))

Gal’s search game
((Gal (1979))

Searching a fixed graph
((Koutsoupias et al. (1996))

E
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Expanding search
(Alpern and Lidbetter (2013))

Expanding search
((Alpern and Lidbetter (2013))

This work

1.1 Related Work

Search theory (and its computational counterpart) has a very rich history of research. We give a
summary of some results that are pertinent to this work.

Following the formalization of network search games by Gal (1979) in the framework of pathwise
search with un-normalized search time, the problem has had considerable attention, for example
in Reijnierse and Potters (1993), Pavlovic (1995) and Gal (2001). In the latter work the solution
of the game was found for all weakly Eulerian networks. Recent variations on Gal’s original game
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include a setting in which the Searcher chooses his own starting point in Dagan and Gal (2008)
and Alpern et al. (2008), and the setting in which the Hider is restricted to choosing vertices that
have search costs in Baston and Kikuta (2013) and Baston and Kikuta (2015).

Expanding search was introduced by Alpern and Lidbetter (2013) in the setting in which the
payoff is the total (un-normalized) cost of finding the Hider. Among other results, Alpern and
Lidbetter solved the game in the case that the network is either a tree or 2-edge-connected. This
model was extended by Lidbetter (2013) to a setting in which the Searcher must locate multiple
hidden objects.

Much of the search games literature been purely mathematical, with less emphasis on issues of
complexity, a notable exception being the work of von Stengel and Werchner (1997). The search
ratio of pathwise search was studied in Koutsoupias et al. (1996), who showed that the problem
of computing the optimal search ratio in a given undirected graph is NP-complete (and MAX-
SNP hard to approximate). They also gave a search strategy based on repeated executions of
depth-first searches with geometrically increasing depths that achieves a constant approximation
of the (deterministic) competitive ratio. Similar results can be obtained concerning the randomized
competitive ratio (assuming that the Searcher randomizes over its strategy space). Connections
between graph searching and other classic optimization problems such as the Traveling Salesman
problem and the Minimum Latency problem were shown by Ausiello et al. (2000). The setting in
which the search graph is revealed as the search progresses was studied by Fleischer et al. (2008).
The latter also addressed connections between searching and exploring an environment, where the
latter operation is defined as moving around the environment until all possible hiding positions are
“visible” (the formal definition of visibility depends on the particular environment).

A specific search environment that has attracted considerable attention in the search literature
is the star-like environment. More specifically, in the unbounded variant, the search domain consists
of a set of infinite lines which have a common intersection point (the root of the Searcher); this
problem is also known as ray searching. Ray searching is a natural generalization of the well-known
linear search problem introduced independently by Beck (1964) and Bellman (1963) (informally
called the “cow-path problem”). Optimal strategies for linear search under the (deterministic)
competitive ratio were first given by Beck and Newman (1970). Gal (1974) gave optimal strategies
for the generalized problem of ray searching, a result that was rediscovered later by computer
scientists (see Baeza-Yates et al. (1993)). Other related work includes the study of randomization
by Schuierer (2003) and Kao et al. (1996); multi-Searcher strategies by López-Ortiz and Schuierer
(2004); searching with turn cost by Demaine et al. (2006); the variant in which some probabilistic
information on target placement is known by Jaillet and Stafford (1993) and Kao and Littman
(1997); and the related problem of designing hybrid algorithms by Kao et al. (1998).

Bounded star search, namely the case in which an upper bound is known on the distance of the
target from the root was studied in López-Ortiz and Schierer (2001) and Bose et al. (2015). New
performance measures that are applicable in the context of multi-target searching were introduced
by Kirkpatrick (2009) and McGregor et al. (2009) (i.e., the setting in which there are more than
one Hider and the Searcher must locate one of them). The problem of locating a certain number
among the many Hiders was studied by Angelopoulos et al. (2014).

It must be emphasized that star search has applications that are not necessarily confined to the
concept of locating a target (which explains its significance and popularity). Indeed star search
offers an abstraction that applies naturally in settings in which we seek an intelligent allocation
of resources to tasks. More precisely, it captures decision-making aspects when the objective is
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to successfully complete at least one task, without knowing in advance the completion time of
each task. Some concrete applications include: drilling for oil in a number of different locations
in McGregor et al. (2009); the design of efficient interruptible algorithms, i.e., algorithms that
return acceptable solutions even if interrupted during their execution in Bernstein et al. (2002) and
Angelopoulos (2015); and database query optimization (in particular, pipelined filter ordering in
Condon et al. (2009)). We discuss the latter work in more detail in Section 5.

1.2 Contribution

In this work we study expanding search under the search-ratio measure, assuming a variety of search
spaces such as stars, trees, and general edge-weighted, undirected graphs. Our main motivation is
to explore how the transition from pathwise to expanding search affects the deterministic and the
randomized search ratios.

We begin in Section 2 with the definitions of the (expanding) search ratio and randomized search
ratio. In Section 3 we show that the problem of finding the optimal (deterministic) search ratio is
NP-hard (using a substantially more complicated reduction than for pathwise search in Koutsoupias
et al. (1996)). Applying well-known iterative deepening techniques, we obtain a 4 ln(4) ≈ 5.55
approximation.

Our main technical results, presented in Section 4, apply to the setting where the graph is an
unweighted graph or a weighted tree. Here, it is easy to show that an optimal deterministic search
strategy searches the vertices in non-decreasing order of distance from the root (and chooses the
corresponding edges accordingly). This strategy is also a 2-approximation of the randomized search
ratio. To see why the randomized search ratio might as little as half of the deterministic search ratio,
suppose two vertices are at approximately the same distance from the root. Then it is possible that
by using randomization, the expected search times of the vertices can be “smoothed out”, which
may decrease the randomized search ratio. Therefore, we define a randomized search strategy
that approximates the randomized search ratio within a factor of 5/4, representing a significant
improvement over the aforementioned 2-approximation. The idea of the strategy is to choose a
subtree containing nodes within some randomly chosen radius of the root, search it, contract this
subtree to the root, and repeat. The method of searching each of these subtrees is by what we call
a Random Depth-First Search, which is an equiprobable choice of a depth-first search S and the
depth-first search that arrives at the leaves of the trees in the reverse order to S. Thus vertices of
the graph at a similar distance to each other are reached at roughly the same time, on average.
Improved approximations via randomization are usually not easy to achieve (see, e.g. Koutsoupias
et al. (1996)). Our result confirms the intuitive expectation that randomization has significant
benefits.

In Section 5 we study the problem of bounding the randomized search ratio of a weighted
graph, as function of the number of its vertices. First, we argue that in the case of a star graph, the
setting is equivalent to a problem considered by Condon et al. (2009) in the context of pipelined
filter ordering in database query optimization (though their problem is not explicitly described as
a search game). For this special case, they presented an algorithm for constructing the optimal
randomized search strategy and an expression for the randomized search ratio. We show that
the results of Condon et al. (2009) imply that the randomized search ratio of a star of n vertices
plus the root cannot exceed (n + 1)/2; furthermore, we show that the same result applies to
general weighted graphs. We note, however, that the result of Condon et al. (2009) follows from
a complicated flow-based algorithm, which does not readily offer intuition about why the uniform
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star has the maximum randomized search ratio. For this reason, we provide an alternative proof of
the upper bound in star graphs (which we obtained independently in the conference version of the
paper Angelopoulos et al. (2016)), and which is based on the analysis of a simple, intuitive search
strategy using game-theoretic techniques.

As argued earlier, star-search problems have applications that transcend searching. This is
indeed the case in expanding search. Consider the following problem: we are given a collection
of n boxes, among which only one contains a prize. We can open a box i at cost di. We seek a
(randomized) strategy for locating the prize, and the randomized search ratio of the strategy is the
total expected cost of all opened boxes, divided by the cost of the box that holds the prize. This
problem is equivalent to the problem of finding the (randomized) search ratio of a star graph.

We may also interpret expanding search on a tree as the scheduling of jobs with precedence
constraints, where each vertex v of the tree corresponds to a job whose processing time is the length
of the edge immediately preceding v, and all jobs on the path from v to the root must be executed
before v can be executed. An expanding search corresponds to a feasible schedule, and the distance
of v from the root corresponds to the minimum possible completion time of v over all choices of
schedule, which we can interpret as the offline cost of completing v. We can then consider the
problem of choosing a schedule to minimize the maximum ratio of the completion time of a job to
its “offline cost”. This is exactly our expanding search problem.

Since our main objective is to study the algorithmic and computational impact of re-exploration
due to the transition from pathwise search to expanding search, it is important to compare our
results to the best-known bounds in the context of pathwise search. More precisely, for unweighted
graphs, Koutsoupias et al. (1996) gives asymptotic approximations of the deterministic and ran-
domized search ratios equal to 6 and 8.98, respectively, but its techniques appear to be applicable
also to general graphs, at the expense of somewhat larger, but nevertheless constant approxima-
tions. Furthermore, Koutsoupias et al. (1996) note that the problems of computing the search
ratios of trees are “surprisingly hard”. In contrast, for expanding search of unweighted graphs and
(weighted) trees we obtain optimal algorithms and a 5/4 (asymptotic) approximation of the deter-
ministic and randomized search ratios, respectively. We thus demonstrate that the transition from
pathwise to expanding search can yield dramatic improvements in terms of the approximability of
the search ratios. For general graphs, we note that our 5.55 approximation is strict, and not asymp-
totic. As a last observation, we note that the pathwise and expanding search algorithms appear to
depend crucially on the approximability of the Traveling Salesman problem and the Steiner Tree
problem, respectively.

2 Preliminaries

Let G = (E ,V) be an undirected, connected, edge-weighted graph with |V| = n + 1, and a distin-
guished root vertex O ∈ V. The weight or length of edge e ∈ E , denoted by λ(e), represents the
time required to search that edge (we assume, via normalization, that λ(e) ≥ 1 for all edges e). For
subgraphs or subsets of edges X, we write λ(X) for the sum of the lengths of all the edges in X.
We will call a graph of unit edge weights unweighted, otherwise it is weighted.

An expanding search, or simply search strategy on G is a sequence of edges, starting from the
root, chosen so that the set of edges that have been searched at any given point in the sequence is
a connected, increasing set. More precisely:
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Definition 1 An expanding search S on a graph G with root vertex O is a sequence of edges
(e1, . . . , en) such that every prefix {e1, . . . , ek}, k = 1, . . . , n is a subtree of G rooted at O. We
denote the set of all expanding searches on (G,O) by S = S(G,O).

We note that if we wished, we could define search strategies less restrictively so that every prefix
is simply a connected subgraph rather than a tree, but it will soon be clear that strategies fulfilling
Definition 1 are dominant.

For a given vertex v ∈ V and a given search strategy S = (e1, . . . , en), denote by Sv the first
prefix {e1, . . . , ek} that covers v. The search time, T (S, v) of v is the total time λ(Sv) taken to
search all the edges before v is discovered. Let d(v) denote the length of the shortest path from O
to v, which is the minimum time for the Searcher to discover v. For v 6= O the normalized search
time is denoted by T̂ (S, v) = T (S, v)/d(v).

Definition 2 The (deterministic) search ratio σS = σS(G) of a search strategy S for the graph G
is defined as

σS(G) = max
v∈V−{O}

T̂ (S, v).

The (deterministic) search ratio, σ = σ(G) of G is defined as

σ(G) = min
S∈S

σS(G).

If σS = σ we say S is optimal.

We will also consider randomized search strategies, that is some probabilistic choice of search
strategies. Following the standard notation, we denote randomized strategies by lower case letters,
and for a randomized search strategy s and a vertex v, we extend the notation T (s, v) to denote
the expected search time of v. Similarly we write T̂ (s, v) for the expected normalized search time
T (s, v)/d(v).

Definition 3 The randomized search ratio ρs = ρs(G) of a randomized search strategy s for the
graph G is given by

ρs(G) = max
v∈V−{O}

T̂ (s, v).

The randomized search ratio, ρ = ρ(G) of G is given by

ρ(G) = inf
s
ρs(G),

where the infinum is taken over all possible randomized search strategies s. If ρs = ρ we say s is
optimal.

We will view the randomized search ratio ρ through the lens of a finite zero-sum game between
a Searcher and a malevolent Hider. The Searcher’s pure strategy set is the set S of expanding
searches and the Hider’s pure strategy set is the set V −{O} of non-root vertices of G. For a Hider
strategy v ∈ V − {O} and a Searcher strategy S ∈ S, the payoff of the game is T̂ (S, v), which the
Hider wishes to maximize and the Searcher wishes to minimize. Since the strategy sets are finite,
the game has a value and optimal mixed strategies for both players. By the standard minimax
theorem for zero-sum games, the value of the game is equal to the randomized search ratio and an
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optimal randomized search strategy is an optimal mixed strategy for the Searcher in the game. It
follows that the infinum in Definition 3 is in fact a minimum. A mixed strategy for the Hider is a
probability distribution h over the vertices V − {O}, and for mixed strategies h and s of the Hider
and Searcher respectively, we write T (s, h) and T̂ (s, h) for the corresponding expected search time
and expected normalized search time.

We will obtain lower bounds for ρ(G) by giving explicit Hider strategies. More precisely, if h is
a given mixed Hider strategy, the minimax theorem implies that ρ(G) ≥ minS∈S T̂ (S, h).

3 The search ratio of weighted graphs

In this section we show that the problem of computing the (deterministic) search ratio is NP-hard.
We also give a search strategy that achieves a 4 ln(4) ≈ 5.55 approximation ratio.

Theorem 1 Given a graph G with root O and a constant R ≥ 0, it is NP-Complete to decide
whether σ(G) ≤ R.

Proof: The proof is based on a reduction from 3-SAT. Given a 3-SAT instance consisting of n
variables and m clauses with m ≥ n, we construct an instance of our problem.

We construct the graphG consisting of vertices O,P , a vertex Cj for every clause (the clause ver-
tices), vertices Xi (the variable vertices) and vertices X0

i , X
1
i (the literal vertices) for every variable.

For every i = 1, . . . , n there are unit length edges of the form (Xi, X
0
i ), (Xi, X

1
i ), (P,X0

i ), (P,X1
i ).

For every variable xi appearing positively in the j-th clause there is an edge (Cj , X
1
i ) of length 2

and for every variable xi appearing negatively in the j-th clause there is an edge (Cj , X
0
i ) of length

2. For every j = 1, . . . ,m there is an edge (O,Cj) of length 3 and for every i = 1, . . . , n there is an
edge (O,Xi) of length 3. Finally, there is an edge (O,P ) of length 3. We fix R = 1 + 2

3(n + m).
The construction is shown in Figure 2.

1

1

1

1

2

3

3

3

O
Cj

Xi

Xi1

Xi0

P

Figure 2: A schematic view of the graph G used in the reduction of Theorem 1.

Note that the vertices can be partitioned according to their distance from O. In particular,
vertex P , as well as variable and clause vertices have distances 3, whereas literal vertices have
distance 4.
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We must show that there exists a boolean assignment to the variables satisfying all clauses if
and only if the search ratio of G is at most R.

For the easy direction of the proof, consider a boolean assignment b ∈ {0, 1}n satisfying all
clauses. We will show that there is a search strategy with search ratio at most R. First we
construct a tree covering all distance 3 vertices with total length 3R. The first edge is (O,P ),
followed by the edges (P,Xbi

i ) for every i. Then for every j, there is an edge (Xbi
i , Cj) where Xbi

i

corresponds to an arbitrary literal satisfying the j-th clause. Finally the tree also contains the
edges (Xbi

i , Xi) for all i. We denote the tree constructed from b by Hb. The total length of Hb is
3 + 2n+ 2m which is exactly 3R by the choice of R. To turn the tree into a search strategy S we
order the edges from Hb as enumerated above and complete them with the edges (P,X1−bi

i ) for all
i. We have σS(P ) = 1, σS(Cj) ≤ 3R/3, σS(Xi) ≤ 3R/3 and σ(Xx

i ) ≤ (3R + n)/4 ≤ R for every
i, j, x, which shows that the search ratio of G is at most R.

For the hard direction, assume that there is a search strategy with search ratio at most R.
Let H be its shortest prefix covering all distance 3 vertices. By the definition of the search ratio
we know that λ(H) ≤ 3R. Through a sequence of transformations we turn H into a tree of the
form Hb with λ(Hb) ≤ λ(H). This will show that b is a satisfying assignment for the formula and
complete the proof of the theorem.

• If (O,P ) does not belong to H we add it. This must create a cycle, containing an edge of the
form (O, v) with v 6= P . Now we remove this edge, and obtain a tree of the same length.

• If there is an edge (O,Cj) inH for some j, then we replace this edge by the edges (Cj , v), (v, P ),
where v is a vertex corresponding to a literal from the j-th clause. Some of the added edges
might already have been present. The result is a tree of no greater length.

• If there is an edge of the form (O,Xi) in H for some i, then we replace this edge by the edges
(Xi, X

0
i ), (X0

i , P ). As a result the length of the tree decreased by 1.

• At this stage we know that O is only connected to P in the tree.

• If there is a vertex Cj connected to several vertices v1, . . . , vk for k ≥ 2, then we remove
the edges (Cj , v1), . . . , (Cj , vk). Hence, the tree now contains k + 1 components, the isolated
vertex Cj itself and k components containing each some distinct vertex vi. Only one of them
also contains P . Without loss of generality suppose that v1 and P are in the same component.
Then we add (Cj , v1) back to H and add edges (vi, P ) for each i = 2, . . . , k. This way we
maintain a tree, and its length decreases by k − 1.

• At this stage we know that every Cj vertex is incident to exactly one length 2 edge. Also
for every i = 1, . . . , n, among the vertices {Xi, X

0
i , X

1
i , P} there are at least two edges, one

adjacent to Xi and one adjacent to P . The last edge is necessary since otherwise there would
be no connection from the vertices {Xi, X

0
i , X

1
i } to P , since by the previous point we know

that such a path could not go through a clause vertex. Let k be the total number of additional
edges that exist among the vertex sets {Xi, X

0
i , X

1
i , P} over all i = 1, . . . , n. Then the total

length of H is 3 + 2m+ 2n+ k, which by assumption is at most 3R. By the choice of R we
have equality and thus k = 0. This shows that H is a tree of the form Hb for some b ∈ {0, 1}n,
which is a satisfying assignment.

�
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Using an approach similar to the doubling heuristic of Koutsoupias et al. (1996), we obtain a
constant-approximation algorithm for computing the search ratio. It is worth pointing out that
the algorithm doubles the radius, and explores the resulting graph by computing a Steiner tree of
the corresponding vertex set (in contrast to pathwise search, in which the resulting graph is simply
explored depth-first).

Theorem 2 There is a polynomial-time search algorithm that approximates σ(G) within a factor
of 4 ln(4) + ε < 5.55.

Proof: For any d ≥ 1, let Vd be the set of vertices of G at distance no more than d from the root
O. Let Gd be the subtree of minimal length in G that contains all the vertices in Vd. It is easy to
see that σ is at least λ(Gd)/d, since the time taken by any search to reach the last vertex v visited
in Vd is at least λ(Gd), and d(v) ≤ d.

We can view the problem of computing Gd as the problem of finding a minimum-cost Steiner
tree for the set of vertices Vd. The best known polynomial time algorithm that approximates the
problem within a constant factor is that of Byrka et al. (2010), which has approximation ratio
ln(4) + ε. Let Ĝd be a subtree of G with total length no greater than ln(4)λ(Gd) that contains all
the vertices in Vd.

Consider the following family of search strategies S, for fixed 1 = d0, d1, . . . , dk, where dk is the
radius of G. In increasing order of j ≥ 1, search all the edges of Ĝdj in an arbitrary order (omitting
those edges that have already been searched). Suppose the Hider is at some vertex v reached in
the jth phase of the algorithm. Then d(v) must be at least dj−1, and

T̂ (S, v) ≤
∑j

i=1 λ(Ĝdi)

dj−1
≤

ln(4)
∑j

i=1 λ(Gdi)

dj−1
≤

ln(4)σ
∑j

i=1 di
dj−1

.

It is optimal to choose di = 2i (for a proof of this, see Koutsoupias et al. (1996)). So we obtain
T̂ (S, v) ≤ 4 ln(4)σ < 5.55σ. �

4 Trees and Unweighted Graphs

In this section we present our main technical results that apply to unweighted graphs and (weighted)
trees. For both classes of graph it is easy to show that it is optimal, in the deterministic setting,
to search the vertices in non-decreasing order of their distance from the root.

If G is a graph with root O, for any r > 0 let Vr be the set of vertices in G at distance no more
than r from the root O and let Gr be the induced subgraph of G with vertex set Vr.

Proposition 1 Let G be a rooted graph and suppose that G is a tree or an unweighted graph. Then
an optimal search strategy is to search the vertices in non-decreasing order of their distance from
the root. The search ratio σ is given by

(i) σ = supr>0
λ(Gr)
r if G is a tree and

(ii) σ = supr>0
|Vr|−1
r if G is an unweighted graph.
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Proof: Suppose a search S visits the vertices in some order v1, . . . , vn which is not non-decreasing
in order of distance from O and let v0 = O. Let i ≥ 1 be minimal such that d(vi−1) < d(vi) but
there exists some j > i such that d(vj) < d(vi). (Such an i must exist.) We may assume that j is
chosen so that d(vj) is minimal. Define a new search S′ that is the same as S except the portion of
the search that visits the vertices vi, vi+1, . . . , vj now visits them in the order vj , vi, vi+1, . . . , vj−1.
By the minimality of d(vj), there must be a path from j to O contained in {v1, . . . , vi−1}, so S′ is
a feasible search.

As long as G is a tree or it is unweighted, the new search time of vj under S′ is smaller, so the
new normalized search time is also smaller. The new search times of the vertices vi, . . . , vj−1 are
larger, but no greater than the search time of vj under S; also they are further from O than vj , so
their new normalized search times are no larger than that of vj under S. The normalized search
time of every other vertex is the same under S and S′. Thus σS′ ≤ σS .

Repeating this process a finite number of times results in a search that visits the vertices in
non-decreasing order of distance from O and has a search ratio at most that of S, so is therefore
optimal.

The two expressions for the search ratio of G in the statement of the proposition follow imme-
diately. �

Note that the above argument does not work for weighted graphs (as we should expect) since
in general, swapping the order in which adjacent vertices are visited changes the search times of
the other vertices.

In the randomized setting for trees and unweighted graphs we first show that the optimal
deterministic search approximates the optimal randomized search by a factor of 2. To prove this,
we use the following collection of lower bounds for ρ. For each non-root vertex v of G, let λv denote
the length of the unique edge incident to v on some shortest path between O and v (so if G is an
unweighted graph then λv = 1) and let λO = 0. For a set A of vertices, let λ(A) =

∑
v∈A λv and

let ∆(A) =
∑

v∈A λvd(v).

Lemma 1 Suppose A = {v1, . . . , vm} is a set of non-root vertices of G, and suppose the Hider
chooses each vi ∈ A with probability pi = λvid(vi)/∆(A). Then the normalized search time T̂ (S, p)
of any search S against the Hider strategy p satisfies

T̂ (S, p) ≥
∑

i≤j λviλvj

∆(A)
≥ λ(A)2

2∆(A)
.

Proof: Suppose, without loss of generality, that S is the search strategy that visits the vertices
of A in the order v1, . . . , vm. Then clearly T (S, vi) ≥

∑
j≤i λvj for all vi so the expected value of

the search ratio of S, under p is

m∑
i=1

piT (S, vi)

d(vi)
≥

m∑
i=1

λvid(vi)

d(vi)∆(A)

∑
j≤i

λvj =

∑
i≤j λviλvj

∆(A)
.

The second inequality is trivial. �

The next proposition follows directly from Lemma 1.

Proposition 2 The randomized search ratio ρ of a tree or unweighted graph satisfies σ/2 ≤ ρ ≤ σ.
Hence the optimal deterministic search is a 2-approximation of the optimal randomized search.
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Proof: Let S∗ be the optimal deterministic search strategy that searches the vertices in non-
decreasing order of their distance from the root, and suppose v is a vertex such that σ = σS∗ =
T̂ (S∗, v). If A is the set of non-root vertices at distance no more than d(v), then we must have
T (S∗, v) = λ(A), so by Lemma 1,

σ

ρ
≤ λ(A)/d(v)

λ(A)2/(2∆(A))
=

2∆(A)

d(v)λ(A)
≤ 2,

since ∆(A) ≤ λ(A)d(v). �

We will show next that we can obtain improved approximations; more precisely we will present
and analyze a randomized search for trees or unweighted graphs with approximation ratio asymp-
totically equal to 5/4. In the case that G is an unweighted graph, we will define the search on some
shortest path tree (that is, a spanning tree of G comprising shortest paths from O to each vertex);
if G is a weighted tree then we define the search on the whole of G. The idea of the strategy is
to partition the vertices of the tree into subsets V0,V1, . . ., each of which contains vertices whose
distances from O are within some interval [xi, xi+1], where the xi are chosen randomly according
to the method described later in Definition 4. The subsets are then searched one at a time, in
increasing order of distance from O. Note that after visiting all the vertices in V1 ∪ . . . ∪ Vj we
can contract all the edges searched so far to the root vertex O and consider the problem of how to
search the induced subtree Gi+1 with vertex set Vj+1 ∪O.

The method of searching each of these subtrees is according to a random depth-first search (or
RDFS), which we define as follows. Given a set of vertices H and a depth-first search S of H
starting at the root, consider the search S−1 which is the depth-first search of H that arrives at
the leaf vertices of H in the reverse order to S. An equiprobable choice of S and S−1 is a RDFS of
H. It is straightforward to calculate the maximum expected search time of a RDFS.

Lemma 2 Under any RDFS of a rooted tree H, a vertex v is found in expected time (λ(H) +
d(v))/2.

Proof: Suppose S is some depth-first search of H. Let A be the subset of edges searched by S
up to and including when v is reached and let B be the subset of edges searched by S−1 up to and
including when v is reached. It is easy to see that A ∩B is the unique path from v to the root. If
s is the RDFS that chooses S and S−1 equiprobably, then the expected time T (s, v) of s to reach
v is

T (s, v) = (λ(A) + λ(B))/2

= (λ(A ∪B) + λ(A ∩B))/2

= (λ(H) + d(v)/2.

�

We can now define the randomized deepening strategy. Let t be the smallest integer such that
every vertex of G is at distance less than 2t from O.

Definition 4 (Randomized deepening strategy) Suppose G is a tree with root O. For i =
1, . . . , t, choose some xi uniformly at random from the interval [2i−1, 2i] and let x0 = 1 and xt+1 =
2t. For i = 0, . . . , t, let Vi be the set of vertices of G whose distance from O lies in the interval
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[xi, xi+1). We call V0, . . . ,Vt the levels of the search, so that Vi is level i of the search. Let G0 be
the induced subtree of G with vertex set V0 ∪ O and we define Gi, i > 0 recursively as the induced
subtree with vertex set Vi ∪ O of the graph obtained by contracting G0 ∪ . . . ∪ Gi−1 to the root
O. The randomized deepening strategy performs a RDFS of each of the trees Gi in the order
G0, . . . , Gt.

We need two straight-forward results before stating and proving the main theorem in this
section, that the random deepening strategy has approximation ratio 5/4. Let Ai be set of vertices
of G whose distance from O is in the interval [2i−1, 2i), and let Ai = ∪j≤iAj . (For the purposes
of writing the proof of Theorem 3 we allow i to take any integer value, but note that Ai is only
non-empty for i = 1, . . . , t.)

Lemma 3 The expected sum over all vertices v ∈ Ai ∩ Vi−1 of edge lengths λv is 2λ(Ai) −
∆(Ai)/2i−1.

Proof: The probability that the distance d(v) from O of a vertex v in Ai is less than xi is
(2i − d(v))/2i−1. So the expected sum over all vertices v ∈ Ai ∩ Vi−1 of lengths λv is

∑
v∈Ai

(
2i − d(v)

2i−1

)
λ(v) = 2λ(Ai)−∆(Ai)/2i−1.

�

We also make two simple observations about the parameters ∆(Ai).

Lemma 4 For any i = 1, . . . , t we have

(i) ∆(Ai) ≤ 2iλ(Ai) and

(ii) λ(Ai)−∆(Ai)/2i

ρ ≤ 2i−1.

Proof: Item (i) follows from the fact that every vertex in Ai is at distance no further than 2i

from O.
For item (ii), we use Lemma 1 to bound ρ, giving

λ(Ai)−∆(Ai)/2i

ρ
≤ λ(Ai)−∆(Ai)/2i

λ(Ai)2/(2∆(Ai))
= 2

(
∆(Ai)
λ(Ai)

)
− 21−i

(
∆(Ai)
λ(Ai)

)2

.

The right-hand side of the expression above is a quadratic in ∆(Ai)/λ(Ai), which is easily shown
to be maximized at ∆(Ai)/λ(Ai) = 2i−1, where it takes a value of 2i−1. �

Theorem 3 Let G be a weighted tree or an unweighted graph. Let s be the randomized deepening
strategy on G if G is a tree, or on some shortest path tree of G if G is an unweighted graph. Then
the approximation ratio of s is asymptotically 5/4. In particular, ρs ≤ (5/4)ρ+ 1/2.
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Proof: First suppose G is a tree. Let v be a vertex that maximizes the randomized search ratio of
s and suppose v is at distance d from O. Let L be the expected sum over all vertices u in previous
levels from v of the lengths λu plus half the expected sum over all vertices u in the same level as v
of the lengths λu. By Lemma 2, the expected search time of v is at most L+ d/2. Hence

ρs
ρ
≤ (L+ d/2)/d

ρ
≤ L/d

ρ
+ 1/(2ρ).

We just have to show that L/(dρ) ≤ 5/4. Suppose v ∈ Ak for some k and let L1, L2, L3 be the
contributions to L from vertices in Ak−1,Ak,Ak+1, respectively, so that L = λ(Ak−2)+L1+L2+L3.
We calculate L1, L2 and L3 separately.

For L1, observe that with probability (d− 2k−1)/2k−1 the vertex v is in level k, which does not
intersect with any vertices in Ak−1. Otherwise, v is in level k − 1 which contains some vertices of
Ak−1 and by Lemma 3,

L1 =

(
d− 2k−1

2k−1

)
λ(Ak−1) +

(
2k − d
2k−1

)
(λ(Ak−1)/2 + (2λ(Ak−1)−∆(Ak−1)/2k−2))/2

=

(
2− d

2k

)
λ(Ak−1)−

(
2− d

2k−1

)
∆(Ak−1)

2k−1
.

Similarly, for L3, if v is in level k − 1 then all vertices of Ak+1 are in levels after the level of v.
Otherwise v is in level k which contains some vertices of Ak+1. Again applying Lemma 3,

L3 =

(
d

2k−1
− 1

)(
λ(Ak+1)− ∆(Ak+1)

2k+1

)
.

Lastly, for L2, observe that a vertex u in Ak at distance d(u) ≤ d is in the level before v if
d(u) ≤ xk < d, otherwise it is in the same level as v. So the contribution u makes to L2 is(

d− d(u)

2k−1

)
· λu +

(
2k−1 − (d− d(u))

2k−1

)
· λu

2
=

(d− d(u) + 2k−1)λu
2k

.

Similarly, if d(u) > d, then u is in the level after v if d ≤ xk < d(u), otherwise u is in the same
level as v, so the contribution u makes to L2 is(

d(u)− d
2k−1

)
· 0 +

(
2k−1 − (d(u)− d)

2k−1

)
· λ

2
=

(d− d(u) + 2k−1)λu
2k

,

which is the same. Hence L2 is given by

L2 =
∑
u∈Ak

(d− d(u) + 2k−1)λu
2k

=

(
d

2k
+

1

2

)
λ(Ak)−

∆(Ak)
2k

.

Using L = λ(Ak−2) +L1 +L2 +L3, combining our expressions for L1, L2 and L3 and rearranging,
we obtain

L =

(
1− d

2k

)(
∆(Ak−2)

2k−2
− λ(Ak−2)

)
+

(
3

2
− d

2k−1

)(
λ(Ak−1)− ∆(Ak−1)

2k−1

)
+

(
3

2
− d

2k

)(
λ(Ak)− ∆(Ak)

2k

)
+

(
d

2k−1
− 1

)(
λ(Ak+1)− ∆(Ak+1)

2k+1

)
.
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The first term in the expression on the right-hand side above is non-positive, since d ≤ 2k and
∆(Ak−2) ≤ 2k−2λ(Ak−2), by Lemma 4(i). So, dividing by d, we obtain

L

d
≤
(

3

2d
− 1

2k−1

)(
λ(Ak−1)− ∆(Ak−1)

2k−1

)
+

(
3

2d
− 1

2k

)(
λ(Ak)− ∆(Ak)

2k

)
+

(
1

2k−1
− 1

d

)(
λ(Ak+1)− ∆(Ak+1)

2k+1

)
. (1)

If 2k−1 ≤ d ≤ 3 · 2k−2 then it follows from Lemma 4(i) that all three of the terms on the right-hand
side of (1) are non-negative. Hence by Lemma 4(ii),

L

dρ
≤
(

3

2d
− 1

2k−1

)
2k−2 +

(
3

2d
− 1

2k

)
2k−1 +

(
1

2k−1
− 1

d

)
2k

= 1 + 2k−3/d

≤ 5/4 (maximized when d = 2k−1).

If 2k ≥ d > 3 · 2k−2 then the first term on the right-hand side of (1) is negative but the other two
terms are non-negative by Lemma 4(i), so by Lemma 4(ii),

L

dρ
≤
(

3

2d
− 1

2k

)
2k−1 +

(
1

2k−1
− 1

d

)
2k

= 3/2− 2k−2/d

≤ 5/4 (maximized when d = 2k).

This completes the proof in the case that G is a tree. If G is not a tree, then we remove edges from
G until obtaining a shortest path tree. Note that removing these edges has no effect on λ(v) and
d(v) for vertices v, so the lower bounds given by Lemma 1 remain unchanged. Hence we can apply
the same argument as above, implementing the randomized deepening strategy on the shortest
path tree of G, to obtain an approximation ratio asymptotically equal to 5/4. �

We observe that the ratio 5/4 could be improved slightly by introducing some randomization
into the definition of A1, . . . ,At: that is, we could define Ai as the set of all edges whose length d
satisfies 2i−1−θ ≤ d < 2i−θ, where θ is chosen according to some probability distribution on [0, 1].
This would improve the approximation ratio from 5/4, but only marginally.

We may compare this result with analogous results from Koutsoupias et al. (1996) in the
context of pathwise search: for unweighted graphs they obtain algorithms that approximate the
deterministic and randomized search ratio within a factor of 6 and 8.98 respectively. For expanding
search, we easily obtain the optimal strategy in the deterministic case, and we obtain a 5/4-
approximate strategy in the randomized case. Although our randomized strategy is somewhat
more sophisticated, the difference must be in part due to the fact that expanding search is more
straightforward to deal with than pathwise search.

5 Bounding the Randomized Search Ratio

In this section we ask how large the randomized search ratio can be for a graph with n vertices plus
the root. First note that the equivalent question for the (deterministic) search ratio is easily settled.
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Indeed, for an arbitrary weighted graph with minimum edge length normalized to 1, consider the
search strategy that visits the vertices in non-decreasing order of their distance from the root. The
normalized search time of the jth vertex to be visited is at most j ≤ n, so σ ≤ n. This is tight for
a uniform star, that is a star with edges of equal length.

In contrast, it is not as easy to bound the randomized search ratio of an arbitrary weighted
graph. Note that the randomized search ratio of a uniform star is (n + 1)/2, since an optimal
Searcher strategy is to search the edges in a uniformly random order and an optimal Hider strategy
is to choose one of the n vertices uniformly at random. In this section we will show that the uniform
star is, in fact, the weighted graph with the largest randomized search ratio.

The remainder of this section is structured as follows. We first prove the result for unweighted
graphs using a simple, intuitive argument (see Proposition 3). To obtain the result for general,
weighted graphs, one needs to resort to some heavier machinery. This can be accomplished in
two different ways, and we include both for completeness. First, we argue how the main result
of Condon et al. (2009) on the seemingly unrelated problem of pipelined filter ordering can yield
the desired upper bound (see Proposition 4). However, the resulting optimal strategy cannot be
described succinctly, since Condon et al. (2009) applies an involved, flow-based approach. We
give an alternative proof of Proposition 4 that uses a much simpler and intuitive strategy (based
from intuition obtained from the unweighted case), and a game-theoretic approach (this proof was
obtained independently in the conference version of this paper Angelopoulos et al. (2016)). Last,
based on Proposition 4, we show our main result of the section, namely that every graph has
randomized search ratio that does not exceed that of a uniform star on the same number of vertices
(see Theorem 5).

We begin by first proving the result for unweighted graphs, as it is relatively easy in this case.

Proposition 3 Let G be an unweighted graph with n vertices plus the root O. The randomized
search ratio ρ of G satisfies ρ ≤ (n+ 1)/2.

Proof: The proof is by induction (the case n = 1 is trivial). Assume it is true for graphs with n or
fewer vertices plus the root, and suppose G has n+1 vertices. We must show that ρ(G) ≤ (n+2)/2.
Let G′ be the subgraph of G formed by removing an arbitrary vertex v∗ of G at maximum distance
from O and all the edges incident to v∗, and let s be an optimal randomized search of G′, so that
T̂ (s, v) ≤ (n+ 1)/2 for any vertex v in G′, by the induction hypothesis.

Let s′ be the randomized search of G that follows a shortest path P to v∗ then follows s (omitting
edges contained in P ). Let s′′ be the search that, with probability p follows s′ and with probability
1− p follows s then searches v∗, where p = 1/(2d′) and d′ = d(v′). Then for any vertex v of G′,

T̂ (s′′, v) ≤ T (s, v) + pd′

d(v)
≤ n+ 1

2
+

d′

2d′
=
n+ 2

2
.

Also,

T̂ (s′′, v∗) =
(1− p)(n+ 1) + pd′

d′
=

(
n+

3

2

)(
1

d′

)
−
(
n+ 1

2

)(
1

d′2

)
.

It is easy to verify that the expression above is decreasing in d′, and at d′ = 1 is equal to (n+ 2)/2.
Hence ρ ≤ ρs(G) ≤ (n+ 2)/2 and the proposition follows by induction. �

To prove the analogous result for weighted graphs, we first need to prove it for stars. The
general result then follows as a corollary. On stars, the problem of finding the randomized search
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ratio is related to a problem in pipelined filter ordering, which we discuss in more detail in the the
following subsection.

5.1 Connection with pipelined filter ordering

In this section we discuss the connection between this work and a problem in pipelined filter
ordering. As mentioned in the introduction, star search is connected to the work of Condon et al.
(2009), who study an adversarial pipelined filter ordering problem. The model may be described as
follows. An item, or tuple must be routed in some order through a set {O1, . . . , On} of operators,
each of which tests whether the tuple satisfies some predicate (or filter) of a conjunction. There is a
known cost ci of each operator Oi to process a tuple, and the tuple is routed through the operators
until it fails one of the tests (and is eliminated) or it passes all of them. We may alternatively think
of this as a product being subjected to several quality tests before being sent to the market.

In the problem of Condon et al. (2009), an adversary chooses the set of filters which will eliminate
the tuple. The aim is to choose a randomized routing of the tuple to minimize the multiplicative
regret: that is the expected ratio of the total cost of eliminating the tuple to the cost of eliminating
the tuple if the adversary’s choice were known a priori. The authors argue that we may as well
assume the adversary chooses only one filter to eliminate the tuple, as he is not disadvantaged by
this restriction. If the ordering chosen is (without loss of generality) O1, . . . , On and the adversary
chooses the filter corresponding to operator Oj , then the multiplicative regret is (c1 + · · ·+ cj)/cj .
It is easy to see that the problem is exactly equivalent to our problem of calculating the optimal
randomized search for a star graph with edges of lengths c1, . . . , cn.

Condon et al. (2009) find a polynomial time algorithm for their problem, and we summarize
their result in the context of the randomized search ratio of a star graph.

Theorem 4 (From Section 4 of Condon et al. (2009)) Let G be a star graph with root O
and vertices v1, . . . , vn at distances c1, . . . , cn from O, where the ci are non-decreasing. There
is a polynomial-time search algorithm that calculates the optimal randomized search of G. The
randomized search ratio ρ(G) is given by

ρ(G) = max
1≤k≤n

∑
1≤i≤j≤k cicj∑k

i=1 c
2
i

. (2)

Note that the right-hand side of (2) is the maximum over all choices of A = {v1, . . . , vk} of
the value of the first lower bound in Lemma 1. It follows that the optimal strategy of the Hider
is to choose such a set A which maximizes this bound and hide at vertex vi ∈ A with probability
proportional to c2

i . The optimal strategy for the Searcher cannot be described so succinctly, and
we refer to Condon et al. (2009) for details of their algorithm.

The relation here to pipelined order filtering means that our results of Section 4 apply to the
following generalization of the model in Condon et al. (2009). Suppose the order that the tuple
may be routed through the operators is subject to some precedence constraints. This is, there is
a partial order ≺ on the set of operators such if Oi ≺ Oj then the tuple must be processed by Oi
before it can be processed by Oj . The partial order defines a directed acyclic graph, and if that
graph is a tree, then the problem of finding the randomized routing of the tuple to minimize the
expected regret is equivalent to our problem of finding the optimal randomized search on a tree.
By Theorem 3, the randomized deepening strategy has approximation ratio 5/4 for this problem.
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5.2 Bounding the randomized search ratio for weighted graphs

We now show how to apply the results of the previous subsection so as to bound the randomized
search ratio for weighted stars; we also show that the bound holds for arbitrary weighted graphs.

Proposition 4 Let G be a weighted star with n vertices plus the root. The randomized search ratio
ρ of G satisfies ρ ≤ (n+ 1)/2.

Proof: By Theorem 4, the randomized search ratio is equal to the right-hand side of (2). Suppose
this expression is maximized by k = k∗ and, without loss of generality, assume that

∑k∗

i=1 ci = 1.
Then

ρ =

∑
1≤i≤j≤k∗ cicj∑k∗

i=1 c
2
i

=

1
2

(∑k∗

i=1 ci

)2
+ 1

2

∑k∗

i=1 c
2
i∑k∗

i=1 c
2
i

=
1

2
∑k∗

i=1 c
2
i

+
1

2
. (3)

The right-hand side of (3) is maximized when all the ci’s are equal to 1/k∗, so that ρ ≤ (k∗+1)/2 ≤
(n+ 1)/2. �

Using Proposition 4, our main theorem of this section follows.

Theorem 5 Let G be a weighted graph with n vertices plus the root O. The randomized search
ratio ρ of G satisfies ρ ≤ (n+ 1)/2.

Proof: Let G′ be the star with the same vertex set as G, such that for any non-root vertex v in
G′, the length of the edge with endpoints O and v in G′ is equal to the distance of the shortest
path from O to v in G. This ensures that the distance from the root to v is the same in G and
G′. By Proposition 4, there is a randomized search s′ of G′ with randomized search ratio no more
than (n + 1)/2. We can then construct a randomized search of G′ such that the expected search
time of every vertex in G under s is no more than its expected search time in G′ under s′, which
is sufficient to prove the theorem.

In order to construct s we will replace every deterministic search S′ given positive weight in s′

with a deterministic search S of G such that the search time of every vertex in G under S is no
more than its search time in G′ under S′. Indeed, suppose such a search S′ visits the vertices of
G′ in some order v1, . . . , vn, and we construct S recursively as follows. Start by setting S to be
empty, then while S has not yet visited all the nodes of G, we choose the minimal i such that vi
has not yet been visited and add to the end of S a shortest path to vi from the region of G that S
has already visited. It is easy to see that S has the desired property. �

Proposition 4 can be proved in another more direct way, without resorting to the result of
Condon et al. (2009). Namely, we can explicitly construct a randomized search strategy on a star
that has search ratio at most (n + 1)/2. We include a description of this method of proving the
proposition because it is based on an intuitive strategy which may be useful in future work.
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For a given star graph G we inductively define a randomized search strategy sk on the star
graph Gk consisting of only the edges e1, . . . , ek with total length µk. Having defined the strategy
sk, we will define sk+1 as a randomized mix of two strategies, s+

k+1 and s−k+1, which we define in

Definition 5. The former strategy, s+
k+1 searches the new edge ek+1 after searching the other edges,

and works well in the case that the length of ek+1 is a lot larger than the previous edges. If ek+1

is not too large, then it is better to search it at some random point in the middle of sk, which
corresponds to the latter strategy, s−k+1.

Definition 5 Suppose sk has been defined for some k = 1, . . . , n − 1. Let s+
k+1 and s−k+1 be ran-

domized search strategies on Gk+1 defined by:

(i) s+
k+1: follow the strategy sk on Gk and then search edge ek+1.

(ii) s−k+1: choose a time t uniformly at random in [0, µk] and denote the edge that is being searched
at time t by e. Follow the strategy sk, but search edge ek+1 immediately before searching e.

Before giving the precise definition of sk, we estimate the normalized expected search times
T̂ (s+

k+1, vi) and T̂ (s−k+1, vi) in terms of ρsk for the vertices vi with i = 1, . . . , k + 1.

First suppose i ≤ k. Then clearly T̂ (s+
k+1, vi) ≤ ρsk (with equality for some i ≤ k) by definition

of ρsk . Under s−k+1, with probability T (sk, vi)/µk edge ek+1 is searched before ei, so the expected
search time of vi is T (sk, vi) + (T (sk, vi)/µk)dk+1. Hence

T̂ (s−k+1, vi) =
T (sk, vi) + (T (sk, vi)/µk)dk+1

di

= T̂ (sk, vi)(1 + dk+1/µk)

≤ ρsk(1 + dk+1/µk).

Now suppose i = k+1. Under s+
k+1, the time taken to find the Hider is µk+dk+1, so T̂ (s+

k+1, vk+1) =

µk/dk+1 + 1. Under s−k+1, the expected search time is µk/2 +dk+1 minus a random correction error
which depends upon which edge e is being searched under sk at the random time t chosen uniformly
in [0, µk]. The edge e is ei with probability di/µk, and in this case the expected value of the
correction error is di/2. Hence the expected value of this correction error is

∑k
i=1(di/µk) · (di/2) =

Dk/(2µk). So we have

T̂ (s−k+1, vk+1) =
µk/2 + dk+1 −Dk/(2µk)

dk+1

= µk/(2dk+1) + 1−Dk/(2µkdk+1).

To sum up, the expected search ratio for each combination of strategies can be bounded above
by the payoffs in Table 2. We can now proceed to define sn.

Definition 6 Let s1 be the only strategy available on G1. Suppose sk has already been defined on
Gk for some k = 1, . . . , n − 1. The strategy sk+1 is an optimal mixture of s+

k+1 and s−k+1 in the
zero-sum game with payoff matrix given by Table 2.

The search ratio of sn can be calculated recursively, since the search ratio ρsk+1
of sk+1 is at

most the value of the game with payoff matrix given by Table 2, for each k = 1, . . . , n− 1. We use
this to show that ρsn ≤ (n+ 1)/2.

Theorem 6 The randomized search ratio ρ of star graph G with n edges is at most (n+ 1)/2, with
equality if and only if all the edges have the same length.
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Table 2: Maximum value of T̂ (s, v).

Search Vertex, v
strategy, s vi for some i ≤ k vk+1

s+
k+1 ρsk µk/dk+1 + 1

s−k+1 ρsk(1 + dk+1/µk) µk/(2dk+1) + 1−Dk/(2µkdk+1)

Proof: We have already pointed out that ρ = (n + 1)/2 for the star whose edges all have the
same length. To show that ρ ≤ (n + 1)/2 we use induction on the number of edges to show
that ρsn ≤ (n + 1)/2. It is clear that for k = 1, we have ρsk = 1 = (k + 1)/2, so assume that
ρ(sk) ≤ (k + 1)/2 for some k > 1 and we will show that ρk+1 ≤ (k + 2)/2 = k/2 + 1.

First observe that if dk+1 ≥ 2µk/k then the Searcher can ensure a payoff of no more than k/2+1
in the game in Table 2 just by using strategy s+

k+1. This is because the payoff ρsk against a vertex
vi with i ≤ k is no more than (k + 1)/2 by the induction hypothesis and the payoff against vk+1 is
µk/dk+1 + 1 ≤ k/2.

So assume that dk+1 ≤ 2µk/k, and note also that dk+1 ≥ µk/k, since the lengths of the edges
are non-decreasing and dk+1 must be at least the average length of edges e1, . . . , ek.

By the induction hypothesis, ρsk ≤ (k+ 1)/2, so the value of the game with payoff matrix given
by Table 2 cannot decrease if we replace ρsk with (k + 1)/2 in the table. The value also does not
decrease if we replace −Dk by the maximum value it can take, which is −µ2

k/k (that is, its value
when d1, . . . , dk are all equal). In summary, ρsk+1

is no more than the value of the game given in
Table 3.

Table 3: Upper bounds for T̂ (s, v).
Search Vertex, v
strategy, s vi for some i ≤ k vk+1

s+
k+1 (k + 1)/2 µk/dk+1 + 1

s−k+1 (k + 1)(1 + dk+1/µk)/2 µk/(2dk+1) + 1− µk/(2kdk+1)

By assumption, against strategy s+
k+1, the best response of the Hider (that is, the highest payoff)

is given by choosing vertex vk+1. We show that against strategy s−k+1, the Hider’s best response is
to choose a vertex vi with i ≤ k. This follows from writing the difference, δ between the payoffs in
entries (2, 1) and (2, 2) of Table 3 as

δ = (k − 1)
µk

2dk+1

((
k + 1

k − 1

)(
dk+1

µk

)2

+
dk+1

µk
− 1/k

)
.

The quadratic in (dk+1/µk) inside the parentheses is increasing for positive values of dk+1/µk, and
when dk+1/µk = 1/k the quadratic is positive. Since dk+1/µk ≥ 1/k, we must have δ ≥ 0.

Hence the Hider does not have a dominating strategy in the game in Table 3. It is also clear
that the Searcher does not have a dominating strategy, since it is better to search ek+1 last if and
only if the Hider is at some vi with i ≤ k. Therefore the game in Table 3 has a unique equilibrium
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in proper mixed strategies (that is, the players both play each of their strategies with positive
probability). The search ratio ρsk+1

of sk+1 is bounded above by the value V of the game, which is
easily verified to be

V = k/2 + 1−
k
2 (dk+1/µk − 1/k)2

(dk+1/µk)2 + 1/k
.

This is clearly at most k/2 + 1, with equality if and only if µk/dk+1 = k. The theorem follows by
induction, and equality is only possible if d1 = d2 = . . . = dn. �

6 Conclusion

We have undertaken an analysis of expanding search, as defined by Alpern and Lidbetter (2013),
focusing on the search ratio, as introduced by Koutsoupias et al. (1996) in the context of pathwise
search in bounded domains. In contrast to Alpern and Lidbetter (2013), we have focused on
computational and algorithmic issues of expanding search, an angle that is often neglected in the
analysis of search games. For general graphs, we showed that computing the search ratio is NP-hard,
and we gave a 4 ln(4) approximation. Our main technical contribution is defining and analyzing
explicit randomized search strategies that yield significant improvements to the approximation of
the randomized search ratio of trees and unweighted graphs (namely, an approximation equal to
5/4).

We believe that some of the techniques we introduced in this work can be applicable in the
context of pathwise search. For instance, we believe that a variants of the randomized strategy
presented in Section 4 will result in improved randomized search ratios for pathwise search in
weighted trees.

We leave some open questions which we would like to see addressed by future work. Although
we have showed that computing the search ratio of a graph is NP-hard, we do not have an equivalent
result for computing the randomized search ratio (though we suspect such a result holds). It would
be very interesting to improve upon the approximations of the search ratio and randomized search
ratio for general weighted graphs; the latter, in particular, appears to be quite a difficult problem
that we believe will require the introduction of new techniques and approaches. Another direction
for future work is related to the continuous model. In this model, the Hider may be located not only
on a graph vertex, but on any given point across an edge. Optimal strategies that minimize the
deterministic search ratio are relatively easy to obtain (see Angelopoulos et al. (2016)); in contrast,
it is quite challenging to obtain strategies that improve upon the straightforward approximations
of the randomized search ratio in this model.

Last, we note that the work that introduced the expanding search paradigm (Alpern and Lid-
better (2013)) raises several interesting optimization problems concerning the average search time
of vertices of a graph (assuming expanding search). In particular, one can define the expanding
minimum latency problem, as the problem of minimizing the total latency of a graph, assuming an
expanding search of the graph. Is this problem NP-hard in general graphs? If yes, can one obtain
constant-factor approximations? Is the general problem in the setting in which the search time of
a vertex is weighted as hard as the unweighted variant? Answers to the above questions will help
provide an almost-complete picture of the computability and approximability of expanding search
across a variety of performance measures.
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