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ABSTRACT 

This paper proposes two different methods to deal with 

uncertainties in the design optimization of a renewable 

hybrid power system in order to enhance the decision-

making. The first method considers the uncertainties after 

the optimization of the system. It permits to evaluate the 

impact of the uncertainties on the performances of the 

optimized system and through global sensitivity analysis to 

identify the most influential uncertain parameters. The 

second method integrates a Monte Carlo simulation in the 

optimization algorithm, allowing so to perform a robust 

optimization. Considered uncertainties include technical 

and economical parameters. These methods are applied to 

the electrical supply of a stand-alone application located 

in Nigeria, using PV as the main power source and 

including a hybrid energy storage: a batteries bank and a 

hydrogen chain (electrolyser, gas storage and fuel cell). 

The two methods are complementary and constitute a 

useful decision-making tool for dimensioning energy 

systems. 

INTRODUCTION 

Energy systems are getting more and more complex, and 

difficult to assess because of (i) the variability of the 

renewable power sources and of the demand, (ii) the 

resultant necessity of storage and (iii) the presence of 

different and new energy vectors. The modelling and 

simulation software Odyssey [1] enables the realization of 

techno-economic optimizations of such energy systems 

design and operation. However, many parameters used to 

simulate the systems are uncertain (e.g. static component 

performances or economic properties, but also time series 

of production or load profiles).  To fully support decision-

making about these systems, it is necessary to assess the 

impact of these uncertainties on the design and operation 

arising from the optimization process. 

Up to now, techno-economic studies carried out with 

Odyssey, as with most other similar simulation tools, have 

not taken into account uncertainties, but only have 

provided sensitivity analysis on uncertain key input 

parameters. Thus, the objective of our work is to develop 

a comprehensive approach to enhance the design approach 

with capacities of uncertainty management, from the 

identification of the main sources of uncertainty to results 

analysis and to support decision-making.  

We identified two main ways to account for the uncertainty 

influence on the results of a techno-economic 

optimization. The first one consists in optimizing the 

system and then apply the uncertainties to evaluate the 

sensitivity of this optimized design to uncertainties. The 

second way consists in optimizing the system taking 

directly into account the uncertain parameters to get results 

robust to the considered uncertainties.  

These methodologies are applied to a case study consisting 

in the techno-economic sizing optimization of a stand-

alone power system in Nigeria described in the next part. 

CASE STUDY 

Case study description 

The case study investigated in this paper is a stand-alone 

power system located in Nigeria. It includes: 

- an electrical load,

- a photovoltaic (PV) plant,

- a bank of Lead-acid batteries,

- a hydrogen chain made of: a PEM electrolyser, a

pressurized tank to store the hydrogen and a PEM fuel cell.

This example is representative of (i) the operating

competition occurring between batteries and a hydrogen

chain, (ii) the issue of energy storage in off-grid power-

system, and (iii) the PV over-sizing linked to the load

satisfaction seeking.

The implemented power management strategy is based on

the on/off switches of the electrolyser and the fuel cell; it

was originally described by Ulleberg [2] and exploited on

a similar case by Guinot et al. [1].

Optimization criteria and variables 

The operation parameters are considered constant during 

the whole simulation and exploitation time. We select as 

optimization variables the five dimensioning variables 

shown in Table 1. 

Table 1. Optimization variables 

Variable 
Optimization borders 

Minimum Maximum 

Number of PV Modules* (-) 1 No 

Number of Battery Units** (-) 1 150 

Number of electrolyze cells (-) 5 No 

Fuel Cell Stack Max Power (W) 1 No 

Volume of pressure tank (m3) 1 No 

* Each module has a peak power of 1 kWp.
** Each unit has a rated capacity of 10 kWh.
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Table 2. Selected optimized designs and their 

performance indicators 
Case 0 01 05 1 

Number of Modules PV (-) 735 735 660 600 

Number of Battery Units (-) 146 145 135 138 

Number of electrolyze cells (-) 8 5 5 5 

Fuel Cell Stack Max Power (W) 43500 10500 5000 5000 

Volume of pressure tank (m3) 31 16 3.5 3.5 

Unsatisfied load (%) 0 0.1 0.5 1 

LEC (€/MWh) 404.9 336.1 295.5 280.2 

The multicriteria optimization process implemented in 

Odyssey uses a genetic algorithm, the Strength Pareto 

Evolutionary Algorithm 2 [3], in order to minimize the 

standard Levelized Electricity Cost (LEC) in €/MWh 

while minimizing the unsatisfied load (UL) in %, i.e. the 

energy based percentage of unmet electrical load. 

Therefore, two objective functions are in competition. 

Indeed, it is often observed that lowering the load 

satisfaction, by reducing the storage system size for 

example, leads to a lower cost of the system and thus the 

cost of the produced electricity. While on the contrary, 

improving the satisfaction of the load by oversizing the 

system tends to increase the cost of the produced 

electricity.  

Optimization results 

Due to the competition between both optimization criteria 

LEC and UL, the optimization results take the shape of a 

Pareto front as in Figure 1. In order to further analyze these 

results, four different design points were selected on this 

Pareto front, corresponding to different indicators values 

(LEC and UL). We selected the points according to the UL 

and we defined four different cases named from their UL 

value and with the designs given in Table 2. These points 

are distributed on the Pareto front, so that we can study the 

influence of the uncertainties on the overall Pareto front. 

This part describes the way we identify and select the 

optimal system designs without uncertainty consideration. 

In the following, we first characterize the relevant 

uncertain parameters and assess their influence on the 

selected cases (optimized without uncertainties) and 

through them on the Pareto front and, then perform a 

robust optimization of the same energy system to compare 

the contribution of the two methodologies. 

UNCERTAINTY CHARACTERIZATION 

In the described energy system, 24 static parametrical 

uncertain parameters are identified. They have an 

epistemic nature [4]. 

An extensive literature research ([5], [6], [7], [8], [9]) is 

carried out to identify existing, validated or accepted 

uncertainty probabilistic models for the components of the 

considered energy system. The parameters for which only 

a nominal value could be found out, i.e. the parameters for 

which no probability density function could be found out, 

are separated in two categories: the parameters linked to 

the ageing of the component and the other parameters, as 

suggested by [10]. The probability density function 

attributed to the ageing parameters is a uniform density 

function, centred on the nominal value, with an amplitude 

of 50%. The probability density function attributed to the 

other parameters is a uniform density function, centred on 

the nominal value, with an amplitude of 5%. These values 

arise from expert interviews. 

UNCERTAINTY PROPAGATION AND 

SENSIVITY ANALYSIS 

Uncertainty propagation 

The propagation of uncertainties allows to see how the 

performance indicators of the model respond to the 

uncertainties. In this study, the propagation is achieved by 

coupling a Monte Carlo launcher provided by the Uranie 

software [11] and the executable Odyssey. This simulation 

is iterated for 300 Monte Carlo histories. The immediate 

effect of the uncertainties on the performance indicators is 

represented in Figure 1. 

Sensitivity analysis 

The aim of the sensitivity analysis is to identify the most 

influential parameters on the output variance, in our case 

the performance indicators LEC and UL. A two-stage 

sensitivity analysis is performed in order to deal with the 

big number of identified uncertain parameters.  

The first stage is the factor fixing, which aims at 

identifying non-influential parameters. It is achieved with 

the Morris method [12]. 

The second stage is the factor prioritization, which aims at 

ranking the most influential parameters on the output 

variance. To this aim, the Sobol sensitivity indexes [13] 

have been calculated. These indexes, denoted as 

“measures of importance”, are included between 0 and 1 

and are easily interpretable because they represent directly 

the part of the output variance that could be avoided if one 

parameter could be set to a fixed and known value. 

Figure 1. Pareto front and LEC and UL indicators for 

the four selected design configurations with 

uncertainties. 
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Figure 2. Normalized Sobol indexes for the four 

different cases, related to the UL.  

The results of the two-stage sensitivity analysis (sensitivity 

indexes calculated after elimination of non-influential 

parameters) are presented in Figures 2 and 4. 

Considering the UL variance, the Sobol indexes indicate 

that the most influencing uncertain parameter, whatever 

the case, is the capacity loss of the battery, followed by the 

discharge efficiency of the battery. The importance of 

these two parameters, linked to the battery bank, shows the 

major role played by this component in the load 

satisfaction. The discharge efficiency is much more 

influential than the charge efficiency, because the PV 

panel installation is oversized and therefore the electric 

solar production is in excess, limiting the role of the charge 

efficiency. The charge efficiency takes a bigger 

importance only in Case 05 and Case 1 (responsible for 

respectively 3 and 5% of the UL variance) where the PV 

panel installation size is smaller (Table 2). 

The ascendancy of the battery on the hydrogen chain is due 

to their designs and control. The hydrogen fuel cell 

supplies a negligible electrical power compared to that 

delivered by the battery, even in Case 0, in which the fuel 

cell is designed at its largest size, i.e. when the hydrogen 

chain production is the most favorable. 

The Sobol indexes indicate that whatever the case, the 

most influential uncertain parameter on the LEC variance 

is the PV CAPEX, far before the PV OPEX and to a lower 

degree the battery bank CAPEX. 

Figure 3. Cost distributions for the four different cases 

Figure 4. Normalized Sobol indexes for the four 

different cases, related to the LEC.  

We can observe that if the Sobol index of a given 

parameter is linked to the cost weight of the corresponding 

component (Figure 3), there is however no direct 

proportional relation, because of the influence of the 

probability distribution of the input parameters values. For 

instance, the battery bank plays an important role in the 

system cost (between 19% and 26%) but has a relatively 

small impact (less than 8%) on the LEC variance. On the 

contrary, the PV panel installation (CAPEX and OPEX 

unified) represents the overwhelmingly part (between 88% 

and 94%) of the LEC variance cause while it only accounts 

for maximal 68% of the system cost. 

ROBUST OPTIMIZATION 

The other approach to reduce the uncertainty of the output 

is to optimize the system design by taking directly into 

account the uncertain parameters probability distributions 

in the optimization process, instead of evaluating a 

posteriori the robustness of the optimal solution. 

The robust optimization method was first proposed by [14] 

and further investigated by [15]. It is the adaptation of a 

genetic optimization algorithm, including a Monte Carlo 

(MC) simulation. This method combines both (i) the

exploration of the uncertain parameters definition domain

(via the MC simulation) and (ii) a limited number of model

evaluations thanks to the genetic algorithm. Moreover, this

method is compatible with a multi-criteria optimization,

necessary in the techno-economic optimization framework

of this study.

Optimization criteria and variables 

The optimization criteria, instead of being direct outputs of 

the model are statistical values, calculated from a sample 

of outputs. The statistical values considered as 

optimization criteria are designed depending on the 

objective of the user. In our case, the optimization criteria 

are expressed under the following general form: 

Optimization Criteria = m + α ∗ σ Equation 1 

In Equation 1, m is the mean of the output sample, σ the 

standard deviation and α is a non-strictly positive factor, 

permitting to express the ponderation that the user chooses 
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between the performances and the dispersions of the 

performances. 

In this study two robust optimizations (RO), based on 

different criteria, are tested and then compared to the non-

robust optimization: 

 RO1: the objective functions are to minimize the

mean of the LEC and the mean of the UL. The

outputs dispersions resulting from the uncertainties is

not taken into account, i.e. α = 0 for the objective

function associated to UL and for the optimization

criterion associated to the LEC.

 RO2: for the LEC, the objective function remains the

mean (as in RO1). On the contrary, the objective

function associated to the UL includes the mean and

the dispersion. Both have to be minimized. In other

words, the goal is to get a surer UL, at the risk of

getting a bigger UL. So it means α > 0 for the

objective function associated to UL and α = 0 for the

optimization criterion associated to the LEC

The optimization variables are the same as in the non-

robust optimization (see Table 1). 

Optimization results and comparison with the 

non-robust optimization 

The two different robust optimizations (RO) and the non-

robust optimization (NRO) lead to different results, i.e. 

different optimal designs. To compare these results, the 

designs resulting from RO1 and RO2 with similar UL 

performance are selected.  

The main differences come from the sizing of the PV 

installation and of the battery bank. In fact, to achieve the 

same UL, except for Case 0, both robust optimizations 

propose designs with a smaller number of PV modules 

than that resulting from the NRO. The robust 

optimizations almost always maximize (only one minimal 

exception for RO1, Case 01) the number of battery units, 

reaching the optimization superior border, which is not the 

case of the NRO. The designs of the components of the 

hydrogen chain resulting of robust optimizations do not 

have a clear difference tendency with the NRO. 

To compare RO results with NRO results, the mean and 

the variance are calculated after a new uncertainty 

propagation on the system designs resulting from the RO. 

They are compared with the corresponding statistical 

values resulting from the NRO with the formula: 

𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 (%) =
𝑉𝑅𝑂 − 𝑉𝑁𝑅𝑂

𝑉𝑁𝑅𝑂

Equation 2 

Except for the negligible evolutions (i.e. ≤ 1%), the only 

positive evolutions are the statistical values (mean and 

variance) for LEC in Case 0. All the other evolutions are 

negative, i.e. in all other cases the mean and the variance 

are reduced by the RO method in comparison with the 

NRO. 

Thus, the robust optimizations permit to reduce the mean 

and the variance of the output indicators, without requiring 

any additional specification of the probability distribution 

of the uncertain input parameters. The UL variance can be 

reduced for every UL level considered (cases 0, 01, 05 and 

1) in RO1 and RO2.

Nevertheless, this reduction has consequences on the other

statistical values, and in Case 0 the mean and the variance

of the LEC increase with the RO design. In fact, the

increase of robustness of the UL has a strong impact on the

LEC for which mean and variance increase (in RO1 and

RO2). Indeed, to increase the robustness of the UL, the

sizes of the components (all of them for RO1 and only the

PV installation and the battery bank for RO2) have to be

increased. The first consequence is that the LEC increases

– which can be seen with the increase of its mean -, and

the second one is that its variance increases, because every

variation on the components economic parameters has a

stronger impact.

However, when the objective is not to reach the complete

autonomy, i.e. in cases 01, 05 and 1, the RO permits to

propose designs which successfully reduce the UL (mean

and variance) while keeping similar LEC.

RESPECTIVE CONTRIBUTION OF THE TWO 

METHODS 

As the illustration on this study case shows, the two 

approaches are from different nature, though they are both 

based on an uncertainty quantification, which cannot be 

avoided and include the modeling of the system. 

The first proposed approach (NRO/ Uncertainty 

propagation/ Global sensitivity analysis) differs 

fundamentally from the RO (i.e. from the second proposed 

approach) because it has no feedback on the optimization 

process. The first approach brings information on the 

following points of interest: (i) what is the impact of the 

uncertain parameters on the performance indicator of one 

system? (ii) which of these uncertain parameters are the 

most relevant to be better known in order to reduce this 

impact? 

The RO on the contrary, has a practical feedback on the 

optimization process. This second approach duly notes that 

the level of knowledge cannot be improved and permits to 

modify the kind of impact of the uncertainty on the 

optimization results. 

The two approaches have complexities and limitations. 

The first approach, bringing a better knowledge on the 

uncertainty impact and permitting to identify the important 

attention points has no practical impact on the system 

optimization results. The most natural development of this 

method is then to try to improve the uncertainty 

quantification. This improvement is not always possible, 

in particular when dealing with non-fully mature 

components, as it is often the case in complex energy 

systems. 

The main limitation of the second approach is that it 

requires significant computational resources and/or time. 

In fact, the robust optimizations needed respectively 

618,700 model evaluations for RO1 and 739,100 for RO2. 

This high number of required model evaluations is due to, 



CIRED 2019 5/5 

on the one hand, two settled values: the population size of 

the genetic algorithm and the sampling size of the MC 

simulation and on the other hand the number of 

generations needed to converge, which is not decided by 

the user but imposed by the algorithm. For the same 

optimization problem, this number of generations is much 

more important for a robust optimization than for a non-

robust one. Therefore, we join one of the conclusion of 

[16] stating that when the computational resources or time

is limited, other approaches can be better adapted. Another

limitation of this second approach is that it can modify the

kind of impact of the uncertainty on the optimization

results, but it does not reduce them for every case. In fact

in Case 0, the RO shifts the uncertainty from selected

outputs to others. It means that the user has to accept that

other outputs may be degraded. Moreover, to measure the

improvements, but also the losses generated by the RO, the

uncertainty propagation is required.

CONCLUSION AND PERSPECTIVES 

In this work, we tackle the problem of dimensioning a 

complex energy system modelled with an important 

number of uncertain parameters. The sources of 

uncertainty considered here are the economic and 

technical parameters of the model, which are of epistemic 

nature. 

Two complementary approaches are proposed to solve this 

problem. Both begin with an uncertainty quantification 

step, which consists in the attribution of a probabilistic law 

to each uncertain parameter values. Both also include the 

modelling of the system, which is considered here 

available in the software Odyssey. 

The first approach then uses the result of the non-robust 

optimization; from the selected designs picked out from 

the Pareto front, the uncertainties are propagated and a 

global sensitivity analysis is performed. These two steps 

are realized through the coupling between Odyssey and 

Uranie software [1] [11]. This approach brings information 

on the impact of the uncertainties on the output of the 

system results and identifies the most influent uncertain 

parameters in the output dispersion. 

The second approach is the robust optimization of the 

system, which is performed thanks to the combination of a 

genetic algorithm and MC simulations. This second 

approach permits to modify the design of the system itself 

and the kind of impact of the uncertainty on the 

optimization results. 

These methodologies were applied to the design 

optimization of the electrical supply of a stand-alone 

application located in Nigeria, using PV as the main power 

source. The global sensitivity analysis teaches us that the 

most influent uncertain parameter in the UL dispersion is 

the battery capacity loss and in the LEC dispersion is the 

PV CAPEX. The performed robust optimizations have the 

objectives to reduce globally LEC and UL for the first one, 

and for the second the LEC and the UL globally and the 

dispersion of UL. The obtained configurations are 

evaluated through uncertainty propagation and gain in the 

privileged robustness. 

There are several interesting points that still have to be 

thoroughly investigated. The two main axis we want to 

investigate now are first the inclusion of the stochastic 

nature of the renewable resources and then the 

optimization of operation parameters as a way to counter-

balance uncertainties on the design of the system. 
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