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Résumé
La classification automatique de documents numérisés est im-
portante pour la dématérialisation de documents historiques
comme de procédures administratives. De premières ap-
proches ont été suggérées en appliquant des réseaux con-
volutifs aux images de documents en exploitant leur aspect
visuel. Toutefois, la précision des classes demandée dans
un contexte réel dépend souvent de l’information réellement
contenue dans le texte, et pas seulement dans l’image. Nous
introduisons un réseau de neurones multimodal capable
d’apprendre à partir d’un plongement lexical du texte ex-
trait par reconnaissance de caractères et des caractéris-
tiques visuelles de l’image. Nous démontrons la pertinence
de cette approche sur Tobacco3482 et RVL-CDIP, augmen-
tés de notre jeu de données textuel QS-OCR1, sur lesquels
nous améliorons les performances d’un modèle image de 3%
grâce à l’information sémantique textuelle.

Mots-clés
Classification de documents, apprentissage multimodal,
fusion de données.

Abstract
Classification of document images is a critical step for
archival of old manuscripts, online subscription and ad-
ministrative procedures. Computer vision and deep learning
have been suggested as a first solution to classify documents
based on their visual appearance. However, achieving the
fine-grained classification that is required in real-world set-
ting cannot be achieved by visual analysis alone. Often, the
relevant information is in the actual text content of the docu-
ment. We design a multimodal neural network that is able to
learn from word embeddings, computed on text extracted by
OCR, and from the image. We show that this approach boosts
pure image accuracy by 3% on Tobacco3482 and RVL-CDIP
augmented by our new QS-OCR text dataset1, even without
clean text information.

Keywords
Document classification, multimodal learning, data fusion.

1https://github.com/Quicksign/
ocrized-text-dataset
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Figure 1: Multimodal classifier for hybrid text/image
classification. Training is performed end-to-end on both
textual and visual features.

1 Introduction
The ubiquity of computers and smartphones has incentivized
governments and companies alike to digitize most of their
processes. Onboarding new clients, paying taxes and proving
one’s identity is more and more done through a computer,
as the rise of online banking has shown in the last few years.
Industrial and public archives are also ongoing serious ef-
forts to digitize their content in an effort for preservation,
e.g. for old manuscripts, maps and documents with a his-
torical value. This means that previously physical records,
such as forms and identity documents, are now digitized and
transferred electronically. In some cases, those records are
produced and consumed by fully automated systems that rely
on machine-readable formats, such as XML or PDF with text
layers. However, most of these digital copies are generated
by end-users using whatever mean they have access to, i.e.
scanners and cameras, especially from smartphones. For this
reason, human operators have remained needed to proofread
the documents, extract selected fields, check the records’
consistency and ensure that the appropriate files have been
submitted. Automation through expert systems and machine
learning can help accelerate this process to assist and allevi-
ate the burden of this fastidious work for human workers.
A common task involved in data filing processes is document
recognition, on which depends the class-specific rules that
command each file. For example, a user might be asked to
upload several documents such as a filled subscription form,
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Figure 2: Document samples from the RVL-CDIP [1] dataset with corresponding text extracted by Tesseract OCR.

an ID and a proof-of-residence. In this work, we tackle the
document classification task to check that all required files
have been sent so that they are filed accordingly.

Yet, if discriminating between broad classes of documents
can be achieved based on their appearance only (e.g. sep-
arating passports from banking information), fine-grained
recognition often depends on the textual content of the
documents. For example, different tax forms might share
their layout, logos and templates while the content in itself
vastly differs. Computer vision has been interested for some
time in optical character recognition (OCR) to extract text
from images. However, dealing with both the textual and
visual contents remains an open problem. In the past years,
deep learning has been established as the new state-of-the-art
for image classification and natural language processing.
For fine-grained document recognition, we expect the model
to leverage both image and text information.

This work introduces a multimodal deep network that learns
from both a document image and its textual content automat-
ically extracted by OCR to perform its classification. We de-
sign a pragmatic pipeline for end-to-end heterogeneous fea-
ture extraction and fusion under time and cost constraints. We
show that taking both the text and the document appearance
into account improves both single modality baselines by sev-
eral percents on two datasets from the document recognition
literature. We detail some limitations of the current academic
datasets and give leads for an application in an industrial set-
ting with unclean data, such as photographed documents.

2 Related work
Analyzing digitized documents is an old task in computer
vision that was boosted by the dissemination of computers
in offices and then of digital cameras and smartphones in
everyday life. To allow for textual search and easy indexing,
the critical part of digitization is extracting text content
from documents that have been scanned or photographed.
Indeed, either when scanning or taking a picture of the
document, its actual text is lost, although it is implicitly
embedded in the pixel values of the image. Numerous
optical character recognition (OCR) algorithms have been
designed to transform images into strings of characters [2, 3].
Despite those efforts perfectly reading any type of document
remains challenging due to the wide variety of fonts and
languages. Layout analysis is a way to preprocess the data
to detect text areas and find the text orientation in order to
enforce a better local and global consistency [4, 5].
Document image analysis is also one of the first topic
where modern deep learning has been applied. The first
convolutional neural network (CNN) [6] was originally
designed for classification of digits and letters. The computer
vision community deployed consequent efforts to achieve
image-based document classification without text, as shown
by a 2007 survey [7] which focuses on document image
classification without OCR results. As an example, [8] in-
troduced SURF visual features with a bag-of-words scheme
to perform document image classification and retrieval. In
2015, [1] introduced a large labeled image document dataset
which sparked interest and generated several studies of deep
CNN on this topic [9, 10, 11], inspired by the success of



(a) Residual block (b) Inverted residual block

Figure 3: MobileNetV2 uses inverted residual blocks
to reduce the number of channels that are forwarded in
subsequent layers. Figure from [23].

these networks on ImageNet and tuning data augmentation
policies, transfer learning strategies and domain adaptation
for document classification. In the same idea, [12] also
investigated such deep architectures to classify identity
documents. [13] goes even further by trying to segment the
full layout of a document image into paragraphs, titles, orna-
ments, images etc. These models focus on extracting strong
visual features from the images to classify the documents
based on their layout, geometry, colors and shape.
On the other hand, text-based document classification has
also long been investigated. In 1963, [14] introduced an
algorithmic approach to classify scientific abstracts. More re-
cently, [15] experimented with one-class SVM for document
classification based on various text features, such as TF-IDF.
[16] used Latent Dirichlet Allocation to perform topic
modeling and used it as a generative approach to document
classification. The recent appearance of learned word em-
beddings approaches such as word2vec [17] or ELMo [18]
paved to way to a large body of works related to recurrent and
attention mechanisms for text classification. For example,
[19] proposed a bidirectional recurrent network with a
hierarchical attention mechanism that learns both at the word
and sentence levels to improve document classification.
Some works tried to reconcile the text-based and image-
based approaches to exploit both information sources. [20]
performs OCR to detect keywords in images which are then
encoded as colored boxes before passing the image through a
CNN. While a clever trick, this does not leverage the represen-
tation power of word embeddings. Closer to our approach,
[21] goes further by generating text feature maps that are
combined with visual feature maps in a fully convolutional
network. However, the considered documents are synthetic
and the network is trained using perfectly clean texts and
images, which is unrealistic for practical uses. More similar
to us, [22] learns to combine bag of words and bag of visual
words features for industrial document images using a statis-
tical model combining outputs of two single-modality clas-
sifiers. While using shallow features, they show that using
both information allows for a better accuracy when the OCR
is unreliable, which is often the case in an industrial setting.
In this paper, we go further in this direction and propose
a new baseline with a hybrid deep model. In order to
classify OCRized document images, we present a pragmatic
pipeline perform visual and textual feature extraction using
off-the-shelf architectures. To leverage the complementary
information present in both modalities, we design an
efficient end-to-end network that jointly learn from text and

image while keeping computation cost at its minimum. We
build on existing deep models (MobileNet and FastText)
and demonstrate significant improvements using our fusion
strategy on two document images dataset.

3 Learning on text and image
3.1 Visual features
There is a large literature both in general image recognition
and in image document classification. Recent works have
established deep convolutional neural networks as the de
facto state of the art on many competitions in object recog-
nition, detection and segmentation, e.g. ImageNet. Deep
features, extracted by pretrained or fine-tuned deep CNNs,
constitute a strong baseline for visual recognition tasks [24].
Based on this, we choose to fine-tune a CNN pretrained on
ImageNet in order to extract visual features on our images,
as suggested in several recent document classification
publications [9, 10, 1] As we aim to perform inference on a
large volume of data with time and cost constraints, we focus
on a lightweight architecture with competitive classification
performance, in our case the MobileNet v2 model [23].
MobileNetV2 [23] consists in a stack of bottleneck blocks.
Based on the residual learning principle [25], each bottleneck
block transforms a feature map first by expanding it by
increasing its number of channels with a 1×1 convolutional
layer with identity activation. Then, a 3×3 depthwise
convolution is performed, followed by a ReLU and a
final 1×1 convolution with ReLU. For efficiency issues,
this block inverts the traditional residual block since the
expansion is performed inside the block, whereas residual
blocks compress and then reexpand the information, as
illustrated in Fig. 3. The final MobileNetV2 contains 19
residual bottleneck layers. Compared to other state of the
art CNNs, MobileNetV2’s accuracy is on-par with VGG-16
while being significantly faster.

3.2 Textual features
Since our use case focuses on document images in which the
text has not been transcribed, we need to perform an OCR
step. To this end, we use the Tesseract OCR engine [3] in its
4.0 version which is based on an LSTM network. Tesseract
is configured in English to use full page segmentation and
the LSTM engine. In practice, this means that Tesseract will
try to detect the text orientation in the image and perform the
needed affine transformation and rotation if any. Tesseract
also deals with the image binarization using Otsu’s threshold-
ing to identify black text on white background [26]. This will
suffice on the datasets described in Section 4.1, although we
found Tesseract challenging to apply on real-world images,
especially pictures which are not flat and grayscale scans.
Recent literature in NLP suggests that pretrained word em-
beddings offer a strong baseline which surpasses traditional
shallow learning approaches. Many word embeddings have
been designed following the initial success of word2vec [17],
such as GloVe [27] or more recently the contextualized word
embeddings from ELMo [18].



However, those word embeddings assume a good tokeniza-
tion of the words, i.e. most embeddings remove digits,
ignore punctuation and do not deal with out-of-vocabulary
(OOV) words. Since these embeddings are learned on clean
corpus (e.g. Wikipedia or novels), tokenization is fairly
straightforward. OOV words are either assigned a random
embedding or mapped to the closest in-vocabulary word
based on the Levenshtein distance.
Unfortunately, outputs of the Tesseract OCR are noisy and
not as clean as the training data from these embeddings.
Even in grayscale, well-oriented documents, OCR might
have trouble dealing with diacritics, exotic fonts or curved
text, as illustrated by the extracts from Fig. 2. Moreover,
specific user domains (e.g. banking or medieval manuscripts)
might use rare words, codes, abbreviations or overall jargon
that is absent from general-purpose word embeddings. Since
we face many possible misspellings in the extracted text, we
cannot use the previous workarounds for OOV embeddings
since it would inject a lot of non-discriminant features in our
text representation In average, on the Tobacco3482 corpus, a
document processed by Tesseract OCR contains 136 words
with 4 characters or more. Of those, only 118 in average are
in the GloVe embeddings [27]2 and only 114 are in Enchant’s
spellchecker US English dictionary. Overall, approximately
26% of the corpus is absent from the US English dictionary
and 23% from the GloVe embeddings. The document dis-
tribution with respect to the proportion of out-of-vocabulary
words is shown in Fig. 4a. Although most of the documents
are concentrated around 10% of OOVs, there is a significant
long tail including several dozens of documents that contain
only words outside of the English language.
Therefore, we turn to character-based word embeddings
that are able to deal with OOV words by assigning them
plausible word vectors that preserve both a semantic and a
spelling similarity. One possibility was to use the mimicking
networks from [28] that learn to infer word embeddings
such as GloVe, but based only on subword information.
More complex embeddings such as FastText [29, 30] and
ELMo [18], which produce vectors using respectively
n-grams and subword information, can also address this
problem. Finally, the Magnitude library [31] uses two
alternative strategies to deal with OOV words:
• Assigning a deterministic random vector. These vectors

do not capture semantic sense, however similar words
based on the Levenshtein-Damerau distance will have
similar vectors. Misspellings will therefore not be close
to the original word, but similar lingo words will be
close.

• Using character n-grams inspired by [29] and interpola-
tion with in-vocabulary words, Magnitude can generate
vectors for OOV words which are sensible based on
existing learned embedding.

Preliminary data exploration shows that subword-aware
embeddings perform better at preserving similarity despite
misspellings, as illustrated in Fig. 4b. We therefore focus

2Based on the Wikipedia 2014 + Gigaword 5 datasets.

our interest on the FastText embedding, which is faster than
ELMo since the latter requires passing the context through
a bidirectionnal LSTM during inference. It is worth noting
that this raises concern for characters that have not been seen
by FastText. We found experimentally that Tesseract OCR
generated no character that was OOV for FastText on the
documents we considered.
Finally, it is necessary to convert those word embeddings
into a document embedding. We consider two approaches:
• The simple baseline for sentence embedding suggested

in [32], which consists in a weighted average of word
embeddings altered by PCA.

• Using variable-length document embeddings consisting
in a sequence of word embeddings.

The first approach is suitable as generic feature while the sec-
ond requires a statistical model able to deal with sequences,
such as recurrent or convolutional neural networks. For
both methods, we use the SpaCy small English model [33]
to perform the tokenization and punctuation removal.
Individual word embeddings are then inferred using
FastText [29] pretrained on the Common Crawl dataset.

3.3 Multimodal features
Once text and image features have been extracted, we feed
them to a multi-layer perceptron following [34]. To do so,
we need to combine both feature vectors into one. Two
approaches can be envisioned:
• Adaptive averaging of both feature vectors. This aligns

both feature spaces so that scalars at the same index
become compatible by summation, i.e. that each dimen-
sion of the vectors have a similar semantic meaning.

• Concatenating both vectors. This does not imply that
both feature spaces can be aligned and delegates to the
fusion MLP the task of combining the two domains.

Both fusion strategies are differentiable, therefore the whole
network can be trained in an end-to-end fashion. Moreover,
the model is modular and each feature extractor can be
swapped for another model, e.g. MobileNet can be ex-
changed with any other popular CNN and FastText could be
replaced by subword-level NLP models, even differentiable
ones that could allow fine-tuning the embeddings. In this
work, we try to keep things simple and build on robust base
networks in order to clearly understand how the data fusion
impacts model performance. Preliminary experiments
showed that the summation fusion significantly underper-
formed compared to pure image baseline. We suggest that
this is provoked by the impossibility of aligning the text and
image feature spaces without breaking their discriminating
power, resulting in suboptimal space. Therefore, we move
on with the concatenation strategy for the rest of this paper.
The complete pipeline is illustrated in Fig. 1.

4 Experimental setup
4.1 Datasets
Tobacco3482. The Tobacco3482 dataset [8] contains
3482 black and white documents, a subset from the Truth
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Figure 4: Tesseract OCR outputs noisy text that does not entirely overlap with the assumptions usually held when training
word embeddings for NLP.

Tobacco Industry Documents3 archives of legal proceedings
against large American tobacco companies. There are
annotations for 10 classes of documents (e.g. email, letter,
memo. . . ). Following common practices, we perform k-fold
cross-validation using 800 documents for training and the
rest for testing. Results are averaged over 3 runs.

RVL-CDIP. The RVL-CDIP dataset [1] is comprised
of 400000 grayscale digitized documents from the Truth
Tobacco Industry Documents. There are annotations for 16
classes of documents (e.g. email, letter, invoice, scientific
report. . . ), each containing 25000 samples. We use the
standard train/val/test split from [1] with 320000 documents
for training, 40000 for validation and 40000 for testing.

Text generation. The Tobacco3482 and RVL-CDIP are
image-based datasets. In order to evaluate our multi-modal
networks, we wish to learn from both visual and textual
content. Therefore we use the Tesseract OCR library4 to
extract text from the grayscales images. We perform this
operation on both datasets. We release the OCR text dataset
openly5 to encourage other researchers to replicate our work
or test their own model for post-OCR text classification or
multi-modal text/image classification.

4.2 Models
This subsection describes the implementation details of our
deep networks. All models are implemented in TensorFlow
1.12 using the Keras API and trained using a NVIDIA Titan
X GPU. Hyperparameters were manually selected on a
subset of Tobacco3482 and fixed for all experiments.

Text baseline. Seeing that our representation of textual
data can be either a document embedding or a sequence
of word embeddings, we compare two models for our text
baseline.
The first model is an improved Multi-Layer Perceptron
(MLP) with ReLU activations, Dropout and Batch Nor-
malization (BN) after each layer. The network has a

3https://www.industrydocuments.ucsf.edu/
tobacco/

4https://github.com/tesseract-ocr/tesseract/
5The QS-OCR dataset is available at: https://github.com/

Quicksign/ocrized-text-dataset

fixed width of 2048 neurons for all layers except the last
one, which produces a 128 feature vector, classified by a
softmax layer. Weights are randomly initialized using He’s
initialization [35]. The averaged document embedding [32]
is used as an input for this classifier.
The second model is a one-dimensional convolutional neural
network designed inspired by previous work for sentence
classification [36]. The CNN is 4-layers deep and interlaces
1D convolutions with a window of size 12 with maxpooling
with a stride of 2. Each layer consists in 512 channels with
ReLU activation. The final feature map is processed by a max-
pooling-through-time layer that extracts maximal features on
the sequence on top of which we apply Dropout for regular-
ization. A fully connected layer then maps the features to the
softmax classifier. The input word sequence is zero-padded
up to 500 words for documents with less 500 words.
We experiment on the Tobacco3482 dataset in order to
evaluate which text model to choose. Results are reported
in Table 1a. Without surprise, the CNN 1D outperforms
significantly the MLP classifier. The pattern recognition
abilities of the convolutional network makes it possible to
interpret the word sequences by leveraging contextual infor-
mation. Since only some part of the text might be relevant,
averaging over all word embeddings dilute the discriminating
information. Moreover, noisy embeddings due to garbage
output from Tesseract (e.g. incoherent strings where OCR
has failed) are included in the final document embedding.
However, when dealing with word sequences, convolutional
layers and temporal max-pooling help extracting only the
relevant information. Therefore, we choose to include the 1D
CNN as the text component in our multimodal architecture.
This model is denoted TEXT in the rest of the paper. It
is optimized using Stochastic Gradient Descent with
momentum for 100 epochs, with a learning rate of 0.01, a
momentum of 0.9 and a batch size of 406.

Image baseline. We investigate as our base CNN the
lightweight MobileNetV2 [23] which focuses on computing
efficiency, albeit at the cost of a slightly lower top-1 accuracy
on ImageNet compared to other state of the art CNN. We

6Hyperparameters are manually tuned on a small validation set.
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(a) Preliminary experiments on Tobacco3482 for the text baseline.

Model OA F1

MLP (document) 70.8% 0.69
CNN 1D (word sequence) 73.9% 0.71

OA = overall accuracy, F1 = class-balanced F1 score.

(b) Preliminary experiments on Tobacco3482 for the image baseline.

Model OA F1

MobileNetV2 84.5% 0.82
MobileNetV2 (w/ DA) 83.9% 0.82

OA = overall accuracy, F1 = class-balanced F1 score, DA = data augmentation.

Table 1: Preliminary tuning of the single-modality baselines on Tobacco3482.

train the CNN on grayscale document images resized at
384×384. Although this warps the aspect ratio, [9] reports
better accuracy than when using padding at the same
resolution. As the model is designed for RGB images, the
grayscale channel is duplicated three times. This allows us
to initialize the network by loading its pretrained weights
on ImageNet, which accelerates convergence and slightly
improves accuracy through transfer learning.
This model is denoted IMAGE in the rest of the paper.
It is optimized using Stochastic Gradient Descent with
momentum for 200 epochs, with a learning rate of 0.01, a
momentum of 0.9 and a batch size of 40.
As reported in Table 1b, preliminary experiments on the To-
bacco3482 with random JPEG artifacts, saturation and con-
trast alterations did not significantly alter the classifier’s accu-
racy compared to no augmentation. This is explained by the
low variability between the grayscale document images. All
images are grayscale with dark text on white background with
horizontal text lines, therefore color and geometric augmen-
tation are not necessary. However, [9] report some success
using shear transform, which we did not consider in this work.
It is worth noting that compared with previous literature on
the RVL-CDIP dataset, e.g. [9, 10, 1], we do not average
predictions over multiple crops at inference time for speed
concerns. This might explain why our visual baseline under-
performs the current state of the art in this state (although this
does not question the gains due to the multi-modal network).

Fusion. For our multimodal network, we consider the
same model as our baselines except that the final layers
are cut-off. For the TEXT model, the last layer produces
an output vector of dimension 128 instead of the number
of classes. For the IMAGE model, we aggregate the last
convolutional features using global average pooling on each
channel, which produces a feature vector of dimension 1280.
We then map this feature vector using a fully connected layer
to a representation space of dimension 128.
This model is denoted FUSION in the rest of the paper.
It is optimized using Stochastic Gradient Descent with
momentum for 200 epochs, with a learning rate of 0.01, a
momentum of 0.9 and a batch size of 40.

5 Discussion
5.1 Performances
Model performances scores on Tobacco3482 and RVL-CDIP
are reported in Tables 2 and 3. Behaviour of all models is con-
sistent both on the smaller dataset and on the very large one.
In both cases, the TEXT baseline is significantly underper-

forming the IMAGE one. Indeed, as could be seen in Fig. 2,
Tesseract OCR outputs noisy text. This includes words that
have been misspelled – which are correctly dealt with by the
FastText embeddings – and new words that are hallucinated
due to poor binarization or salt-and-pepper noise in the image.
Moreover, layout and visual information tends to be more
informative based on how the classes were defined: scientific
papers, news and emails follow similar templates while
advertisements present specific graphics. However, in both
cases, this simple document embedding is enough to classify
more than 70% of the documents, despite its roughness.
Using the IMAGE model only, we reach accuracies competi-
tive with the state of the art. MobileNetV2 alone does on-par
is with the holistic CNN ensemble from [1] and is competitive
with fine-tuned GoogLeNet and ResNet-50 [10] (90.97%).
On both datasets, the fusion scheme is able to improve
the overall accuracy by '1.5% which demonstrates the
relevance of our approach. While the document embedding
we chose is simple, it appears to be at least partially robust
to OCR noise and to preserve enough information about
the document content to boosts CNN accuracy on document
image classification even further. We also report the results
from an oracle, which corresponds to the perfect fusion of
the TEXT and IMAGE baselines, i.e. a model that would
combine the predictions from both single-modality networks
and always choose the right one. The oracle corresponds to
the theoretical maximal accuracy boost that we could expect
from the FUSION model. On Tobacco3482, the oracle
corresponds to a 7.6% absolute improvement (9% relative).
In our case, the FUSION model improves the best single-
source baseline by an absolute 3.3% (4% relative), which
is significant although still leaves the door open to further
improvements. More importantly, the gains are consistent
on all classes of interest, almost never underperforming
one of the two base networks on any class. This confirm the
proposed approach as the two sources, image and text, give
complementary information to classify a document.

5.2 Processing time

Although some applications of document image recognition
can be performed offline, most of the time users upload
a document and expect near real-time feedback. User
experience engineering [37] indicates than less than 1s
is the maximum latency the user can suffer before the
interface feels sluggish, and 10s is the maximum delay
before they start loosing their attention. On the RVL-CDIP
dataset, Tesseract processes a document image in'910ms
in average on an Intel Core i7-8550U CPU using 4 threads,



Table 2: Overall accuracy on the RVL-CDIP dataset.

Model IMAGE TEXT FUSION CNNs [1] VGG-16 [10] AlexNet+SPP [9]

OA 89.1% 74.6% 90.6% 89.8% 90.97% 90.94%
OA = Overall Accuray.

Table 3: Overall accuracy and F1 scores on the Tobacco3482 datasets.

Model OA F1 Adv. Email Form Letter Memo News Notes Report Res. Sci.

CNNs [1] 79.9 – –

TEXT 73.8 0.71 0.60 0.96 0.76 0.71 0.79 0.67 0.62 0.43 0.97 0.57
IMAGE 84.5 0.82 0.94 0.96 0.85 0.83 0.90 0.89 0.83 0.61 0.80 0.62

FUSION 87.8 0.86 0.93 0.98 0.88 0.86 0.90 0.90 0.85 0.71 0.96 0.68

Oracle 92.1 0.91 0.94 0.99 0.94 0.92 0.93 0.93 0.89 0.81 0.97 0.79
Adv. = Advertisement, Res. = Resume, Sci. = Scientific.

including loading the image from disk. This means that every
additionnal latency induced by the network inference time
is critical since it will negatively affect the user experience.

On the same CPU, the full inference using the FUSION
model takes '360ms including loading, resizing and
normalizing the image. The complete process including
Tesseract OCR therefore takes less than'1300ms which is
acceptable in a system requiring user input. Of those, 130ms
are spent in the 1D CNN (including reading the file and
performing FastText inference) and 230ms in MobileNetV2
(including image preprocessing). The overhead added by the
final fusion layer is negligible. We stress that this is using a
standard TensorFlow without any CPU-specific compilation
flags, which could speed up the inference further. On a
NVIDIA Titan X GPU, the FUSION network runs in 110ms
(50ms for TEXT, 60ms for MobileNetV2), which brings the
total just above the 1s recommendation. In our case, using
compute-efficient architectures allow us to avoid running
on an expensive and power-hungry GPU.

As a comparison basis, other architecture choices that we
dismissed earlier would have resulted in poorer performance
and the network would not be usable in a near real-time user
application. For example, the Xception network [38] takes
630ms to run during inference with the same parameters and
hardware. For the text model, an LSTM-based RNN with
a similar depth takes many seconds to run.

Note that, although this does not reduced the perceived delay
for one user, the global throughput of the system can be
improved by batching the images. Two Tesseract processes
can leverage the full eight cores from an Intel Core i7-8550U
CPU. In this setting, processing an image takes'660ms in
average. Thanks to the batch efficiency of neural networks,
the average processing time becomes≤750ms on GPU and
≤1000ms on CPU. This is particularly helpful when users
have several documents to upload that can be processed
concurrently.

5.3 Limitations
One of the main limitation of this work stems from the public
document image datasets available. Indeed, in a real-world
application, document images can be grayscale, RGB,
scanned images and photographs with various rotations,
brightness, contrast and hue values. The Tobacco documents
are all oriented in the right way, which makes it easier for
Tesseract to perform OCR. Moreover, documents have
been scanned by professionals who tried to maximize their
legibility while user-generated often presents poor quality.
While it was not required here, data augmentation is
definitely required for practical applications to encompass
the large variety of environmental conditions in which
documents are digitized. This is especially true for rotations,
since it is often not possible to ensure that users will capture
the document with the right orientation and Tesseract
does not always correctly detects it. For industrial-grade
applications dealing with user-generated content, such a
data augmentation is necessary to alleviate overfitting and
reduce the gap between train and actual data. Preprocessing
page segmentation and layout analysis tools, such as
dhSegment [13] can also bring significant improvements by
renormalizing image orientation and cropping the document
before sending it to the classifier.
Moreover, as we have seen, the post-OCR word embeddings
include lots of noisy or completely wrong words that
generate OOV errors. In practical applications, we found
beneficial to perform a semantic tokenization and named
entity recognition using SpaCy. This allows us to perform
a partial spellchecking, e.g. using symspell 7 to correct
words that have been misread by Tesseract, without affecting
proper nouns or domain-specific abbreviations and codes.
If this can deal frequent mispellings of words, it might also
suppress out-of-vocabulary words such as alphanumeric
codes. Therefore, learning domain specific, character-based
or robust-to-OCR embeddings [39] is an interesting lead for
future research, as the current interest in the ICDAR2019

7https://github.com/wolfgarbe/SymSpell

https://github.com/wolfgarbe/SymSpell


competition on Post-OCR Text Correction shows8.

6 Conclusion
In this work, we tackled the problem of document classi-
fication using both image and text contents. Based only
on an image of a digitized document, we try to perform a
fine-grained classification using visual and textual features.
To do so, we first used Tesseract OCR to extract the text
from the image. We then compute character-based word
embeddings using FastText on the noisy Tesseract output
and generate a document embedding which represents our
text features. Their counterpart visual features are learned
using MobileNetv2, a standard CNN from the state of the
art. Using those pragmatic approaches, we introduce an
end-to-end learnable multimodal deep network that jointly
learns text and image features and perform the final classifi-
cation based on a fused heterogeneous representation of the
document. We validated our approach on the Tobacco3482
and RVL-CDIP datasets showing consistent gains both on
small and large datasets. This shows that there is a significant
interest into hybrid image/text approach even when clean
text is not available for document image classification and
we aim to further investigate this topic in the future.
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