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2D Observer-based Control of a Vascular Microrobot

Lounis Sadelli, Matthieu Fruchard, Antoine Ferreira

Abstract— The paper addresses the 2D observer-based control
of a magnetic microrobot navigating in a cylindrical blood vessel
along a reference trajectory. In particular, this robot faces the
nonlinear drag force induced by the pulsatile blood flow, which
can hardly be measured. Consequently, a mean value theorem
(MVT) based observer to estimate the blood velocity from the sole
measurement of the robot position is proposed. Also, the stability
of the observer-based backstepping controller is proved. The
resulting estimation and tracking are then illustrated through
simulations, as well as robustness to parametric uncertainty,
measurement noise, and dynamical errors when the pulsatile
blood flow is incorrectly modeled.

Index Terms—observer-based controller, MVT observer, back-
stepping controller, parametric uncertainty, modeling errors,
practical stability, medical robotics

I. INTRODUCTION

There has been a growing interest in the development of

therapeutic microrobots and nanorobots for some years [1]

since such systems can perform complex surgical procedures

or diagnosis, reach remote places with lessened medical

side effects, and shorten the patient convalescence. Different

propulsion strategies have been proposed, mainly based on

magnetic deported actuation: elastic flagellum [2], [3], [4],

helical flagellum [5], [6], and bead pulled robots or swarm of

robots [7], [8].

Whatever the propelling design, such systems face nonlinear

forces: electrostatic, contact, and hydrodynamic drag forces

[9], [10]. The latter both prevails at a small scale and is the

most affected by time-varying perturbations (the pulsatile

blood flow). In the synthesis of advanced control laws, the

blood velocity is usually assumed to be known or set to a

constant mean value, whilst sensitivity studies show that the

system is highly sensitive –nonlinearly– to this parameter

[9]. A priori knowledge of the blood velocity, either using

computational solutions of the Navier-Stokes equations or

their analytical approximations is tantalizing. However, the

former is unsuitable for real-time control purposes while

the latter is very sensitive to the knowledge of the vessel

geometry. Another solution is to measure the blood velocity,

e.g. using sensors that exploit the Doppler effect [11]. Yet

this solution may call for an end-effector servoing to track

the robot trajectory. Besides, the sensor spatial and temporal

resolution should be high enough to discriminate the blood

velocity the robot faces depending on time and on its distance
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Fig. 1. Pulsatile blood flow: an issue for controlling a magnetic microrobot
in a blood vessel along a reference trajectory. Spatial (ordinate) and temporal
(abscissa) profiles of the blood flow velocity in a vessel, from the diastolic
backflow (minimum negative blood flow velocity) at t0 to the systole
(maximum blood flow velocity) at t3. The figure depicts the drag force
acting on stationary microrobots. Spatial discrimination: the microrobots (ai)
and (bi) do not face the same drag force ~Fd because they do not have
the same position along the vertical axis (δa < δb), except for time t1
when ~Fd,a1 = ~Fd,b1 = ~0 because the blood velocity is null. Temporal
discrimination: the microrobots (b0), (b1), (b2) and (b3) do not face the

same drag force ~Fd because the blood flow is pulsatile.

to the vessel walls (see Fig. 1). Conversely, using disturbance

rejection approaches is not appropriate since the blood

velocity is relevant for control purposes. Considering the

blood velocity as an uncertain parameter is an outstanding

issue since it is a nonlinearly varying parameter of the drag.

In the end, an observer synthesis is appealing to avoid the

drawbacks of the aforementioned approaches, if only a blood

velocity model is available.

We have previously defined in [12] a dynamic extension

of the system in order to model the periodic blood velocity.

This extended model has been proved to be observable; we

have consequently proposed a receding horizon and a high

gain observer to estimate the blood velocity from the sole



measurement of the robot position, and use it in the control

law [12]. Yet, the former lacks from formal convergence

proof for this nonlinear system, whilst the latter is known for

its output noise sensitivity, especially as the system dimension

increases [13]. We have recently proposed an alternative

MVT observer-based controller in [14], based on the works of

[15], which results in both the stability of the observer-based

controller and an improved robustness to output noise. [16]

has completed the previous work addressing the robustness

to parametric uncertainties.

The present paper generalizes our recent approaches to

the 2D system, where more forces are involved, to address

the issue of estimating the blood velocity the robot faces

depending on its position in the vessel (compare the drag

forces on microrobots a and b on Fig. 1). Robustness to

uncertain parameters and modeling errors is also investigated.

The 2D model of the microrobot is briefly recalled to clarify

the problem statement in Section II. Section III is dedicated

to the design of an either practically or asymptotically stable

MVT observer-based backstepping controller depending on

whether the model exhibits or not modeling errors. Simulations

results, in Section IV, illustrate the robustness to parametric

uncertainty, output noise, disturbance, and modeling errors of

the proposed approach. These results are then discussed in

Section V.

II. MODELING AND PROBLEM STATEMENT

We consider a spherical microrobot of radius r and mass m,

made of ferromagnetic particles and a payload, navigating in

a cylindrical blood vessel. The microrobot is actuated using

the magnetic motive force ~Fm and is subjected to the drag

force ~Fd, the apparent weight ~Fw, the electrostatic force ~Fe
and the contact force ~Fc, depicted on Fig. 2. See e.g. [9] for

more details.

We consider a 2D model of the microrobot whose state

vector is denoted x ∈ R
4 with [x1 x2]

T the robot position

and ~v = [x3 x4]
T the robot velocity in a frame F(0,~ı,~k). The

robot translational motion is given by:

m~̇v = ~Fd + ~Fm + ~Fw + ~Fe + ~Fc. (1)

Indexes x and z denote forces projections on ~ı and ~k axis,

respectively. Quantities normalized with respect to the robot

mass m are followed by a prime symbol, e.g. F ′
d =

Fd

m .

A. Forces

1) Hydrodynamic force: In the blood, the robot faces the

drag force which opposes its motion:

~Fd = − 1
2ρf

(

‖~vr‖2

τo

)

~vr
‖~vr‖SCd (2)

with ρf (η) the fluid density (viscosity), S = πr2 the robot

frontal area, ~vr = ~v − ~vf (x, t) the relative velocity of the

robot with respect to the fluid, and τo is a dimensionless ratio

related to the partial vessel occlusion by the microrobot, see

e.g. [17]. The Reynold’s number Re and the drag coefficient

Cd are given by [18]:

Re =
2rρf‖~vr‖
τoη

Cd =
24
Re +

6
1+

√
Re

+ 0.4

Let ψ = (~ı, ~vr) (see Fig. 2); then using (2), we have:
{

~Fd = m(F ′
d cosψ~ı+ F ′

d sinψ
~k) = m(F ′

d,x~ı+ F ′
d,z
~k)

F ′
d = −(avr + bv2r + c

v2r
1+d

√
vr
)

(3)

with parameters a, b, c, and d given by:

a = 9η
2τoρr2

b =
3ρf

20rτ2
oρ

c =
9ρf

4rτ2
oρ

d =
√

2ρfr
τoη

Wall effects result in a parabolic flow profile. The pulsatile

fluid velocity vf (x, t) is thus modeled as a product of a spatial

parabolic shape vs(x) and a time-varying periodic flow vt(t).
Arterial pulsatile flow is usually modeled using the Womer-

sley model [19] which results in a truncated Fourier series

approximation: any time-varying blood velocity vt(t) = ξ1
expressed as an nth-order truncated Fourier series is solution

of the autonomous system:

(Sξ)



















ξ̇2k−1 = ξ2k, k = 1 . . . n

ξ̇2k = −ω2
(

k2ξ2k−1 − k(k + 1)ξ2k+1

)

...

ξ̇2n+1 = 0

(4)

where the mean value is vm = (n+1)ξ2n+1. State ξ remains

in a compact set Kξ ⊂ R
2n+1. See [12] for details.

2) Magnetic force: Three main propulsion designs for mag-

netic microrobots have been developped: bead pulled, elastic

flagellated, and helical tailed robots, see [1] for a survey. In

2D, their magnetic motive force is given by [9]:

~Fm = β1~u− β2~vr (5)

where β2 is related to the drag exerting on the helical tail,

and is null for elastic flagellated and bead pulled robots. The

control input u ∈ R
2 is the magnetic field gradients ∇B and

the frequency of the oscillating magnetic field B for bead

pulling and flagellated robots, respectively. β1 is proportional

to the robot magnetization, radius, and ferromagnetic ratio,

denoted ~M , r, and τm respectively. βi are positive constants.

(b)
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Fig. 2. Forces acting on a microrobot in a 2D cylindrical blood vessel.
Algebraic distances from the robot surface to the upper and lower walls are
denoted δ1 and δ2 respectively. (a) The relative velocity ~vr of the robot with

respect to the fluid is located by the angle ψ in the frame F(0,~ı,~k). The

forces acting on the microrobot: hydrodynamic force ~Fd, magnetic force ~Fm,

apparent weight ~Fw , electrostatic and contact forces ~Fe and ~Fc, are depicted
on (b)-(c).



3) Apparent weight: The apparent weight of the robot

results from the contribution of the weight and the buoyancy:

~Fw =
m

ρ
(ρ− ρf )~g = −

(

ρ− ρf
ρ

)

mg~k = mF ′
w
~k (6)

where the robot density is ρ = τmρm + (1− τm)ρp with ρm
and ρp the magnetic and payload densities, respectively.

4) Electrostatic Force: The electrostatic force between the

microrobot and the vessel wall considered as an uncharged

surface attracts the robot to the wall:

~Fe = q2

4πεε0

[

H(δ)
(r+δ)2 + H(−δ)

r2

]

~n

with H the Heaviside step function, δ the algebraic distance

from the robot surface to the wall, q the robot charge, ε0
and ε are the vacuum and the relative blood’s permittivities,

respectively. ~n, ~n1, ~n2 denote the vector normal to a wall,

to the upper and lower wall, respectively (see Fig. 2). The

resultant electrostatic interaction with both upper and lower

walls, at algebraic distances δ1 and δ2 respectively, is:

~Fe = me
(

H(δ1)
(r+δ1)2

− H(δ2)
(r+δ2)2

+ H(−δ1)−H(−δ2)
r2

)

~k (7)

with parameter e = 3q2

16π2r3ρεε0
.

5) Contact force: The contact force is defined by:

{

~Fc = −K|δ|3/2H(−δ)~n : loading
~Fc = −Fδm | δδm |3/2H(−δ)~n : unloading

with Fδm and δm the maximum contact force norm and

deformation, respectively, and the stiffness K. We then have:

~Fc = mf
(

|δ2|3/2H(−δ2)− |δ1|3/2H(−δ1)
)

~k (8)

with parameter f = 3K
4πr3ρ .

B. State representation

1) Reduced system: The forthcoming reduced system (Sr)
is derived from (1) using forces expressions (3), (5), (6), (7)

and (8):

(Sr) :
{

ẋ = Arx+Br(β
′
1u+ g(x, ξ)) + bϑϑ

y = Crx
(9)

Ar =

[

02 I2
02 02

]

, Br =

[

02
I2

]

, bϑ =

[

031
1

]

, CTr =

[

I2
02

]

where u = [u1 u2]
T is the control input. The output y =

[x1 x2]
T is the 2D-robot position measured by an imager. The

uncertain parameter is here ϑ = F ′
w . The function g(x, ξ) =

[g1 g2]
T is given by:

{

g1(x, ξ) = F ′
d,x − β′

2(x3 − ξ1vs(x2))

g2(x, ξ) = F ′
d,z + F ′

e + F ′
c − β′

2x4

The reduced system (Sr) models the robot dynamics, and has

to be controlled along a reference trajectory.

2) Extended system: Let x̄ denote an extended state vector:

x̄ = [[x̄1 . . . x̄4] [x̄4+1 . . . x̄4+2n+1]] = [xT ξT ]T ∈ R
2n+5.

The extended system (Se) is inherited from (Sr) − (Sξ), i.e.

(9)-(4):

(Se) :
{

˙̄x = A(0)x̄+B(ḡ(x̄) + β′
1u) +Bϑϑ

y = Cx̄
(10)

with BT =
[

BTr 02×(2n+1)

]

, BTϑ =
[

bTϑ 01×(2n+1)

]

, , and

C =
[

Cr 02×2n+1

]

. Function ḡ =
[

ḡ1 ḡ2
]T

is chosen so

that A(0) contains the linear part of (Se):
{

ḡ1(x̄) = g1(x̄) + (a+ β′
2)(x̄3 − x̄5)

ḡ2(x̄) = g2(x̄) + (a+ β′
2)x̄4

(11)

A(p) =





























02 I2 02 02 . . . 02 021

A1 A2 A3 02 . . . 02
...

02 02 ∆1 Λ1
. . .

...
...

...
...

. . .
. . .

. . . 02
...

...
...

. . . ∆n−1 Λn−1 021
02 02 . . . . . . 02 ∆n A4

012 . . . . . . . . . . . . 012 0





























A1=

[

0 p1
0 p5

]

, A2=

[

p2 p3
p3 p6

]

− āI, A3=

[

p4 + ā 0
p7 0

]

A4=

[

0
n(n+ 1)ω2

]

,∆k=

[

0 1
−k2ω2 0

]

,Λk=

[

0 0
k(k + 1)ω2 0

]

with ā = a+ β′
2 and p ∈ R

7 some parameter whose role will

be explained in the next section.

C. Problem Statement

To implement a stabilizing control law for the reduced

system (Sr) given by (9) along a given reference trajectory,

the state variables x̄1, x̄2, x̄3, x̄4, x̄5 are required to be known,

that is the robot 2D position and velocity as well as the blood

velocity x̄5 = ξ1 = vt(t). Yet, the former is measured by the

imaging device, whereas the latter are not, which justifies

the necessity of an observer1 of the extended system (Se)
given by (10). Hence, once a stabilizing controller has been

synthesized for system (Sr), the output feedback problem has

to be investigated.

Besides, such a biophysical dependent model is likely to

present parametric uncertainties, as illustrated in (9)-(10).

Imaging measurement is also affected by output noise. The

proposed observer-based controller should address robustness

to both of these disturbances.

Finally, the blood velocity is modeled by an nth-order

truncated Fourier series as the solution of (Sξ) given by (4),

yet there is no doubt that the actual periodic blood velocity

includes higher harmonic terms. What happens when the blood

velocity dynamics are incorrectly modeled?

1Since the drag force depends nonlinearly on blood velocity, classical
assumptions of the adaptive control are broken, and parametric approaches
are thus not well-suited for estimating the blood velocity.



III. MAIN RESULTS

We first state on a technical lemma, which mainly estab-

lishes the local controllability of the reduced system (9) and

observability of the extended system (10). We then address

the main results of the paper: the synthesis of an MVT

observer for the extended system (Se) with concerns about

uncertain parameter, and then the observer-based controller

–either asymptotical or practical– semiglobal stability for the

reduced system (Sr), depending on whether the blood velocity

dynamics are correctly modeled or affected by modeling

errors.

Lemma 1. Let xref = [xr(t), ẋr(t), ẍr(t)] denote any con-

tinuous and bounded reference trajectory, and Kx denote any

compact subset of a neighborhood of (xr, ẋr). Let U denote

the compact set of admissible inputs. ∀x̄ ∈ K = Kx × Kξ,
∀u ∈ U , systems (9) and (10) satisfy the following properties:

P1) The reduced system (9) is locally controllable along

xref ;

P2) ḡ = [ḡ1 ḡ2]
T is differentiable with respect to x̄ and

∀j ≤ 2n+ 5, i ≤ 2, ∃(ai,j , bi,j) ∈ R
2 such that:

ai,j ≤
∂ḡi
∂x̄j

(x̄) ≤ bi,j , ai,jbi,j ≤ 0, ∀x̄ ∈ K

P3) The extended system (10) is such that (Ā(p), C̄) is

observable ∀p ∈ P ⊂ R
7\{p4 + ā = 0} with P a

bounded convex set, and matrices defined as:

Ā(p) =

[

A(p) Bϑ
01×(2n+5) 0

]

, C̄ =
[

C 02×1

]

.

The proof is given in the Appendix.

Remark 1. Property P2 implies that ḡ in (10) is differentiable

and locally Lipschitz with respect to the state variable; in turn,

the same goes for the function g in (9) (see (11)): gi is locally

γi-Lipschitz on K, i ∈ {1, 2}. The interest of the reformulation

of the Lipschitz property in P2 is to provide less conservative

conditions in synthesizing the observer gains, as underlined

in [15].

Remark 2. Property P3 is related to the local observability,

on a bounded convex, of the extended system (10) increased

by the parameter dynamical extension.

A. Observer

In our previous works [20]-[12], we have synthesized high

gain observers coupled with adaptive backstepping control

laws. Yet, high Lipschitz constants induced by the interaction

forces and the high gain matrix formed in ascending powers

of the gain for an extended system of higher dimension

raise some issues about the resulting sensitivity to noise of

these previously proposed observers. Lemma 1 relaxes the

conditions for synthesizing the observer (see Remark 1), and

we consequently propose the following observer based on

[15]. Contrary to our previous approaches, the robustness to

parametric uncertainty is not addressed using adaptive control

but using state estimation.

Proposition 1 [Observer of the extended system (Se)]. Un-

der assumptions of Lemma 1, ∀x̄(0) ∈ K0 : x̄(t) ∈ K ⊃ K0,

∀ŷ(0) ∈ K, ∀θ̂(0) ∈ Kϑ, ∀u ∈ U ,















˙̂y=A(0)ŷ +B(ḡ(ˆ̄x) + β′
1u) +Bϑθ̂ +Ko(y − Cŷ)

˙̂
θ=Kθ(y − Cŷ)

ˆ̄x=satK(ŷ), ϑ̂ = satKϑ
(θ̂)

(12a)

(12b)

(12c)

with satK a saturation function on the compact K, is an

exponential asymptotic observer of (Se) on K×Kϑ if ∃Po, Qo
symmetric positive definite and a gain K̄ =

[

KT
o KT

θ

]T
that

satisfy the Linear Matrix Inequalities (LMIs):

(Āi − K̄C̄)TPo + Po(Āi − K̄C̄) < −Qo, ∀i ≤ 128 (13)

with Āi = Ā(Vi) and Vi the vertices of the convex P .

Proof:

Let {eq(1), . . . eq(q)} denote the canonical basis of Rq , and

ǫ1 = x̄− ŷ denote the estimation error. Let Co(x̄, ˆ̄x) = {λx̄+
(1 − λ)ˆ̄x, 0 ≤ λ ≤ 1} and C̄o(x̄, ˆ̄x) denote a convex and its

convex hull. Applying the mean value theorem to ḡi, ∃̺i(t) ∈
C̄o(x̄, ˆ̄x):

ḡi(x̄)− ḡi(ˆ̄x)=





2n+5
∑

j=1

eT2n+5(j)
∂ḡi
∂x̄j

(̺i(t))



(x̄− ˆ̄x) (14)

As (x̄, ˆ̄x) ∈ K2, ∃ Γ(t) = diag(Γj(t)) with Γj(t) ∈ (0, 1]:

˜̄x = x̄− ˆ̄x = Γ(t)ǫ1 (15)

Since ḡ(x̄) =
∑2
i=1 e2(i)ḡi(x̄), using (10), (12a)-(12b), (14)

and (15), the estimation error satisfies the LPV system:
{

ǫ̇1 = (A(p̄(t))−KoC)ǫ1 +Bϑǫ2
ǫ̇2 = −KθCǫ1

(16)

where ǫ2 = ϑ − θ̂ denotes the parameter estimation error,

p̄i,j(t) = Γj(t)
∂ḡi
∂x̄j

(̺i(t)), and the matrix A is:

A(p̄(t)) = A(0) +B
∑2

i=1

∑2n+5

j=1
e2(i)e

T
2n+5(j)p̄i,j(t)

System (16) can be rewritten as:






ǫ̇ = (Ā(p̄(t))− K̄C̄)ǫ, ǫ = (ǫT1 ǫ2)
T

Ā(p̄(t)) =

[

A(p̄(t)) Bϑ
01×(2n+5) 0

]

(17)

Property P2 of Lemma 1 associated with the definition of the

Γj(t) implies that p̄(t) evolves in a bounded convex set whose

vertices are V = {(v1,1, · · · , v2,2n+5) : vi,j ∈ {ai,j , bi,j}}.

Because of the symmetries detailed in the Appendix, this set

can be reduced to a convex P ⊂ R
7 whose 27 vertices Vi are:

VP = { V = (v1,2, v1,3, v1,4, v1,5, v2,2, v2,4, v2,5) :
vi,j ∈ {ai,j , bi,j}}

For all Po symmetric positive definite, a candidate Lyapunov

function (CLF) is given by:

Vo(ǫ) = ǫTPoǫ ≤ λ̄‖ǫ‖2 (18)



with λ̄ the highest eigenvalue of Po. Differentiating (18) using

(17) leads to: V̇o(ǫ) = ǫTQ(p(t))ǫ with the time-varying

matrix Q(p(t)) affine in p(t) defined by:

Q(p(t)) = (Ā(p(t))− K̄C̄)TPo + Po(Ā(p(t))− K̄C̄)

where ∃ιi ∈ [0, 1] : Ā(p(t)) =
∑

ιiĀi and
∑

ιi = 1. From

Property P3 of Lemma 1, (Ā(p), C̄) is observable for p ∈ P ⊂
R

7\{p4+ ā = 0}: it is a necessary yet not sufficient condition

for having the existence of K̄, Po and Qo that satisfy (13).

If they exist, we have Q(V ) < −Qo ∀V ∈ VP . Using the

principle of convexity, we then have Q(p(t)) < −Qo, ∀p ∈ P .

Hence, we have V̇o(ǫ) < −ǫTQoǫ. Let λ denote the smallest

eigenvalue of Qo, we then get:

V̇o(ǫ) < −λ‖ǫ‖2 ≤ −(λ/λ̄)Vo(ǫ) = −koVo(ǫ) (19)

It follows that (12) is an exponential observer for system (10).

Remark 3. Property P3, i.e. observability, is only an iff

condition for having the existence of matrices Po,i and Qo,i
satisfying the i-th LMI of (13). Consequently, it is only a

necessary yet not sufficient condition for having the existence

of unique matrices Po and Qo satisfying all the LMIs.

B. Global stabilizing state feedback

Had all the (Se) states been accessible, we would have

synthesized a global asymptotic stabilizing state feedback. We

propose a backstepping synthesis [21].

Proposition 2 [State feedback for the reduced system (Sr)].
Under assumptions of Lemma 1, the backstepping control law

ui = κi(x̄, ϑ), i = 1, 2:

κi(x̄, ϑ)=− (ki+2+ki)zi+2+(1−k2i )zi+gi(x̄)+(i−1)ϑ−ẍi,r

β′

1

(20)

with the controller gains ki, ki+2 > 0 and zi = xi − xi,r,
zi+2 = xi+2 + kizi − ẋi,r, ensures that the error z ex-

ponentially decays to zero for any C0 reference trajectory

xref = [xr(t), ẋr(t), ẍr(t)] and from any bounded initial state

x̄(0).

Proof: Let zi = xi − xi,r, zi+2 = xi+2 − ẋi,r − αi for

some stabilizing function αi. A first CLF is:

V1,i =
1
2z

2
i =⇒ V̇1,i = zi(xi+2 − ẋi,r) = zi(zi+2 + αi)

Setting αi = −kizi leads to V̇1,i = −kiz2i + zizi+2. Since

żi = xi+2 − ẋi,r = zi+2 + αi = zi+2 − kizi, we obtain:

żi+2=gi(x̄)+(i− 1)ϑ+β′
1ui+ki(zi+2−kizi)−ẍi,r (21)

Then, the second CLF is:

V2,i = V1,i +
1
2z

2
i+2 (22)

Differentiating (22) using (21), we obtain:

V̇2,i = −kiz2i + zi+2[gi(x̄) + (i− 1)ϑ+ β′
1ui

+kizi+2 + (1− k2i )zi − ẍi,r]
(23)

Using ui = κi(x̄, ϑ) given by (20) leads to:

V̇2,i = −kiz2i − ki+2z
2
i+2 ≤ −kc,iV2,i (24)

with kc,i = 2min(ki, ki+2). Let:

Vc = V2,1 + V2,2 (25)

Using (24), we get:

V̇c ≤ −2 min
i=1..4

(ki)Vc = −kcVc

Hence the asymptotic exponential stability of z = 0 and thus

of the reduced system state x along the reference trajectory.

C. Semiglobal stabilizing output feedback

Since some (Se) states are not accessible, the state feedback

proposed in Proposition 2 is not usable as it is. Thence we

address the output feedback semiglobal stability whether or

not the blood velocity model (Sξ) is affected by modeling

errors, see e.g. [21], [22].

Proposition 3 [Asymptotically stabilizing output feedback].

Under assumptions of Proposition 1, the observer-based con-

trol law ûi = κi(ˆ̄x, ϑ̂), i = 1, 2:

κi(ˆ̄x, ϑ̂) = − (ki+2+ki)ẑi+2+(1−k2i )ẑi+gi(ˆ̄x)+(i−1)ϑ̂−ẍi,r

β′

1

(26)

ensures the semiglobal exponential asymptotic stability of sys-

tem (9) along any C0 reference trajectory for any initial state

(x̄(0), ŷ(0)) ∈ K0 × K, θ̂(0) ∈ Kϑ with the controller gains

ki, ki+2 > 0, and ẑi = x̂i − xi,r, ẑi+2 = x̂i+2 + kiẑi − ẋi,r.

Proof: Replacing ui with ûi in (23) and denoting g̃i =
gi(x̄)− gi(ˆ̄x), ϑ̃ = ϑ− ϑ̂, we obtain:

V̇2,i =−kiz2i − ki+2z
2
i+2 + zi+2hi+2(z, ǫ)

hi+2 = g̃i+(i−1)ϑ̃+(ki + ki+2)z̃i+2+(1−k2i )z̃i
(27)

First, let us show that ∀x(0) ∈ Kx0 = {x : Vc(z) ≤ µc0},

x(t) ∈ Kx = {x : Vc(z) ≤ µc0 + µc}. Since ξ ∈ Kξ by

construction (see (4)), it follows that x̄(t) ∈ K = Kx × Kξ.
Let also denote Vo(ǫ(0)) ≤ µo0, Kǫ = {ǫ : Vo(ǫ) ≤ µo0+µo},

χ = [zT ǫT ]T and define the CLF W1 based on (18) and (25):

W1(χ) =
ζcVc(z)

µc0 + µc − Vc(z)
+

ζoVo(ǫ)

µo0 + µo − Vo(ǫ)
(28)

Assume that W1 ≤ w̄ = ζcµc0/µc + ζoµo0/µo + 1. Then

W1(z(0), ǫ(0)) < w̄ and we obtain the induced bounds:

W1(χ) ≤ w̄ ⇒ Vc(z) < µc0 + µc, Vo(ǫ) < µo0 + µo

Differentiating (28) leads to:

Ẇ1 =
ζc(µc0 + µc)

(µc0 + µc − Vc)2
V̇c +

ζo(µo0 + µo)

(µo0 + µo − Vo)2
V̇o (29)

with the following bounds on the V̇∗ factors, where ∗ stands
for indexes c or o:

ζ∗

(µ∗0 + µ∗)
≤

ζ∗(µ∗0 + µ∗)

(µ∗0 + µ∗ − V∗)2
≤

(ζ∗ + w̄)2

ζ∗(µ∗0 + µ∗)

Let h = [0 0 h3 h4]
T , using (19), (24) and (27), (29) becomes:

Ẇ1 ≤ Ψ(χ)− Φco(χ)

Φco(χ) = ζc
2(µc0+µc)

kcVc(z) +
ζo

2(µo0+µo)
koVo(ǫ)

Ψ(χ) = −Φco+‖ ζc(µc0+µc)
(µc0+µc−Vc)2

zT (h(z, ǫ)−h(z, 0))‖



Then ∀w ∈ [0, w̄), we have Kχ = {χ : w ≤ W1(χ) ≤ w̄} ⊂
Kx × Kǫ. Since Vc and Vo are positive definite, Ψ ∈ C0 and

its second term is null along ǫ = 0 and z = 0, by continuity

we have χ ∈ Kχ ⇒ Ψ < 0 for ko, kc high enough. Hence we

have:

Ẇ1 ≤ −Φco(χ), ∀χ ∈ Kχ

Yet, since Φco is positive definite on Kχ, the compact set {χ :
W1 ≤ w̄} is a basin of attraction so x̄(0) ∈ K0 ⇒ x̄(t) ∈ K
and extended state χ is captured by Kcχ = {χ :W1(χ) ≤ w}.

Now that we guarantee that x̄ ∈ K, we can specify the practical

stability in Kcχ; since ∀x̄ ∈ K, x̄ = satK(x̄), ˆ̄x = satK(ŷ) and

g̃i is a C1 function, using (14) and (15) leads to:

‖hi+2(z, ǫ)‖ = ςi(‖ǫ‖), ∀x ∈ Kx, ∀ǫ ∈ R
2n+6, i ∈ {1, 2}

with ςi continuous, bounded, and such that ςi(0) = 0.
Moreover ∃νi : x ∈ Kx ⇒ ‖zi+2‖ ≤ νi, so we have from
(24) and (27):

V̇2,i ≤ −kc,iV2,i(z) + νiςi(‖ǫ‖) (30)

Consider the CLF W2(z, ǫ) with ζ > 0 and Vc given by (25):

W2(z, ǫ) = ζVc(z) + Vo(ǫ) (31)

Using (30) and (19), the time derivative of W2(z, ǫ) satisfies:

Ẇ2(z, ǫ) ≤ −ζkcVc(z)− [−ζς(‖ǫ‖) + λ‖ǫ‖2] (32)

with ς(‖ǫ‖) = ν1ς1(‖ǫ‖) + ν2ς2(‖ǫ‖). Due to the properties

of ς , there exists ǫ0 such that the bracketed term in (32)

is positive definite ∀ǫ ≥ ǫ0. Besides, this ǫ0 can be made

arbitrary small through the choice of an arbitrary small ratio
ζ
λ . Hence we have the semiglobal practical stability of the

output feedback.

Lastly, we have to prove the local asymptotic stability. For

ǫ small enough to have ˆ̄x = ŷ ∈ K and ϑ̂ = θ̂, using Property
P2 and the Lipschitz constants γi in Remark 1 lead to:

V̇2,i ≤ −ki‖zi‖
2 − ki+2‖zi+2‖

2

+γi‖zi+2‖‖˜̄x‖+ (ki + ki+2)‖zi+2‖‖z̃i+2‖

+(1− k2
i )‖zi+2‖‖z̃i‖+ (i− 1)‖zi+2‖‖ϑ̃‖

(33)

Yet we have the following bound:

zi+2=xi+2 + kizi − ẋi,r =⇒ z̃i+2 = x̃i+2 + kiz̃i

=⇒ ‖z̃i+2‖ ≤ ‖x̃i+2‖+ ki‖z̃i‖
(34)

So using (34) in (33), bounds (15) and ‖ϑ̃‖ ≤ ‖ǫ2‖ yields:

V̇2,i ≤ −ki‖zi‖
2 − ki+2‖zi+2‖

2

+γi‖zi+2‖‖˜̄x‖+ (ki + ki+2)‖zi+2‖‖x̃i+2‖

+(1 + kiki+2)‖zi+2‖‖z̃i‖+ (i− 1)‖zi+2‖‖ϑ̃‖

≤ −ηi,1‖z‖
2 + ηi,2‖z‖‖ǫ‖

(35)

with ηi,1 = min(ki, ki+2) and ηi,2 = (i + γi + ki + ki+2 +
kiki+2). Consider the CLF W2 given by (31), using (35) and

(19), its time derivative satisfies:

Ẇ2(z, ǫ) ≤ −ζη1‖z‖2 + ζη2‖z‖‖ǫ‖ − λ‖ǫ‖2

Choosing ζ = η1λ/η
2
2 with η1 = η1,1+η2,1 ≤ η2 = η1,2+η2,2

thus results in Ẇ2(z, ǫ) ≤ −ζη1‖z‖2/2− λ‖ǫ‖2/2. Set µ1 =

max(ζ/2, λ̄) and µ2 = min(ζη1, λ)/2 =
λη21
2η2

2

, we get:

W2(z, ǫ) ≤ µ1(‖z‖2 + ‖ǫ‖2)
Ẇ2(z, ǫ) ≤ −µ2(‖z‖2 + ‖ǫ‖2)

We consequently have Ẇ2(z, ǫ) ≤ −µ2

µ1
W2(z, ǫ). Therefore z

and ǫ exponentially converge to zero, and the same goes for
˜̄x and ϑ̃ while x converges to (xr ẋr)

T ; hence (26) ensures

the semiglobal asymptotic stability of system (9) along xref .

Remark 4. It is likely that the actual blood velocity ξ∗1 will

satisfy (4) with n∗ harmonics, whereas the observer is modeled

using (4) with n < n∗, either to avoid technical issues implied

by a high dimensional dynamic extension (Sξ), or simply

because the unmodeled harmonics amplitudes are some order

of magnitude under the first n harmonics amplitudes.

When unmodeled dynamics are considered, the (Sξ) odd

lines are affected by an unknown bounded harmonic distur-

bance proportional to dnn∗(t) = ξ̇∗1,n with high frequency

terms only since ξ∗1,n denote the actual blood velocity without

the first n harmonics and mean value. Note that if D is an

upper bound for ξ∗1,n, then ‖dnn∗(t)‖ ≤ dM = ω n
∗+n+1

2 D.

The extended system consequently rewrites as:

(Senn∗) :

{

˙̄x=A(0)x̄+B(ḡ(x̄) + β′
1u)+Bϑϑ+Bddnn∗(t)

y=Cx̄
(36)

where Bd nonzero entries are only Bd,2k+5 = 1
(k+1) .

In such a case, asymptotical stability results obtained in

previous propositions are relaxed into practical stability.

Proposition 4 [Practically stabilizing output feedback].

Let dM denote an upper bound for dn,n∗(t) in (36). Under

assumptions of Proposition 1, (12) is an exponential practi-

cal observer of system (Senn∗) given by (36). Besides, the

observer-based control law ûi = κi(ˆ̄x, ϑ̂), i = 1, 2, given

by (26) semiglobally practically stabilizes the system (9) in a

ball of radius Rd =
√

2
3
η22
η2
1

πω(n∗+n+1)D
k0

centered along any

C0 reference trajectory xref = [xr(t), ẋr(t), ẍr(t)].

Proof: Similarly to the proof of Proposition 1, the ex-

tended state estimation dynamics satisfy the LPV system:

ǫ̇ = (Ā(p̄(t))− K̄C̄)ǫ+ B̄ddnn∗(t)

with B̄d = [BTd 0]T . Hence the CLF Vo(ǫ) given by (18) is

such that:

V̇o(ǫ) < −λ‖ǫ‖(‖ǫ‖ − rd) (37)

with rd = 2dM
k0

= π√
6

ω(n∗+n+1)D
k0

since ‖Bd‖ ≤
√

π2

6 . It

follows from (37) that ǫ exponentially converges into the ball

B(0, rd). Therefore, (12) is an exponential practical observer

for the extended system (36).

Let W1 given by (28) denote a CLF for the observer-based

controlled system (9) with the control law (26). Whatever

ǫ, we obtain boundedness as in the previous proof with an



additional ǫ-dependent term in Ψ, and then using ς̄(‖ǫ‖) =
−ζς(‖ǫ‖) − λrd‖ǫ‖ instead of ς(‖ǫ‖). Now, let W2 given by

(31), using (37) and (35) together with the appropriate choice

of the constants ζ and µ2 , we obtain:

Ẇ2(z, ǫ) ≤ −ζη1‖z‖2/2− λ‖ǫ‖(‖ǫ‖2 − rd)
≤ −µ2(‖z‖2 + ‖ǫ‖2) + λrd‖ǫ‖

(38)

Using χ = [zT ǫT ]T and µ2 =
λη21
2η2

2

, (38) gives:

Ẇ2(z, ǫ) ≤ −µ2‖χ‖2 + λrd‖χ‖
≤ −µ2‖χ‖

(

‖χ‖ − 2rd(
η2
η1
)2
)

Hence χ exponentially converges into the ball B(0, Rd) with

Rd =
√

2
3
η22
η2
1

πω(n∗+n+1)D
k0

. Accordingly, ˜̄x and ϑ̃ exponen-

tially converge into B(0, Rd), and x into B
(

(xr ẋr)
T , Rd

)

.

TABLE I
NOMINAL PARAMETERS VALUES

Blood viscosity η 16× 10−3 [Pa.s]
Blood density ρf 1060 [kg.m−3]

Ferromagnetic density ρm 7500 [kg.m−3]
Robot radius r 2.5 10−4 [m]

Vessel diameter D 3 10−3 [m]
Payload density ρp 1500 [kg.m−3]

Ferromagnetic ratio τm 0.75
Magnetization M 1.23× 106 [A.m−1]
Occlusion ratio τo 0.65

Stiffness K 2.19× 103 [Pa.m
1
2 ]

Charge q 7.13× 10−11 [C]
Blood permittivity ε 70 [C2.N−1.m−2]
Controller gains (k1, k2, k3, k4) (7, 40, 14, 20)

Actuator saturation usat 0.2 [T.m−1]

TABLE II
INITIAL CONDITIONS FOR THE SYSTEM AND THE OBSERVER IN

SIMULATION 1 (S1), SIMULATION 2 (S2) AND SIMULATION 3 (S3).

S1, S2
x̄0 (0 5.10−4 0 0 0.05 0.17 0.04 − 0.15 0.0167)

ˆ̄x0 (0 5.10−4 0 0 0 10−3 10−3 10−3 10−2)

S2
ϑ0 −8.159

ϑ̂0 −7

S3
x̄0 (0 5.10−4 0 0 0.05 − 0.06 0.07 0.9 0 − 1.5 0 0.6 10−2)

ˆ̄x0 (0 5.10−4 0 0 0 10−3 10−3 10−3 10−2)

TABLE III
OUTPUT AND ESTIMATION ERRORS STANDARD DEVIATIONS

σ
Simulation

S1 S2 S3

y1(µm) 100 100 100
y2(µm) 100 50 100
˜̄x1(µm) 44 45.44 46.26
˜̄x2(µm) 58.50 22.49 58.48

˜̄x3(mm.s−1) 1.79 6.11 4.82
˜̄x4(mm.s−1) 3.96 1.36 3.37
˜̄x5(mm.s−1) 1.67 3.10 9
3˜̄x9(mm.s−1) 0.62 3.79 3.37

ϑ̃(m.s−2) - 0.063 -

IV. SIMULATION RESULTS

Without loss of generality, we consider here that the robot

is bead pulled, so that we have β′
1 = τmM

ρ and β′
2 = 0.

Nominal parameters values and initial conditions for every

simulation are given in Tables I and II, respectively.

In each simulation, a disturbance modeled by an additive

acceleration Pa = 7g on the ~k-axis affects the system in the

range t ∈ [7, 7.001]s. For t ≥ 8s, the output measurements are

affected by an additive Gaussian white noise with standard

deviations given in Table III so as to model the medical

imagers resolution. Simulations are performed by taking into

account the actuators limitations. In order to not exceed the

magnetic device capacity, the control inputs are time-scaled as

ui,a(t) = ui(t)/k(t) with k(t) = max
i=1,2

(

1, |ui(t)|/usat
)

. The

reference trajectory is defined by:






x1,r(t) = 0.04t

x2,r(t) =

{

D/4 If t ≤ 5
D/3 If t > 5

Remark 5. This trajectory xref = [xr(t), ẋr(t), ẍr(t)] does

not belong to class C0. The interest of a reference trajectory

which is close to the upper vessel wall is twofold: first, it

minimizes the control efforts (excluding the noise, the control

input u2 tends to zero on Fig. 3(d) to 3(f) for t ≥ 5);

second, output noise is high enough to induce microrobot

collisions with the wall to illustrate robustness to strong

induced accelerations.

In every single simulation, the blood velocity is modeled by

the system (Sξ) given by (4) with n = 2. The first simulation

is free of any parametric uncertainty or modeling error and

illustrates the robustness to output noise and disturbances.

The second one is affected by an additionnal parametric

uncertainty, while the last simulation illustrates the effects of

modeling errors on the output feedback stability.

A. Simulation 1: robustness to noise output and disturbances

The MVT observer gain Ko given by Proposition 1 is

in Table IV. The simulation shown in the first column of

Figures 3 and 4 illustrates the results obtained by the MVT-

observer when the blood velocity is correctly modeled by a

2nd order truncated Fourier series when there is no parametric

uncertainty.

Despite a reference trajectory which is not C0, the observer-

based controller is stable since the real and estimated trajec-

tories converge to the reference one after a 2s long transient

phase as depicted on Figure 3(a). Despite the 100µm standard

deviation output noise on the measured position (x1, x2) and

the acceleration disturbance, the real and estimated trajectories

are not too much affected and the tracking is efficient. The

Figures 4(a) and 4(d) illustrate the reduced system state

estimation and tracking errors along the ~i and ~k axes, which

converge within 1s and 2s, respectively. For time greater

than 8s, the positions (resp. velocities) estimation errors are

respectively less than 165µm and 220µm (resp. 7mm.s−1 and

12.5mm.s−1) along the~ı and ~k axes; their standard deviations



TABLE IV
OBSERVER GAIN Ko IN SIMULATION 1 (S1), SIMULATION 2 (S2) AND SIMULATION 3 (S3); GAIN Kθ IN S2.

S1, S3 KT
o

[

3.57e+ 2 0 2.12e+ 4 0 1.31e+ 4 1.11e+ 5 2.74e+ 3 −9.63e+ 4 1.68e+ 3
0 6.32e+ 2 0 1.02e+ 4 0 0 0 0 0

]

S2 KT
o ,K

T
θ

[

2.81e+ 2 0 7.02e+ 4 0 2.50e+ 4 3.39e+ 5 2.75e+ 4 −1.08e+ 5 1.02e+ 4
0 3.21e+ 2 0 1.41e+ 4 0 0 0 0 0

]

,

[

0
4.49e+ 5

]

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
-1.75
-1.5

-1.25
-1

-0.75
-0.5

-0.25
0

0.25
0.5

0.75
1

1.25
1.5

1.75

Position in x (mm)

P
os

it
io

n
in

z
(m

m
)

 

 

0.25

1.35

Estimated
Real
Reference

(a) Trajectories

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
-1.75
-1.5

-1.25
-1

-0.75
-0.5

-0.25
0

0.25
0.5

0.75
1

1.25
1.5

1.75

Position in x (mm)

P
os

it
io

n
in

z
(m

m
)

 

 

0.25

1.35

Estimated
Real
Reference

(b) Trajectories
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(c) Trajectories
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(d) Control input: ∇B.
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(e) Control input: ∇B.
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(f) Control input: ∇B.

Fig. 3. Trajectories and control inputs. From left to right: Simulation 1, 2 and 3. From top to bottom: (a)-(c) 2D-trajectory of the microrobot center of
gravity, and (d)-(f) the magnetic control inputs (u1, u2). On subfigures (a) to (c), arterial walls are depicted by thick solid black lines, the red dotted lines
depict the limit beyond which the microrobot collides with the walls. The real, estimated and reference trajectories are plotted in thick solid red, thin solid
cyan, and blue dash-dotted curves, respectively.

are given in the Table III and show a noticeable improvement

with respect to the output noise standard deviation.

The Figure 4(g) illustrates the real and estimated blood

velocity x̄5 and its mean value 3x̄9 and their estimation errors.

The estimated blood velocity and its mean value converge to

the real ones after 1s. When affected by noise, the estimation

errors of the blood velocity and its mean value are respectively

less than 6mm.s−1 and 2.5mm.s−1, see Table III for the

associated standard deviations. In particular, the SNR2 on the

blood velocity (resp. its mean value) is around 30 (resp. 80).

The acceleration disturbance at t ∈ [7; 7.001]s causes the

microrobot to collide the upper wall. Even if the observer does

not converge fast enough to estimate correctly this collision,

the robot promptly gets back to the reference trajectory. At

time t = 12.85s, the observer estimates that a collision

occurs with the upper wall, yet there is none. This dummy

collision induces an overestimation of the contact force, and

the controller consequently increases the control input u2
to counterbalance this force. The control input thus reaches

the saturation (see Figure 3(d)), which results in a degraded

tracking: the microrobot goes away from the reference trajec-

2The SNR is here computed as the inverse of the coefficient of variation,
i.e. SNR = µ

σ
where µ and σ denote the signal mean and its standard

deviation, respectively.

tory before getting back when the saturation stops. In these

two cases, actual or dummy collisions induce peaks in the

estimation and tracking errors of the microrobot position and

velocity along the ~k-axis (see Figures 4(a)-4(d)).

The control inputs u1 and u2 are affected by the noise

measurement, yet the latter far more than the former as can

be noticed in Figure 3(d). The reason for such a difference is

that small deviations on the ~k-axis position induced by the

output noise result in high variations on the estimation of

the electrostatic force the robot is very sensitive to, especially

when the robot navigates close to the wall (for t > 5s).

B. Simulation 2: Robustness to uncertain parameter

The MVT observer gains Ko, Kθ given by Proposition 1 are

in Table IV. This simulation illustrates the results obtained by

the MVT-observer when affected by a parametric uncertainty

on the apparent weight. Simulation results are depicted on the

2nd column of the Figures 3, 4 and on Figure 5.

The estimated and real trajectories converge to the reference

within 2s as shown in Figure 3(b). The position (resp. velocity)

estimation and tracking errors along the~i and ~k axes, depicted

on Figure 4(b) (resp.4(e)), are less than 165µm and 80µm
(resp. less than 22mm.s−1 and 8mm.s−1); the associated

standard deviations are given in Table III.
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(e) Velocities Estimation and tracking errors
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(f) Velocities Estimation and tracking errors
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(g) Blood velocity and its mean value
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(h) Blood velocity and its mean value
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(i) Blood velocity and its mean value

Fig. 4. Errors along~i-axis (thick solid red line) and errors along ~k-axis (thin solid cyan line). From left to right: Simulation 1, 2, and 3. From top to bottom:

(a)-(c) robot position estimation and tracking errors along the ~ı and ~k axes, (d)-(f) robot velocity estimation and tracking errors along the ~ı and ~k axes, (g)-(i)
blood velocity and associated estimation error, mean value of the blood velocity and associated estimation error.

The pulsatile blood velocity and its mean value are de-

picted on Figure 4(h). The estimation errors converge to

zero after the transient phase; when affected by output noise,

these errors (resp. their SNR) are less than 12mm.s−1 and

14mm.s−1 (resp. 16 and 13) –which is degraded compared to

the uncertainty-free previous simulation– yet still efficient.

The observer based-controller quickly rejects the acceler-

ation disturbance for t ∈ [7, 7.001]s: the resulting collision

with the upper wall is so quick that it is not estimated by the

observer. After this collision, the microrobot separates from
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Fig. 5. Simulation 2: (a) Uncertain parameter ϑ, its estimated value, and (b)
the associated estimation error.

the wall and gets back to the reference trajectory.

Figure 5 shows the estimation error ǫ2 = ϑ− θ̂ of the uncer-

tain parameter ϑ. The initial estimation θ̂(0) is underestimated

by one-twelfth with respect to the nominal value, yet converges

within 2s. This estimation is affected by the disturbance at

time t = 7s, and is very sensitive to the output noise,

especially on the ~k-axis, because of the high gain Kθ2 (see

Table IV) in the update law (12b). The parametric estimation

error is less than 0.3m.s−2 with a standard deviation given in

the Table III and an associated SNR higher than 130.

Both of the control inputs are affected by noise measure-

ment (see Figure 3(e)), and particularly u1 because the related

gain is higher than in the first simulation. For the second

control input, the reason is twofold: the parametric update law

(12b) is quite sensitive to noise on the ~k-axis, and the reference

trajectory is close to the wall for t > 5s, so that small errors

on x2 induce big errors on interaction forces estimation. For

instance, an underestimation of x2 induces an underestimation

of the electrostatic force: to counterbalance it, the controller

underestimates the control input u2, so that the microrobot is

even more attracted by the upper wall.

This simulation shows that, despite measurement noise

and parametric uncertainty, the MVT-observer provides good

estimates and the controller ensures the stability along the

reference trajectory.

C. Simulation 3: Robustness to unmodeled dynamics

The third simulation is carried out under the same conditions

than the first one, except that the actual blood velocity satisfies

(4) with n∗ = 4, while the observer is still synthesized

using (4) with n = 2. Consequently, the state vectors x
and x̂ are of dimension 2n∗ + 5 = 13 and 2n + 5 = 9,

respectively (see Table II). The MVT observer gain is the

same as in Simulation 1 (see Ko in Table IV). The blood

flow velocity is thus incorrectly modeled since the two highest

harmonics of the actual signal are not considered in the model:

d24(t) 6= 0. According to the Remark 4 and Proposition 4, we

consequently expect a practical stabilization.

The tracking performances are quite similar to the first

simulation ones (compare the first and third columns of

Figures 3 and 4), aside from the robot position and velocity

along the ~ı-axis which are only practically stabilized because

of the modeling errors (see Figures 4(c) and 4(f)). The position

(resp. velocity) estimation errors along ~ı-axis and ~k-axis are

less than 170 − 225µm (resp. 12.5 − 14mm.s−1). The SNR

are similar than for Simulation 1 (see Table III).

The blood velocity and its mean value, illustrated by the

Figure 4(i), converge in less than 1s in a neighborhood of

the origin. The associated estimation errors are less than

19mm.s−1 and 7mm.s−1, with SNR reduced by a factor 6,

yet remaining above 5 and 10 respectively.

The control input u1 is not too much affected by noise (see

Figure 3(f)) because the robot position and velocity along the

~ı-axis are much more affected by unmodeled dynamics effects

than by noise.

V. DISCUSSION

All simulations exhibit almost identical trajectory trackings

(see Figures 3(a), 3(b) and 3(c)), even if only practical stability

is guaranteed for Simulation 3. When disturbances occur,

the microrobot collides with the upper wall in every single

simulation, yet it is correctly estimated by the observer only

in Simulation 1. Despite the modeling errors in Simulation

3, the tracking is not too much affected as epitomizes Figure

3(c). Even if most of the state estimates are only practically

stabilized (i.e. stabilized in a small ball centered at the origin),

since the robot position and velocity along the ~k-axis are

not dependent on the incorrectly modeled blood velocity,

the associated estimation errors converge asymptotically as

depicted by Figures 4(c) and 4(f).

Let us discuss the choice of the gain matrices Ko and

Kθ. These gains must satisfy the LMIs (13) while trying

to have quite low gains –especially on the second column

to avoid to inflate noise along the electrostatic force axis–

while keeping reasonable transient phases. In Simulation 2,

the same concerns arise additionally for the parametric gain

Kθ; yet decoupling Ko from Kθ is hardly possible. That is

why finding the right balance between these antagonist goals

induces a transient phase which is twice longer for Simulation

2, despite a parametric update law highly sensitive to noise

because of the high gain Kθ2.

Every single simulation is affected by both output noise

and an important disturbance, and illustrates the robustness

of the proposed approach with respect to noise and one-shot

disturbance. Simulation 2 illustrates the robustness to uncer-

tain parameter, whilst Simulation 3 exemplifies robustness to

unmodeled dynamics.

VI. CONCLUSION

A microrobot immersed in a blood vessel is subjected to

various nonlinear forces and above all to the hydrodynamic

drag force. Besides the latter nonlinearly depends on the pul-

satile blood velocity, which is hardly accessible with accurate

enough temporal and spatial resolutions. The navigation of a

microrobot in a blood vessel, under the reasonable assumption

that its sole position is measured by a medical imager, has

been addressed as a trajectory tracking issue for the so-called

reduced system, where the control law requires to access some



unknown states such as the robot velocities and a nonlinearly

varying parameter: the pulsatile blood flow velocity.

We have modeled the dynamics of the blood velocity as

an nth-order truncated Fourier series with an a priori known

pulsation. We have then synthesized an MVT observer for

the resulting extended system, thus estimating in particular

the required microrobot and blood velocities. The observer-

based backstepping control law has been proved to semiglob-

ally stabilize the reduced system along any smooth enough

reference trajectory. Since the system depends on biophysical

parameters, parametric uncertainties are likely to occur so

the proposed observer has been synthesized in order to also

estimate a probable unknown parameter. Unless using a high

dimensional extended system, the blood velocity model is no

doubt truncated with respect to the actual one: we have conse-

quently investigated the effects of such unmodeled dynamics

and have obtained a degraded practical stabilization result. The

simulation results have illustrated the stability of the proposed

observer-based controller and its robustness to output noise,

disturbances, parametric uncertainty and modeling errors. The

proposed approach can be useful for two purposes: first to

perform a surgical task, e.g. the plaques abrasion in clogged

arteries, and then for post-operative diagnosis, e.g. to check

if the blood velocity is back to normal after the atheroma

removal.

Ongoing works include the truncation of the actual blood

velocity as well as the additional estimation of the blood pul-

sation, since it may change over time due to the patient stress.

In the latter case, the proposed approach is not well-suited

since the resulting model of blood velocity is nonlinear and the

associated extended system is no more uniformly observable.

Preliminary results [23] using the immersion proposed in [24]

are promising, even if its Jacobian invertibility is still to be

guaranteed.

APPENDIX

PROOF OF LEMMA 1

• Property (P1) has been demonstrated in [20]: the local

controllability of system (9) is inherited from the

controllability of its linearized time-variant system along

the reference trajectory xref (t) [25], [26].

• Property (P2): In a cylindrical blood vessel, ψ is given

by ψ = arctan
[

x4

x3−vf

]

, i.e. cos(ψ) =
x3−vf
vr

and

sin(ψ) = x4

vr
, where vr =

√

[x3 − vf ]
2
+ x24 is the norm

of the relative velocity ~vr. The blood velocity profile is

parabolic along a section of blood vessel of diameter D:

vs(x2) = 1− 4
(

x2

D

)2
(39)

Using (3), we define:






F ′
d1 = bv2r + c

v2r
1+d

√
vr

∂F ′

d1

∂vr
= 2bvr + 2c vr

1+d
√
vr

− cd
v3/2r

2(1+d
√
vr)2

We assume that ∀t ∈ R
+, the compact Kx is such that

x2 ∈ [−D
2 + ̟ , D2 − ̟], for some ̟ ∈]0, r[. We then

have (δ1, δ2) ∈ [̟−r,D−r−̟]2, with δ1+δ2 = D−2r.

To simplify the notation, we will denote:

vtmax = max
t

(|vt|) vrmax = max
t

(vr)

x2max = max
t

(|x2|) δimax = max
t

(|δi|)
Cψ = cos(ψ) Sψ = sin(ψ)

(40)

Using (39)-(40) we get 0 < vs(x2max) ≤ vs(x2) ≤ 1.

Using (11), we have the following partial derivatives

denoted ḡi,j =
∂ḡi
∂x̄j

(x̄):

ḡ1,1 = ḡ2,1 = 0 ḡ1,2 = − 8x2vt
D2 [ā+ T1]

ḡ1,3 = −T1 ḡ1,4 = ḡ2,3 = −CψSψT3
ḡ1,5 = vs(x2) [T1 + ā]− ā ḡ2,4 = −T2
ḡ2,2 = 8x2vt

D2 CψSψT3 + T4 ḡ2,5 = vs(x2)CψSψT3

ḡ1,2k+6 = ḡ2,2k+6 = 0 ḡ1,2k+7 = ḡ2,2k+7 = 0

∀k ∈ {0, . . . , n− 1}.
(41)

where the quantities Ti are defined by:

T1 =
∂F ′

d1
∂vr

Cψ
2 +

F ′

d1
vr

Sψ
2

= bvr + c vr
1+d

√
vr

+ Cψ
2
[

bvr +
2cvr+cdv

1.5
r

2(1+d
√
vr)2

]

T2 =
∂F ′

d1
∂vr

Sψ
2 +

F ′

d1
vr

Cψ
2

= bvr + c vr
1+d

√
vr

+ Sψ
2
[

bvr +
2cvr+cdv

1.5
r

2(1+d
√
vr)2

]

T3 =
∂F ′

d1
∂vr

−
F ′

d1
vr

= bvr +
2cvr+cdv

1.5
r

2(1+d
√
vr)2

T4 = 2e
[

H(δ1)

(r+δ1)3
− H(δ2)

(r+δ2)3

]

− 3
2
f
[

√

|δ2|H(−δ2) +
√

|δ1|H(−δ1)
]

We consequently have the following bounds on the Ti:

T1 ∈ [0, T+
1 ], T+

1 ≤ 2bvrmax + 2cvrmax +
cd
2 v

1.5
rmax

T2 ∈ [0, T+
2 ], T+

2 ≤ 2bvrmax + 2cvrmax +
cd
2 v

1.5
rmax

T3 ∈ [0, T+
3 ], T+

3 ≤ bvrmax + 2cvrmax +
cd
2 v

1.5
rmax

(42)

To bound T4, three cases have to be distinguished:

– if (δ1, δ2) ∈ [0;D − r −̟]2, we have:

T4 = 2e
[

1
(r+δ1)3

− 1
(r+δ2)3

]

≤ T+
4 = 2e

[

1
r3 − 1

(D−r)3
] (43)

– if δ1 ∈ [̟ − r; 0[, we have:

T4 = −2e 1
(r+δ2)3

− 3
2f

√
−δ1

≥ T−
4,1 = −2e 1

(D−r−δ1max)3
− 3

2f
√
−δ1max

(44)

– if δ2 ∈ [̟ − r; 0[, we have:

T4 = 2e 1
(r+δ1)3

− 3
2f

√
−δ2

≥ T−
4,2 = 2e 1

(D−r−δ2max)3
− 3

2f
√
−δ2max

(45)

Using (43), (44) and (45), we get bounds on T4:

T4 ∈ [T−
4 ;T+

4 ], with T−
4 = min(T−

4,1, T
−
4,2) (46)

Let T+
5 = (8x2maxvtmax)/D

2. Using the partial deriva-

tives expressions (41) and the bounds (42)-(46), we get



the bounds ai,j and bi,j on ∂ḡi
∂x̄j

, ∀k ∈ {0, . . . , n− 1}:

a1,1 = a2,1 = 0 b1,1 = b2,1 = 0

a1,2 = −T+
5

[

ā+ T+
1

]

b1,2 = T+
5

[

ā+ T+
1

]

a1,3 = −T+
1 b1,3 = 0

a1,4 = a23 = −T+
3 b14 = b2,3 = T+

3

a1,5 = ā(vs(x2max)− 1) b1,5 = T+
1

a2,2 = −|T+
5 T

+
3 + T−

4 | b2,2 = T+
5 T

+
3 + T+

4

a2,4 = −T+
2 b2,4 = 0

a2,5 = −vs(x2max)T+
3 b2,5 = T+

3

a1,2k+6 = a2,2k+6 = 0 b1,2k+6 = b2,2k+6 = 0

a1,2k+7 = a2,2k+7 = 0 b1,2k+7 = b2,2k+7 = 0.
(47)

Besides, using the symmetries and null partial derivatives

in (41), it is possible to restrain the study to a lower

dimensional vector of parameter p ∈ R
7 defined as:

p = [p̄1,2, p̄1,3, p̄1,4, p̄1,5, p̄2,2, p̄2,4, p̄2,5]
T (48)

• Property (P3): The observability matrix associated with

(Ā(p), C̄) is given by:

O =

[

I4 04×(2n+2)

∗ Θ

]

where Θ ∈ M(4n+8)×(2n+2), and ∗ stands for some

bounded matrice. We then have:

rank(O) = 4 + rank(Θ) (49)

with

Θ =





















N1 042 . . . 042 M1

∗ N2
. . .

... M∗
...

. . .
. . . 042

...

∗ . . . ∗ Nn M∗
∗ . . . . . . ∗ Q
∗ . . . . . . . . . ∗





















and submatrices given by:

Nk+1 = εkω
2k









p4 + ā 0
p7 0
∗ p4 + ā
∗ p7









M1 =









0 0
0 1
0 ∗
0 ∗









Q = εn









(p4 + ā)ω2n ∗
p7ω

2n ∗
∗ ∗
∗ ∗









M∗ =









0 ∗
0 ∗
0 ∗
0 ∗









with εk = (k+1)k!2. Let D denote the matrix composed

of the rows L1, L2, L3, . . . , L2k+1, . . . , L4n+1 of Θ. We

then have:

|D| =
[

(p4 + ā)2n+1
n−1
∏

k=1

ε2kω
4k

]

εnω
2n.

Hence the sufficient condition on the rank on Θ:

ω(p4 + ā) 6= 0 ⇒ rank(Θ) = 2n+ 2 (50)

Yet, using the expression of a1,5 in (47) and (48), we get:

ḡ1,5(t) + ā ≥ vs(x2max) > 0 ⇒ (p4 + ā) > 0 (51)

From (49), (50), and (51), (Ā(p), C̄) is observable for any

p ∈ P ⊂ R
7\{p4 + ā = 0} with P denoting a convex

bounded set.
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