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Nonlinear Quantum Adiabatic Approximation

Clotilde Fermanian-Kammerer * Alain Joye'

Abstract: This paper is devoted to a generalisation of the quantum adiabatic theorem to a nonlinear
setting. We consider a Hamiltonian operator which depends on the time variable and on a finite
number of parameters, defined on a separable Hilbert space with a fixed basis. The right hand side of
the nonlinear evolution equation we study is given by the action of the Hamiltonian on the unknown
vector, with its parameters replaced by the moduli of the first coordinates of the vector. We prove
existence of solutions to this equation and consider their asymptotics in the adiabatic regime, i.e. when
the Hamiltonian is slowly varying in time. Under natural spectral hypotheses, we prove the existence
of instantaneous nonlinear eigenvectors for the Hamiltonian, and show the existence of solutions which
remain close to these time-dependent nonlinear eigenvectors, up to a rapidly oscillating phase, in the
adiabatic regime. We first investigate the case of bounded operators and then exhibit a set of spectral
assumptions under which the result extends to unbounded Hamiltonians.
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1 Introduction

We consider a time dependent Hamiltonian on a separable Hilbert space H that depends on a finite
number of real parameters:

R x RP > (t,z) = H(t,z) € L(H), (1.1)
with H(t,z) self-adjoint and smooth. Let {e;};en be an orthonormal basis of H and for f € H, we
denote by f; its coordinate along e;, i.e. f; = (ej, f). We are interested in the following nonlinear
evolution equation

ie0 (t) = H(t, [ (8)]%, .., [0S (t), v7(0)=vo €H, tET, (1.2)

in the adiabatic limit where the small parameter ¢ tends to zero, and 7 is an interval of R containing 0
and independent of £. Our aim is to provide an approximation of the solution to (1.2]) that bears some
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similarities with that provided by the adiabatic theorem of quantum mechanics for linear equations, see
e.g. [K1J.

More precisely, we prove that for the systems we consider, there exist an interval of times 7 (con-
taining 0) and a family of smooth nonlinear eigenvectors, i.e. two smooth maps ¢t — w(t) € H and
t— A(t) € R, such that ||w(t)|| =1 and

H(t, w1 (D)3, ..., |wp(t)PHwt) = At)w(t), VEtET

and we provide conditions under which the deviations of v*(¢) from w(t)e_g Jo M5 are small as & — 0,
in the case where the initial data is taken along w(0) (v°(0) = w(0)). We stress that the evolution
equation (1.2)) depends on the choice of basis {e;}en.

The adiabatic theorem of quantum mechanics has found numerous extensions since its first formula-
tions [BE] [K1] for self-adjoint time dependent Hamiltonians with an isolated eigenvalue. It was extended
to accommodate isolated parts of spectrum [N1, [ASY] and it was shown to be exponentially accurate for
analytic time dependence [JKPL[JP, N2, [J1]. Then, it was extended to deal with gapless situations where
the eigenvalue of interest is not isolated in the rest of the spectrum, [AHS| [AEl [Te]. Generalisations to
non-self-adjoint generators were provided in [A-SF) [J3| [AFGG], leading to extensions to gapless, non
self-adjoint generators provided in [Sc|. Also, formulations of the adiabatic approximation have been
shown to hold true for unitary and non unitary discrete time evolutions, [DKS, [Tal, [HIJPRI1, [HJPR2],
and for extended many body systems [BDR]. From this perspective, we prove a generalisation of the
adiabatic theorem to nonlinear non-autonomous evolution equations in a Hilbert space defined by

and .

Such nonlinear evolution equations occur for example in condensed matter Physics or nonlinear
Optics within certain parameter regimes. In particular, the analysis of Landau-Zener tuneling of a
Bose-Einstein condensate between Bloch bands in an optical lattice or in double well potentials, as
in [BQ] , [J-L_et al.l [Khl [KhRu] or the study of optical waveguides known as nonlinear coherent couplers
[Jel [A], lead to systems of this form. Indeed, within a certain regime, the relevant Hamiltonians take
the explicit form for p = 2 with an explicit two by two matrix H(¢,z1,x2), see the book [LLFY]
for examples and more references.

Adiabatic issues have been already addressed in the PDE literature in a nonlinear setting with
different perspectives. With a scattering point of view, the long time behaviour of nonlinear two by two
problems with generators similar to those mentioned above was analysed by [CFK2|]. In a PDE setting,
[CFK1] studies the adiabatic propagation of coherent states for systems of Schrodinger equations with
a non linearity and [S] considers the adiabatic regime of the nonlinear Schrodinger equation for small
data. A common feature of these works is that the effective nonlinearity is weak in the sense that it
decays with €. This is not the case in [GG] where a PDE with a nonlinearity of order one as e — 0 is
studied, for small initial data, but of order one in €. The authors consider therein the time dependent
Gross-Pitaevskii equation in a potential which varies slowly in time. Under suitable conditions on the
potential, a unique ground state exists for the stationary linear equation parametrized by the time
variable, playing the role of a nonlinear eigenvector in the sense of the previous paragraphs, and the
solution to the Gross-Pitaevskii equation is shown to follow the instantaneous ground state, for large
times.

Our aim here is to provide a general functional framework for nonlinear adiabatic evolution equations
(1.2) and (1.1)), characterised by non linearities of order one as ¢ — 0 and admitting solutions of norm



one, in contrast to the PDE results mentionned above. We then discuss a set of reasonable spectral
hypotheses on H(t,x) allowing us to provide an approximation of the solutions to as ¢ — 0, for
times ¢ of order one. Our main result is first proven for bounded Hamiltonians, and then extended
to unbounded H(t,z), under suitable spectral assumptions. In particular, the latter case applies to a
certain type of nonlinear Schrédinger equation on L2(R) that we discuss.

Note that the matrix cases considered in [CFK2| or [LLEY] and in the references therein, appear
as special cases of those that we consider, whereas our hypotheses excludes the PDE setup considered
in [CFKI, IS, [GG]. This is due to the fact that the nonlinearity in depends on the norm of the
projections of the wave function on some subset of the basis vectors of the Hilbert space, and not of the
modulus of the wave function itself as in the Gross-Pitaievski equation or in Hartree equation. In this
sense, the nonlinearity that we consider is weaker.

1.1 Setup and main result

To ease notations, we will write from now on
H(t,\v1]2,...,|vp\2) =: H(t, [v]), (1.3)

for any vector v € H, where H depends on p < oo components of v only. The form of the nonlinearity
we choose, depending on the modulus of (certain components of) the solution, is reminiscent of that
of the nonlinear Schrédinger equation. It entails in particular the fact that H actually depends on
{v1,01,v2,02,...vp,Up}. This motivates the introduction of the anti-unitary complex conjugation C' on
H defined by

Vo= Zvjej eH, Cv= Zv_jej (1.4)
J J

to be used later on. For any A € L(H), we define the operator A = CAC € L(H) and will call operators
such that A = A, real operators. We will work under the following general hypotheses.

Hy The map 7 x XP 3 (t,x) — H(t,x) € L(H) is C*° in the strong sense, where 7 and X are open
neighbourhoods of [0,1]. For all (¢,z) € T x AP, H(t,x) = H*(t,x).

H; There exists § > 0 such that ||0,; H(z,t)|| <9, for all (t,x) € T x AP and j € {1,...,p}.

H, For all (t,x) € T x XP, the spectrum o(H (z,t)) consists in N eigenvalues {\;(t, z) j-vzl that are
separated from one another by a gap g > 0, uniform in (¢, x).

Hj3 There exists 1 < jo < N such that Aj(x,t) is simple.
Consequently, the corresponding spectral decomposition of H (t,x) reads
N
H(t,2) = Y \(t2)By(t, ), (1.5)
j=1

where the orthogonal spectral projectors Pj(t,x) satisfy 1 < dim(P;(¢,z)) < oo is constant, while
dim(Pj,(t,z)) = 1. We shall make use of the following facts: the projectors P;(t,z) are as smooth as



H(t,z) and so are the eigenvalues \;(t,z). Moreover, for j = jo, there exists a global smooth map
T x XP 3 (t,z) — @j,(t,x) € H such that

V(t,x) €T x Xda H(tax)90j0 (ta x) = )‘jo (tax)SOjO (t, x)

These facts are briefly discussed in Section [2| below.

The form of the nonlinearity immediately implies a gauge invariance, which will turn out to be
crucial later on. Under Hg, we have for any 8 € R, any v € H,

H{(t, [ewv]) = H(t, [v]). (1.6)
If Hy and Hs3 hold as well, this implies
Pi(t, [e"%0]) = Pi(t, [v]), A(t, [e70]) = Mgt [o]), st [€0]) = o (2 [0]). (L.7)

We first note that H (¢, x) self-adjoint ensures the existence of global solutions to (1.2]) via Cauchy-
Lipschitz Theorem. Moreover, gauge invariance (1.6 implies symmetries that we exploit below. These
elementary properties are stated in the next Lemma with the convention ([1.3)).

Lemma 1.1 Under assumption Hy, the equation
ieow® (t) = H(t, [v°(t)])v°(t), v°(0)=wv9 € H, tE€T, (1.8)

admits a unique global solution for any initial condition vy € H. Moreover, ||[v¢(t)|| = ||vo]|.
Besides, given a C° map T x XP 3 (t,x) — x(t,x) € R, and v¢(t) a solution to (@, the solution to

i2dyst(t) = (H(t, [s5(1)]) + x(t, [ (D)]Id)s5(t), s5(0) =wo €M, teT

reads

sS(t)=e" Jo X(“’[UE(“)Ddu/EUE(t), ViteT.

Our analysis focuses on solutions to that are tightly related to the simple eigenvalue \j, (¢, )
and associated eigenvector ¢j,(t,x). Therefore, to simplify the notation, we drop the index jy for
these spectral data from now on. We start by introducing a vector w(t) € H that we call a nonlinear
eigenvector, and which is defined in a neighbourhood of 0 € T by

H(t, w®)w(t) = Alt, [wt))w(t), Ve To.

As discussed in Section [2] this algebraic nonlinear equation turns out to always have a local nontrivial
solution when A(¢,x) is a simple eigenvalue of H (¢, x).

Proposition 1.2 Assume Hy, Hy, Hy and Hz. Then, for any tg € T, there exists a neighbourhood
To C T of to such that for all t € Ty, a solution w(t) € H of norm one to the algebraic equation

Pt [wt))w(t) = w(t) (1.9)
exists. Moreover To 3 t — w(t) is smooth and can be chosen to satisfy (w(t)|w(t)) = 0.

We can now give our main statements which establish nonlinear adiabatic theorems in the considered
framework.



Theorem 1.3 Assume Hy, Hy with § small enough, and suppose Ho holds with all eigenvalues being
simple. Moreover, assume that H(t,z) is real, that is H(t,x) = H(t,z), and generic in the sense
that o(H(t,x) — A(t,z)) No(—H(t,z) + A(t,z)) = {0}. Let w(t) be a smooth solution to (1.9) in a
neighbourhood Ty of to = 0. Then the solution v¢(t) to with v*(0) = w(0) satisfies for all t € Ty

V(1) = e~ = S A @Dds 1) 1 Oy (e).

Remark 1.4 i) The simplicity of the spectrum of H(t,x) implies that we are actually dealing with the
matrix case.
i1) The genericity condition always holds if A\(t,x) is the ground state or the largest eigenvalue of H(t, z).

To consider genuinely infinite dimensional situations, we need another spectral assumption on a non-
selfadjoint operator appearing naturally in this context, as stated in the result below. Actually, the
previous theorem is a special case of the following theorem.

Theorem 1.5 Assume Hy, H; with § small enough, Hy and Hs. Moreover, suppose that H(t,x)
is real, that is H(t,z) = H(t,x). Let w(t) be a smooth solution to in a neighbourhood Ty of
to = 0. Provided the operator F(t) defined by below is semisimple with real eigenvalues of constant
multiplicity for all t € Ty, the solution v¢(t) to with v¢(0) = w(0) satisfies for all t € Ty

vE(t) = e~ifo Aslw()Dds/e (1) 4+ Oy (e).

Remark 1.6 As we will see in the proof, there exist positive constants cg, ¢y such that the norm of the
remainder satisfies
|0¢(e)|| < min(cot, c1€), Vt € To. (1.10)

As already mentioned, the assumptions of Theorem guarantee the adequate spectral behavior
of the operator F(t) defined by to get the conclusion of Theorem In other words, assuming
in Hy that all eigenvalues of the real operator H(t,z) are of multiplicity one is enough to obtain the
assumption on the spectral decomposition of F'(t). In Section [3| we describe another set of assumptions
which are sufficient to satisfy the hypothesis of Theorem in the case p =1 (see Lemma and the
remarks that follow it) and which does not reduce to finite dimension as it is the case for Theorem

(see i) of Remark [1.4).

1.2 Extension of the result to unbounded operators

We now extend our results to the case where the operator H(¢,z) on the separable Hilbert space H is
unbounded and takes the form H(t,z) = Ho + W (t, z), with W(t,x) € L(H). We make the following
regularity hypothesis:

Ry The self-adjoint operator Hy is defined on a dense domain D C H, and the family of bounded
operator W (t,z) is self-adjoint for all (¢,z) € T x XP. Moreover, Hy, and W (t,x) are real
operators.

R; The map T x AP > (t,x) — W (t,z) € L(H) is strongly C*.

Ry There exist § > 0 such that |[W(t,z)|| < 0, [|0,,W(t,z)|| < 4, for all (t,z) € T x AP and
je{l,...,p}



We also assume the spectral hypothesis

S1 The spectrum of Hy consists in an infinite increasing sequence of simple eigenvalues \; > 0, j € N,
and there exists ¢g > 0 and a > 1/2 such that the gaps satisfy

Vi eN, >\j+1 — )\j > Coja.
Example 1.7 Consider H = L*(R,) and the operator
1
Ho = ~5 8y + V()

with domain D C L*(R,). Assume that Vo grows as (y)° for B > 6 (see [RSY]), then Hy satisfies the
assumptions Ry and S1 above. Consider x-dependent self-adjoint perturbations of this operator (x € XP)

1
H(t,$) = _§Ay + ‘/O(y) + W(t7y7$)

where W is such that the map (t,y,z) — W (t,y,z) is a bounded function from C>*(T x R, x XP R)
and there exists § > 0 such that

V(t,y,l') €T x Ry X Xp7 v] € {17 s ap}v |W(t,:c,y)| + |6m]W(t,y,[L‘)| <o
Then, H(t,x) satisfies assumptions Ry and Ra above.

The operator W(t,z) being bounded, if ¢ is small enough, perturbation theory implies that for
all (t,x) € T x XP, the self-adjoint operator H(t,x) = Hy + W(t,x) defined on D has spectrum
o(H(t,z)) = {\j(t,z)}jen consisting in simple eigenvalues A;(¢,x) only, and there exists ¢; > 0 such
that the gaps satisfy for o > 1/2

V(t,z) e T x XP, VjeN, Nt x) — Aj(t,z) > ¢ 5°.
We pick some jp € N and assume the generic property:
Sy For all (t,z) € T x XP, and j € N, {\;(t,z) — Aj (¢, )} N {=X;(t,x) + \jo (¢, z)} = {0}.
Note that, since Hy is bounded from below, this assumption concerns only a finite number of eigenvalues.

Besides, this property can be inherited from a similar assumption on the eigenvalue \;, of Hy.

We consider for all (tg,z9) € T x AP, the smooth map (¢,z) — ¢(t,x) from T x XP to D C ‘H such
that

H(t, x)o(t, ) = Xjy (¢, 2)o(t, z).
We drop the index jg as before. Provided with these properties, we can develop the same analysis
as in the situation addressed above, namely, the existence of a nonlinear eigenvector and an adiabatic
approximation for the nonlinear evolution equation associated with H (¢, x): We consider p orthonormal
vectors {e1,...,ep} in D and set

v e, W] = ({eal) - Hepl)?).

Proposition [1.2| ensures that for any tg € T, there exists a neighbourhood Ty C T of tg such that for all
t € 7o, a solution w(t) € D of norm one to the algebraic equation (|1.9) exists, see Remark Moreover



To o t — w(t) is smooth and can be chosen to satisfy (w(t)|w(t)) = 0. Taking initial data w(0) in (1.2))
gives the equation in which we are interested, namely

iedy(t) = (Ho + W (¢, [ ()= (1), ¥°(0) = w(0), (1.11)

in the weak sense on D. By solution in the weak sense on D we mean the following, see [RS], vol. II,
p. 284 for the linear case: For any x € D,

iy (x[v° (1)) = ((Ho + W (&, [*(OD))x[¢° (1)), ¢°(0) = w(0). (1.12)

Theorem 1.8 Assume Ry and Ry, then equation admits a unique global solution in the weak
sense of norm one. Assume moreover Ry with § small enough, S1 and S2 and let w(t) be a smooth
solution to (1.9) in a neighbourhood Ty of to = 0. then the solution v°(t) to with v¥(0) = w(0)
satisfies for all t € Ty

YE(t) = e~ Jo MELODAt 1y 10, (e).
1.3 Energy content of the solutions

We close this introduction by discussing briefly an important feature of the solutions provided by
Theorems and A physically relevant quantity for the nonlinear equation ((1.2)) we consider is
the instantaneous energy content of a solution v*(t), defined for all ¢t € Ty by

Eve(t) = (0" (O H (&, [o° ()])v" (1))

For bounded operators 7 x &P > (t,z) — H(t,x) € L(H), and e—independent initial conditions
v°(0) = v(0) the energy content satisfies the uniform bound

|[Boe(t)] < sup [ H(t,2)|[[v(0)].
(t,x)T xXP

For a solution of the form v¢(t) = e=i o Als.[w()ds/= () 4 Oy(e), the energy content simply coincides,
to leading order, with the corresponding instantaneous nonlinear eigenvalue

Eve(t) = (W®[H(E, [w®))w(t)) + Or(e) = Alt; [w(t)]) + O(e).

In general, the behaviour in time of the energy content of a solution does not necessarily admit such a
regular behaviour in the limit € — 0.

Let us illustrate this point on the following simple example. Let R > t — ~(t) > 70 > 0 and consider

H(t,z) = (7(55))37 7%”)

on H = C2. The evolution equation (1.2)) reads

iedy <Z;> = H(t, |n]?) <Z;> = 7(t)|v1|? (Z) , (1.13)



U1 (0)
’1)2(0)

with initial conditions ( ), and the energy content of the solutions reads

Ey(t) = y(t)|vr[*2R(0172) ().

The corresponding real normalised nonlinear eigenvectors wy (t) are time-independent,

w=(t) = \2 (ill> )

and associated to the eigenvalues Ay (¢, [ws]) = £7(¢)/2. Hence, the approximate solutions provided by
Theorem [[.3] read -
vy (t) = eFae JorWduy, (1), (1.14)

which turn out to be exact solutions for all ¢t € R, since wy are time-independent. Their energy contents
are thus given by E,, (t) = £7(¢)/2, which is e-independent. However, for general solutions v°(¢) the
situation is different, as stated in the next Lemma which is proved in Appendix B.

Lemma 1.9 Let v°(t) be a solution of equation with real-valued initial data such that v1(0) > 0,
v2(0) # 0. Then the energy content reads

Eye(t) = 27(t)v1(0)*v2(0) [‘3052 <N§)> + (22283)2““2 (NS))]_I

t
with N(t) = —vl(O)vg(O)/ ~v(u)du. Hence, Ey(t)/~(t) is actually a function of fg v(u)du, which os-
0

cillates between the extremal values 2v1(0)3v2(0) and 2v1(0)v2(0)® with a period of order e, unless
v1(0)/v2(0) = £1 in which case it is a constant.

Remark 1.10 By contrast, the linear quantum adiabatic theorem implies that the energy content of any
solution is given by an e-independent weighted sum of instantaneous eigenvalues of the Hamiltonian, to
leading order.

1.4 Organisation of the paper

We prove Proposition [1.2] and discuss the limitation that may occur to its validity in Section [2} Then
Section [3]is devoted to the proof of the main results, Theorems and The proof that is provided
adapts to the unbounded setting of Theorem[I.8] which we explain in Section[d Finally, two Appendices
are devoted to the discussion of examples.

2 The existence of nonlinear eigenvectors

We focus in this section on the existence of the generalized nonlinear eigenvector w(t) defined in Propo-
sition We first recall well-known facts in the linear setting, mainly to introduce notations. Then,
we explain why a similar result remains true locally in the nonlinear regime we consider and why the
obtained eigenvectors may not exist globally.



2.1 Existence of smooth eigenvectors in the linear adiabatic setting

The question of local (and global) existence of smooth eigenvectors is simple in the linear context.
Indeed, with the notations of Assumption Hy and using Riesz formula on C(g/2), a circle of radius g/2
and center \;(t,x),

L

2mi Jc;(9/2)

one gets that the projectors P;(t,z)’s are as smooth as H(t,z). Moreover, ||0,, P;(t,z)|| < 25/g. The
finitely degenerate eigenvalues \;(t,x) = Tr(P;(t,z)H(t,z)) are thus as smooth as H(t,z), and the
same is true if dim P;(¢, ) = oo.

Pj(t,z) = (H(t,z) — 2)"'dz,

Considering j = jo, for any (tg,z9) € T x AP, there exists an open neighbourhood of (g, z¢) in
which a smooth normalised eigenvector ¢;, (¢, z) € H exists such that

Pjo (t7 1‘) = ‘90]'0 (t, x)><§0jo (tv .73)|

More specifically, given ¢j,(to,zo) an eigenvector of H(tp,zo), the vector

Pjo (t,z) == Pj, (twr)(/)jo (t0>xo)/<30jo (tOvﬂjO)‘Pjo (t7$)30j0 (to, o)) (2.1)
satisfies these conditions for all (x,t) such that Pj,(t, z)yj, (to, o) # 0.

Actually, there exists a global smooth map 7 x XP 3 (t,z) — ¢(t,z), which can be viewed as
follows. Using the shorthand p = (¢, ), set £ = Uperxar(p, ¢(p)), and 7 : E 3 (p,p(p)) = p € T x AP,
so that m : £ — T x XP defines a rank one vector bundle over the base 7 x XP. The base being
contractible, it is known that the vector bundle is trivial, which is equivalent to the existence of a global
smooth frame on the fibers of E, see e.g. [LePl[Sp|. An alternative approach is by explicit construction,
making use of the parallel transport operator defined by below. Passing to spherical coordinates
(t,x) — (r,0) € RT xSP and integrating the parallel transport operator along r, keeping 6 as parameters,
we get a smooth unit eigenvector for each (¢,z) € T x AP, by the smoothness of the eigenprojector.
This property holds for dim H = oc.

2.2 Existence of nonlinear eigenvector
We prove here Proposition [1.2]
Proof: For ¢y € T fixed, dropped from the notation, Hj yields,

(W) (p([w])w) = w.

This requires w to be parallel to ¢([w]) where the latter is normalised. We use Schauder’s fixed point
Theorem in a Banach space to actually prove that, locally, there exists w such that w = ¢([w]), and
thus ||w|| = 1. Set Bi(H) = {v € H | |lv|| < 1} and F : Bi(H) — Bi(H) by F(v) = ¢([v]). This
map is well defined, continuous and Bi(H) is closed, convex and nonempty. Thus F' will have a fixed
point if F(By(H)) is compact. Let K, = {¢([z])|x € [0,1]"}. By continuity of ¢ in the variable z, and
compactness of [0, 1], K, is compact. Thus the closed subset F'(B;(H)) of K, is compact and Schauder
Theorem (see [E] for example) implies the existence of a fixed point for F', for each given value of ¢.
Since ||¢([v])]| = 1, the normalization of the fixed point w(tg) holds.



In order to prove the smoothness of the map 7y > ¢t — w(t), we use the implicit function theorem
on the smooth map J : 7 X H x H — H x H defined by

_ 1t v, )) < —(t, [v])>
J(t,v,0) = i .
0o = (o) = (o~ e b
The zeros of J define w(t), in a neighbourhood of (¢g,w(to)). Note that by a smooth change of phase
)

we can consider locally the continuous vector ¢(t, x) defined by . For 1 < j < p, we compute, with
{ej}jen the chosen orthonormal basis of #,

8UjJ1(t,v,17) =ej — Op,0(t, [v]);, 81—,].J1(t,v,17) = —8mj<p(t, [v])v;
Oy, Jo(t,v,0) = —0qz;0(t, [v])v;, Oy, Jo(t,v,0) = €ej — 8%«,5(75, [v])v;. (2.2)

Therefore, using the notation D, 5J(t,v,v) € L(H x H) for the derivative with respect to the variables
(v,0) € H x H, we get

oo (B Z (B N (Ot [0]) (g€ ) + iyep(t, [0]) (55 )
puatteen (5) = (3) ;(axjsz(t,{v])@jeﬂhwax Nilboon):

We recall the notation in the scalar case

0, = %(Gx — ’iay)a 0z = %(8$ + zﬁy)

such that if f(x,y) = g(2,2) with z =z + 1y € C and t = h + ik € C, then
Df(x,y)(h, k) = Ouf(x,y)h + Oy f(z,y)k = D, 29(2,Z)(h + ik, h — ik) = 0.g(z, Z)t + 0z9(z, 2)t.

With these notations in mind, we obtain equivalently

p
B <8xj<p(t, [v])>> <<Uj€j> ‘

1 azj @(tv [U]) vje;
Therefore, for v € Bi(H), it is enough to show that ||0,;¢(t, x)|| < 1/4, say, to satisfy the assumptions
of the implicit function theorem. We compute

Oz, P(t, z)p(to, z0) — P(t,x)0(to, x0){¢(to, x0)|0x; P(t, )@ (to, o))
(p(to, m0) | P(t, z)(to, 20))* 7

the norm of which is bounded above by 83/g, in a neighbourhood of (¢g, xg) characterised by

DU,EJ( s Uy )

Oz, p(t, ) = (2.4)

1P(¢, ) (t0, o) || = 272,

Hence, H; with ¢ small enough yields the existence of an open neighbourhood 7y 3 tg and of a smooth
map ¢ — w(t) with ©(tg) = w(to) that is solution to (|1.9) for all ¢ € Ty.

To conclude, the proof, we observe that the argument above ensures ||©(t)|| = 1, so that the phase
adjustment w(t) = w(t)e = iy @) 1o))ds implies that w(t) satisfies (w(t)|w(t)) = 0. O

Remark 2.1 Note that in the proof above, we have not used the assumption H(t,x) € L(H) so that
the result of Proposition extends to unbounded families of operators H(t,x).
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2.3 Failure of global nonlinear eigenvectors

We illustrate with an example the fact that the eigenvector constructed in Proposition may only
exists locally. For this, we consider the matrix-valued case where H (¢, x) is the real, symmetric, traceless

two by two matrix
~ [cos(tf(x)) sin(tf(x))
Htz) = (Sin(tﬁ(:v)) —cos(w(x))> :

where R 3 z — 6(x) is a smooth map that we choose later. The eigenvalues of H(t,x) are +1 and —1
with associated eigenvectors

0(2) o t6(x)
Vi(t,x) = (Cfﬁ (te?m)) V(o) = (C;n(t((%)))> ’
2

respectively. We denote by P(t,x) the eigenprojectors for the eigenvalue +1. Then a real normalised

vector w(t) = (:;Eg) satisfies

>

P(t, [w(t)])w(t) = w(t)
if and only if

r(t) = os (5 00n (D) ), walt) = sin (50 () )

up to a global sign. It is then enough to find the function ¢ +— wi(t). For fixed ¢, it reduces to finding
Y € [0, 1] such that

Y = cos (; 9(Y2)> . (2.5)

Let us restrict to ¢ € [0, 1] and choose the function 6 according to the following picture

Yy 0 Ymax Ymin 1

gmax 7T
0(y2) . / \ , /

min

We fix Opax < 7 so that cos %Gmax > 0 for all ¢t € [0,1] and cos is decreasing on the set of values of %0.
For t = 0, the uniqueness of the solution of the equation (2.5)) is guaranteed and for ¢ € (0, 1], it depends
on whether cos %Qmax < Ymax Or not. Therefore, if we choose ymax and 0,4, such that

COs iamax < Ymax,

we know that there exists 7 €]0, 1] such that the equation (2.5 has a unique solution for ¢ € [0, 7) and
exactly three solutions for times ¢ € (7, 1]. Figure 1 illustrates that fact.

3 Proof of the main results

In this section, we prove Theorems [I.3] and [I.5 the proofs of which both follow the same scheme. We
first give the plan, spelling out the main steps and lemmas that we then successively prove in the next
sections.

11



z= cos(tf(y?)/2)

Yl(t) Ymax Yz(t) Ymin Yj(t)

Figure 1: Non uniqueness and degeneracy of the solutions of Equation ([2.5))

3.1 Proof of Theorems [1.3] and [1.5]

Thanks to Lemma[L.1|with x(¢,2) = —A(t, z), we can reduce the analysis to the case A(¢,z) = 0 without
loss of generality, by considering the shift

H(t,x) — H(t,x) — \(t, ). (3.1)
The eigenvalues of the operator H (t,x) are then all shifted by A(¢, ) and we denote them by
0 and A;(t,x), j € N¥,

where the functions \;(¢, ) may have changed compared to what they were in the introduction. We
set A(t) = v°(t) — w(t). Then, the map ¢ — A(t) (which also depends on ¢) satisfies the system

ieA(t) = H(t, [v (£)])vF (t) — qew(t), A0) =0,

using a dot to express derivatives with respect to time. For all ¢t € 7g, the interval 7 is the set of times
around ¢y = 0 where w(t) given in Proposition exists, we have

H(t, [v°(5)]) = H(t, [w(t) + A@®)]) = H(t, [w®)]) + 2 du H(t, [w(t))R@;4;) + O(|A[),
j=1

and using H (¢, [w(t)])w(t) = 0, we obtain

ieA(t) = —iew(t) + H(t, [w(t))A(t) + 2 Z On, H (£, (D) R(@;85)w(t) + O(IA]).

12



The equation involves a source term, —icw(t), and its linear part depends on A(t) and A(t). We write
it as a system for these two vectors:

ieA(t) = —iew(t) — H(t, [w(t)))A(t) = X8_) 0 H(t, [w(t)]) (@54, + wjAj)w(t) + O(|A[1%).
(3.2)

{ ieA(t) = —iew(t) + H(t, [w®])A®) + X7, 0z, H(t, [w®)]) @54 +widjw(t) + O(IA]%),

We set for j € {1,---,p},
03(t) = B, H(t, (D] (2), (33)

and, for later purposes, we notice that it follows from P(t,z)H (t,z) = 0 that

vj(t) = (Id = P(t, [w(®)]))v;(t)- (3-4)

(% Wj€j
i = 2 and v; = ( )
! (—Uj> T \wje

We also set, for j € {1,---,p},

and rewrite the system as

C(HGREO) 0
F““‘( 0 —H(t,[w@)]))’ (3:5)

G =Y ( wj ()] (0)(es] - wj(t)v; (1)) {e;] > -y

GO O)e;] —wi (DT () (es]

=D () (v (0)].

Note that F(t),G(t) € L(H x H), F(t) is non self-adjoint and G(t) is of finite rank. Besides, because
of the assumption Hy, G(t) can be treated as a perturbation of the self-adjoint operator Fy(t). One
then observes that two classical consequences of Weinstein-Aronszajn formula are that oess(F(t)) =
Oess(Fo(t)), and that oq(F(t)) consists in finitely many of eigenvalues (see e.g. [K2], Chap. IV, § 6).

The structure of the spectrum of F'(t) is crucial for our analysis. As we shall see in the following, the
proof of Theorems and works out when the spectrum of F'(¢) is semisimple with real eigenvalues
of constant multiplicity for all ¢ € Tg. Moreover, there are situations where this can be proved and the
next lemma describes such cases. According to the assumptions of Theorems and we focus on
the case where H (¢, [w(t)]) is real.
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Lemma 3.1 a) There exists 59 > 0 such that if, for all t € Ty, we have Hy, Hy for some 6 < dp, Ho
and Hs, then 0 € o(F(t)) as a doubly degenerate isolated eigenvalue, with corresponding eigennilpotent
No(t) =0.
b) Moreover, if H(t,z) = H(t,z), o(H(t,z)) is simple and o(H(t,x)) N o(—H(t,z)) = {0} for all
(t,z) € To x XP, then &y can be chosen so that the spectrum of F(t) is real-valued for all t € Ty and
takes the form

—EN_l(t) <0 K —fl(t) <0< fl(t) << EN_l(t), (37)

where Lo(t) = 0 is of multiplicity two, and each eigenvalue £0i(t), 1 <k < N — 1 is simple.
c¢) Finally, in the special case p = 1, we have a) and if moreover H(t,x) = H(t,x) and o(F(t)) \
o(Fy(t)) consists in exactly 2(N — 1) perturbed eigenvalues, then o(F(t)) C R and all corresponding

etgennilpotents are zero.

The points a) and b) imply that under the assumptions of Theorem the spectrum of F(t) is
semisimple with real eigenvalues of constant multiplicity for all ¢ € Ty, and thus that the assumptions
of Theorem are satisfied. The point ¢) gives another situation with possibly degenerate eigenvalues
where the assumptions of Theorem hold.

Remark 3.2 i) Note that for b), it is enough to assume o(H(0,z)) No(—H(0,x)) = {0}, at the cost
of making |To| smaller. This is a generic hypothesis which automatically satisfied whenevr \j, is the
ground state or the upper eigenvalue.

it) The condition #{o(F(t)) \ o(Fo(t))} = 2(N — 1) states that the spectral effect of the rank one
perturbation G(t) is mazimal, which is a genericity assumption. The multiplicities of the eigenvalues of
Fy(t) are arbitrary, possibly infinite, so that case c) does not necessary reduce to finite dimension, in
contrast to the situation dealt with in Theorem [1.3

i11) Besides, if the spectral effect of the rank one perturbation is maximal on Ty, then o(F(t)) takes the
form for allt € Ty, with 4(N — 1) non zero distinct eigenvalues instead of 2(N — 1), 2(N — 1) of
which are simple.

iv) The condition H(t,z) real does not seem strong enough to ensure o(F(t)) C R for p > 2; see the
example of the Hamiltonian given by equation in Appendixz A.

We postpone the proof of Lemma and we go to the next step of the proof which consists

in controlling the adiabatic limit of the two-parameter evolution operator T¢(¢,s) generated by F'(t)
A

(5)

adjoint, this requires some care because the possible occurence of nilpotent operators in its spectral

decomposition leads to subexponential divergence of the semigroup as ¢ — 0 (see [J3]), that we cannot

accommodate. However, Lemma [3.1| ensures that under the assumptions of Theorem and by
hypothesis in Theorem for all t € Ty, F(t) is semi-simple, with spectral decomposition

(see (3.14) below), and using it to estimate via Duhamel formula. Since F(t) is not self-

Nl
F(t)= Y £;(t)P;(t), with the convention £_;(t) = —{};(t), (3.8)
Jj==—N'

where we have set N’ = N —1 for convenience and where P;(¢) are smooth eigenprojectors corresponding
to real eigenvalues £;(t). We now work under these assumptions.

14



Despite the eigenprojectors Pj(t) not being orthogonal, with norms possibly larger than 1, we prove
in the next lemma that any operator F'(¢) with real spectrum satisfying generates an evolution op-
erator which is uniformly bounded in € and almost intertwines its eigenprojectors in the adiabatic limit.
In line with Kato’s approach ([K1] and e.g. [H]]), we introduce the dynamical phase operator ®°(¢, s)
defined by

N .
O(t,s) =y Pj(0)e =) Gl g b @5t 5) 7t = B°(s, 1), (3.9)
j=-N’

and the intertwining operator W (t) given by

N/
0 (t) = KW (t), W(0)=1d, with K(t)=14 »  P;(t)P;(t). (3.10)
="
As is well known (see [K2|), for all ¢t € R, we have
P ()W (t) = W(t)P;(0), (3.11)

and thanks to Lemma ||®2(t, s)|| is uniformly bounded in e. Moreover, we check that
e ®F (t,5) = W () TF (L)W (£)®°(t,5) = F(£)P°(L, 5). (3.12)
We then introduce the bounded family of operators
VE(t,s) = W(t)®(t, s)W(s) ", (3.13)
which satisfy Ve(t,s)~t = V¢(s,t) and
VE(t, 8)P;(s) = Pi(6)VE(E, s) = W ()P (0)e = Js (o (5) 1,

Moreover, because F'(t) is semi-simple, V¢(¢, s) approximates the evolution operator generated by F'(t),
as described by the next lemma which applies in a quite general setting.

Lemma 3.3 Let T be an open bounded interval of R containing 0 and consider the operator defined on
a Hilbert space IC for all (t,s) € T x T by the strong differential equation

i T(t,s) = F()T(t,s), T<(s,s) = Id. (3.14)

If F € C*(T,L(K)) with continuous derivatives at T and if F(t) is semi-simple and satisfies (@ for
all t € T, then we have in L(K),
Te(t,s) = VE(t,s) + O s(e),

which implies the uniform boundedness of the family of operators (T(t,s))e0-
Remark 3.4 i) As a consequence, T¢(t, s)P;(s) —P;(t)T°(t,s) = O s(e).

ii) Note that N' in @ is independent of t € T, the multiplicities of the eigenvalues of F(t) are
arbitrary, possibly infinite.
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We postpone again the proof of this lemma and conclude the proof of Theorem As already
mentioned, Lemma [3.1] ensures we can apply Lemma 33| to K = H x H and 7 = 7T under the
assumptions of Theorems [I.3] and We write

G0 - [roa(e fro()e o
E 3) as— /Ot T(t,s) <—Tr2)> ds + O4().

It follows from the definition of w(t) that Py(t) <ZE3> = 0 for all time ¢ € Ty and a classical adiabatic
argument (that we spell out in Section below) yields the lemma below.

Lemma 3.5 For allt € Ty, we have

/Ot VE(t, s) (zg;) ds = Oy(2).

Therefore, focusing on the first component of (3.15) and setting

o7 = sup [|[A@)],
te(0,7]

with 7 € 7p, we deduce from the above that there exist a,b > 0 such that
02 <ea+ ?‘5?2.
Setting X.(7) = e7162, we are led to study of the second order equation
brX?— X +a>0. (3.16)
Since X.(0) = 0, we deduce that X.(7) < 5 (1 —v/1—4abr) = 2a/(1 + v/1—4abr), as long as

4abr < 1. Finally, we obtain
vr € [0, (4ab) ' N Ty, 05 < 2ae.

To justify the estimate ((1.10|) for ¢ small, we start from (3.15)) to get the existence of a, 8 > 0 such that
B

6 < ar + =152,
€

Focusing on times 7 < e, we consider § < ar + (622, which, by a similar argument using o5 = 0,
implies, as long as 4af87 < 1, 62 < 2a7. Increasing the constant « if necessary, we get (1.10]). O
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3.2 Spectral analysis of F(t)

We proceed with the proof of Lemma which relies on a careful analysis of the eigenvalues of F(t)
and of their multiplicity.

Recall that C' denotes the anti-unitary involution defined on H by Cv = W for all o € H. It is at
this stage of the proof that we shall use the assumption H = CHC = H, which implies w = Cw =@
and v; = Cv; = v; for all 1 < j < p. Due to assumption H;, we consider the operator F(t) as a

perturbation of the bloc diagonal operator Fy(t). Hence, since o(H (t, [w(t)])) = o(H (t, [w(t)])),

o(Fo(t)) = o(H(t [w(t)])) Vo (=H(t, [w()]).

By our genericity assumption, and due to the reduction we have made to the case where A(¢, [w(t)]) = 0,
the spectrum of Fy(t) consists of 2N — 1 = 2N’ + 1 isolated eigenvalues

A (& [w@®D] < - < =M [w®OD] <0< At [w®D] < - < A (s [w(®)])]-

Since the operator G(t) is of small norm by assumption H; and its definition (equations and ,
the spectrum of F(t) can be inferred from that of Fy(t) by perturbation theory. Hence F'(t) has
eigenvalues located in small discs B;-E centered at £;(¢, [w(t)]) and in a disk By with center 0. One can
assume that these disks are of same radius r > 0 and that they do not intersect. Besides

e in B]j.t, F(t) has as many eigenvalues (counted with multiplicity) as the multiplicity of \;(¢, [w(t)])
as an eigenvalue of Fy(t), and in case the multiplicity is infinite, there are only finitely many
eigenvalues of F'(t) in B;-—L that differ from \;(¢, [w(?)]),

e in By, F(t) has at most two eigenvalues (counted with multiplicity).

We are going to use symmetry considerations to prove that these eigenvalues are real-valued and have
the same symmetry properties as those of Fy(t).

Remark 3.6 We develop in Appendiz A an argument showing that the spectrum of F(t) is not neces-
sarily real if H(t,x) is real, in order to motivate the assumptions that its eigenvalues are simple.

Proof: a) We start by considering the spectrum of F'(¢) in a neighbourhood of zero. For any z € By\ {0},
we can write

F(t) — 2 = (Fo(t) — 2) [1d + (Fo(t) — 2)"'G(t)] . (3.17)

Introducing the spectral projector Py(t) associated with the doubly degenerate eigenvalue zero of Fy(t)
and the corresponding reduced resolvent acting on Qo(t)(H x H), Qo(t) = Id — Py(t), we have for

z € By \ {0},
(Fo(t) ~ )7 =~ 4 () - 231 (3.18)

where we denote by AQD the restriction of the operator A to the range of Qg. Since

= (e w()] 0
Po<t)—( 0 |w(t)><w(t)l)
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and (w(t)|v;(t)) = 0 for all 1 < j < p, see (3.4), we get Py(t)G(t) = 0 so that,

-1
(F(t)—2)"t = [Id + (Fp(t) — z)éé(t)G(t)} (Fo(t) —2)~ L (3.19)
Indeed, the reduced resolvent is analytic in z € By and [|G(t)|| = 24, so for &y small enough, the square
bracket is invertible. Therefore, the only singularity of the resolvent of F'(t) lies at z = 0, which remains
a doubly degenerate eigenvalue after perturbation. The corresponding spectral projector is

1 .

Po(t) = —giz [ (F(0) =)z = [1a+ R 2 G0)] By, (3.20)

and, in view of (3.18]) and (3.19)), the corresponding eigennilpotent Ny(t) = F(t)Pg(t) writes, (see [K2]
Chapt. TII, §5)

No(t) = f% EECOEDRE (3.21)
1 _ -1 - _
=5 | [Id + (Fo(t) = 2)5] (t)G(t)] [_po(t) + (Fo(t) = 2)5] (t)z} dz.

Since the integrand is analytic in By, we get that Ny(¢) = 0, which ends the proof of a) of Lemma

b) The perturbation G(t) being of finite rank, we compute the Aronszajn-Weinstein determinant
(IK2], p. 245) which reads in our case for all z € p(Fy(t)), the resolvent set of Fy(t),

w(z) = det (6, + (we ()| (Fo(t) — 2) " 1 (0))1<jk<p (3.22)
= det( 1 + @r(ex () |(H (1) — 2) " wj(t)) + wr((H (1) + 2) " wi(t) ler(t))) 1<) k<p-

It follows that w(z) = w(—z) for all z € By. Since the zeros of w(z) yield the eigenvalues of F'(¢) in
p(Fu(t)), we obtain
z€a(F(t) Np(Fo(t)) < —z € a(F (1)) N p(Fo(t))-

Since H(t,x) = H(t,z), we deduce
w(z) = det (8 +wilex (| (H(t) = 2) 7+ (H(t) +2) " (0))1<jkep = w(—2). (3.23)
It follows then that
2 € a(Ft) N p(Fo(t)) = {z,2,—2,—2} € a(F(t)) N p(Fp(t)). (3.24)

The nonzero eigenvalues of Fy(t) being simple by assumption, the same is true by perturbation theory
for those of F(t) and (3.24) shows they must be real. Moreover, these conclusions hold for any ¢ € 7y
under the stated hypotheses.

c) We now assume p = 1. Let t € Ty fixed and let us drop the time variable. We make use of (1.5)),
with a possible relabelling of the eigenvalues due to the shift (3.1), to write with N/ = N — 1

N/
(H—z)_1:&+zi, where \; £0if j > 1, and A\g = 0.
—z j:1>‘j_z J -
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Thus, with p =1, z € p(Fp), and Pyv; = 0,
HkN J(OF =28 4+ 2w 350 H]zzll (A; = 22X (e| Pjo)
A2 — 22 H{CV:'I(/\% —22)

(3.25)

The numerator is a polynomial of degree 2N’ which, by assumption, possesses 2N’ distinct simple roots
in p(Fp). These roots being in the neighbourhood of o(Fy) \ {0} for § small, (3.24) implies that they
are real. This proves o(F') C R.

We now consider the eigennilpotents. The potentially nonzero eigennilpotents N ) ; are thus attached

to the unperturbed eigenvalues £); with sufficient multiplicity, i.e. with dim ]5]- >3 only. Forp=1
and z € R, the resolvent takes the explicit form

-1 _ (- 2) ) (v _ -1
(F=2) ‘{Id =) >}(F0 )

N’ | Pju1

53 ) (7
=1 )\ +z

The eigennilpotents are the coefficients, up to a sign, of the poles of order two of the resolvent at the

eigenvalues. We consider the nonzero eigenvalue Ay only, —\; being similar. Using the fact that the
numerator w(z) of w(z) in (3.25)) is nonzero at A\ by assumption, we have in a neighbourhood of A\

()71 = O = 2) O + T (A2 — 22) (=) 1= (g — 2)sx(1+ O\ — 2)),
with s, = 2)\]61_[];&]6()\ — A2)/w(\) # 0. Hence, for z close to A,

{Id wisk “>< +O(z—)\k)} (A%z 8>+0(1)

1 (P(ld = wisplvr)(er|) Py 0
_)\k—z< 0 0 rot

The absence of pole of order two shows that N = 0, and the computation above further yields
P, — (Pk(Id — wlsk]v1)<el\)Pk 0>
k — )

(Fo(t) —2)7".

0 0
which concludes the proof.

We end the argument by briefly checking that Py is a projector on H x H, or equivalently that
Py, — wysgPg|v1)(e1]|) Py is a projector on H. Since P2 = P,

(Pk — wlskPk|v1)(el\)Pk) Pk — 20)18kpk|v1><€1|)Pk 4+ w SkPk|U1><€1’PkU1><€1|P]€

The right hand side equals Py, — wy s, Pi|v1){e1|) Py if wisk{e1|Prv1) = 1. With the definition of sg, this
is equivalent to 2w1)\kﬂj¢k()\ — A2)(e1|Prv1) = w(Ak). Now, (3.25) gives

Nl
B(Ag) = Y (07— \) +2w12H§¢1 (A2 = X2\ e1| Pyvr),
j=1 7

where the first term equals zero, while the only non zero term in the sum corresponds to j = k
Altogether, w(\g) = 2wi T, (A7 — A2)Ax(e1|Pyvr) which yields the result. O
£k
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3.3 Non-selfadjoint adiabatic estimates

We prove here Lemma in a way that naturally adapts to the unbounded setting that we shall consider
in Section [4

Proof: We first note that by the definition of V¢ and K (see (3.13) and (3.10))), we have

N i [t / /
0 VE(t,s) = W(t) Y (P (0)e = L HEE W (5) T 4 e K(1)VE(H, 5).

=—N'

Using (3.11)) and P;(0)? = IP;(0), we obtain

i€ VE(t,s) = Z (0P ()W ()P, (0)e £ S+ G W ()71 L e K (1) VE(t, 5)
- Z P;( P;(0)e = s DAYy ()71 L e K (£)VE(t, ),
whence
iedVE(t,s) = F()VE(t,s) + eK(H)VE(, ). (3.26)

We can now compare T¢(t, s) and V(t,s). Let Q(t,s) = V=(t,s)"1T%(t, s), we have
10 (t,8) = —VE(t,8) VK ()T (t,s) = —(VE(t,s) T K ()VE(t,5)) Q°(t, 5), (3.27)
or, equivalently
Q%(t,s) =Id +1 /t Ve, s) LK (E)VEH, 5)Q8 (2, s)dt . (3.28)
With the shorthand K (') = W) K(t')W (t), we have
Ve, s) LK (E)VE(, s) = W(s)®% (s, t) K (1) D (¢, s)W 1 (s)

and
Bj (0)K (t')B4(0) = i(1 — 8,45 (0) K (/)B4 (0).

Therefore, for any 7,
t . ’ ~
P; ()t s) = P;(s) +iW (s) / P;(0)es o G (1) (1d — P;(0))0° (¢, )W L (s)Q (¢, s)dt!. (3.29)

Now, observe that,

eyt 1L @dge (1 o) = F()et I iduge(yr ) (3.30)
where -
= ST RO () — 65(6) = P() — 65(0)1d (331)
k
is invertible on (Id — IP;(0)H x H, with reduced resolvent we denote by
Rj(t) := F; M (t)|1a—p,( ZPk —¢5()).
k#]
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Thus the integrand in (3.29)) reads, using (3.27)) in the last step,
I: = esde B Zy1d — P;(0)D5(, )WL (s)QE (Y, 5)
— RW)R, (0B (1)et 5000 (¢ w1 (5)05(¢, 5)
= K()R;(t"){iedyes S« L®auge! s\ W= (s)Q5 (¢, 5).
We deduce

I = icdy {f((t/) (et S duge w1 (s)Qe (¢, s)}
—iedy {K () R;(t')}et s 0duge(t! s\ W=1(5)Q5 (¢, s)
FeK (¢ Ry (t)e Jo (i as (¢ )W ()5 (¢, 5). (3.32)
Note that thanks to our spectral hypothesis, we have

sup{[| R; (1), |0:R; (1)||} < co
teT

for some constant ¢y. We can thus integrate (3.29) by parts to get the existence of a constant ¢ > 0
(that may change from line to line below) such that for all t,s € T

1P (8)2(t, 8) = Pi(s)]| < ccoell|2]], (3.33)

where |||Q]|| = SUD (s )T |Q2(t, s)||. Therefore,

sup_ QL) ~ 1d)* < e 210017 < ee? (112 — a2 + || 1a][?),
(s,t)eT

from which we get the existence of £g > 0, independent of ¢, such that € < g¢ implies
1€ = 1d[[| = O(e).
Hence we infer the sought for bounds

Q% (t,s) = VE(t,s) *T5(t,s) = Id + Os(e), and T°(t,s) = O (1).

Let us now prove Lemma

Proof: Set x,(s) = <ZE§;> and recall that

7 _F w(s)) _
Py(s)xw(s) = Po(s) <w(s)> =0.
Therefore, the perturbed projector Py(s) associated to the kernel of F(s) given by (3.20)) satisfies

Po(s)xu(s) = [10 4+ Fo(s)g!  G()] Pols)xuls) =0.
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Hence, writing F(s) = W~ (s)F(s)W(s), we have

VE(t, 8)xw(s) = W () (t, 8)(Id — Po(0))W " (s)xw(s) = W ()@= (t, 8)F(s) (F(s) "W (5)xw(s)),

where E'(s)~! is to be understood as the reduced resolvent of F'(s) acting on (Id —Pg(0))H x H. Thanks
to (3.12) we can rewrite

/OVE(t,s)Xw(s)dS——laW /a{qﬁ () (B ()~ W ()0 (s)) s (3.34)
= —eW (£){D°(t, 5)(F(s) "W (s)xw(5))}o = Ou(e).

4 Generalization to unbounded operators

In this section, we prove Theorem [I.8] To start with, we focus on the existence of solutions, then we
deal with the adiabatic result, that we spell out step by step. The latter proof follows the same line as
in Section [3| However, due to the unboundedness of the operator H(t,x), several technical points have
to be taken care of; we emphasise these points in different subsections.

4.1 Global weak solution to (|1.11])

We prove the existence of a unique global solution to the nonlinear Schréodinger equation (1.11)) in the
weak sense, i.e. for any x € D, we have equation (1.12)), that is

€0 (x|¢°(t)) = ((Ho + W(Z, [ ()])x]¢=(2)), ¥°(0) = w(0).

We denote by e~ #Ho the evolution group associated with Hy which maps D into D and is differentiable
on D only. We first consider a solution of (1.11]) as an integral solution, i.e. a continuous function
t — 1)%(t) € H such that

VieT, ws(t)—ethOw(O)—i—_l/O o = Hoy (5 [ (5)])05° (s)ds. (4.1)

(29

Indeed, such a °(t) satisfies (1.12)) for all x € D. Besides, if it does exist, we will show that the solution
satisfies [[¢%(¢)|| = [lw(0)]] = 1.

To construct ¥°(t), we consider M > 1, 7 > 0 such that
1+ 7Msup||W| <M, and sup(|W] +4M|d,W|)T < 1,

the ball B(0, M) of H and the map ® : C([0, ¢, H) — C([0, 7¢], H)

¢
O :ou(t) e stHo (0)+is/ e == HoWw (5 Tu(s)])v(s)ds.
0
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By the choice of 7, ® maps C([0, 7¢], B(0, M)) into itself. Besides, ® is a contraction:

P(v)(t) — ®(w)(t) = % ; e~ SO (W (s, [u(s)] o (s) — W (s, [w(s) w(s))ds (4.2)
= % ; e SO (W (s, [o(s)]) (v(s) = w(s)) = (W (s, [v(s)]) = W (s, [w(s)]w(s))ds,

hence, uniformly in ¢t € T, |[®(v) — ®(w)|| < sup(|[W]| + 4M||d;W|)7[lv — w] with sup(][W] +
AM||d W |)T < 1. Therefore, ® has a unique fixed point ¥°(t) € C([0,7¢], B(0,M)), which is the
unique integral solution of the equation ((1.11)) on [0, T¢].

i

Now, the vector ¢ (t) = e=H04)?(t) satisfies Vt € [0, €],

GO =w(0) + - [ eI (o)) (), (13)

where the integrand is continuous, so that strong differentiation with respect to time is allowed. Since
the operator ez570WW (s, [)°(s)])e = *110 is self-adjoint, one gets in the usual way that,

vt € [0,7el, lle" (Ol = 9= (D)l = 1.

Observe that the choice of 7 only depends on ||[W]|, ||d,W|| and M, and since ||¢%(7¢)| = 1, we
can reiterate the same argument on [7e, 27¢| starting from the initial data ¢°(7¢) instead of w(0). One
then constructs the unique normalised integral solution of on [re,27¢], so that ||[¢°(27¢)|| = 1.
Iterating the process, we see that we have a unique global integral solution of the form to the

equation (1.11)).

4.2 Adiabatic statement of Theorem [1.§

Again, the gauge invariance manifested in the conclusions of Lemma holds in this case as well. This
allows us to consider the replacement H(t,x) — H(t,x) — \(t,x)Id, keeping the notation H (¢, z) for the
shifted Hamiltonian, which admits 0 in its spectrum and finitely many negative eigenvalues.

At this point, we follow the same strategy as in Section [3| We set A(t) = ¢°(t) — w(t), which solves
a system similar to (3.2), as we now check. With the definitions
lej)(ejlw(t) = wj(t)ej, v;(t) = 0o, H (L, [w(t)])w(?), (4.4)

and for all normalized x € D, we have, using the smoothness of the bounded operator W (t, x),

ie0i(x|A 1)) =((Ho + W(t, [ (1)]))x]¢° (1)) — ie(x|w(t))

= ((Ho + W (t, [w®)])XIA) +2 Y (x](8s, W (t, [w(t))R(w;d; (8)w(t))

j=1
—ie(xlw(®)) + (I (1)
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where 7¢(t) is of order ||A(¢)||?. Indeed, it takes the form

) = Y (A OARDbk() + A AR(bK(E) + Ay (1) Ak()b; (1))
1<j,k<p

+ > (A (O)Bi(HA) + A, (1) B (H)A(t)

1<j<p

for some uniformly bounded vectors b; 4 (t), b; (1), bjk(t) € H and uniformly bounded operators Bj(t), B;(t)

are bounded operators (which may also depend on A(t) and A(t)):
() = / Do W (t, [0 + SA (2R(w; 57)A + |A;2(A +w))ds (4.5)
1<5<p

. / (1 5) (2R(w; D)) QR(@iBg) + [Ap)ds 02, W(t, [+ sA] wds.

1<5,k<p

Besides, icd; (x| A(t)) satisfies a similar equation corresponding to (3.2). Thus for the nonlinear problem,
we need to consider weak solutions on D x D of the coupled equations, see in Section For any
(XlaXQ) €D x D7

(3 )=+ B (o (I Q{15 20

with 7<(t) = O(| A(t)|?) and

F(t) = Fy(t) + G(t) with Fo(t) = <H ol - t?[w( t)])) ,
e (Ol @) el Y s | wi® 0\ fe
¢ =2, o (G i) - 2 Sl

The conjugates do not appear in the definition of Fy, F' and G since assumption Ry entails the fact
that H(t,z) is real.

Hy

Note that Fy(t) = Fy + B(t), where Fy = ( 0

<W(ta w(®)]) 0

0 —W(t, [w(t))])
is D, and the same is true for F(t) since G(t) is also bounded. In the next three paragraphs, we
develop the arguments of the proof paying attention to the difficulties induced by the fact that Hg, and
thus F'(t) are unbounded. We shall focus in particular on the existence of the propagator associated
with the operator F(t), on the analysis of the (unbounded) spectrum of F(t), on the construction of
the associated adiabatic approximate propagator and on its properties.

?{ > is self-adjoint on D := D x D and B(t) =
— 1o

> is bounded, self-adjoint and smooth in ¢. Therefore, the domain of Fy(t)

4.3 Existence of the propagator generated by F\(t)

Using the latter remark, we get the following regularity result on the solutions to the linear part of the
equation for (A(t), A(t)) in H x H.
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Lemma 4.1 Let T be an interval such that 0 € T and let F(t) = Fy + B(t) + G(t) such that Fy is
self-adjoint on D = D x D and B(t) + G(t) defined for all t € T is smooth and bounded. Then, the
equation

€0 Te(t,s) = F(t)T°(t,s), T°(s,s)=1d,
admits a unique strong solution with values in D, that is C* in time. Moreover, the same is true for

the equation
i€y T%(t,s)" = =T°(t,s)" F*(t), T°(s,s)" =1Id. (4.7)

Proof: The first statement follows from Thm X.70 in [RS], see also [Ki]: the regularity assumption
in time of F'(t) is satisfied thanks to R; so we need to show that for all fixed ¢ € Ty, F(t) generates
a contraction semigroup on H x H. The operator Fy(t) being self-adjoint on D, it generates a unitary
group on H x H. Since G(t) is bounded, F(t) = Fy(t) + G(t) generates a strongly continuous semigroup
S(8)s>¢ (see Thm IT1.1.3 in [EN]) which satisfies ||S(s)|| < ell¢®l* in the operator norm of H x H. By
rescaling, F'(t) — ||G(t)||1d, defined on D, generates a contraction semigroup, so that Thm X.70 in [RS]
applies and the first statement follows.

Since the existence of a strong derivative of T'(¢, s) on D does not imply directly the same for T(t,s)",
we resort to the following decomposition: we set F'(t) = Fy+ A(t), where A(t) = B(t) + G(t) and define
the bounded operator ©° by

O°(t,5) = et FOTe(¢, s)em=5F0 | st ©F(t,s)! = O(s,1).
It satisfies the strong differential equation on ‘H x H
ie0,0%(t,s) = A°(t)O°(L,s), ©%(s,s)=1d, with A°(t) = eétFOA(t)e_étFO.

The generator A°(t) is strongly continuous on D and satisfies |A°(t)|| = ||A(¢)|| for all t € 7. Hence

we can write ©°(t,s) as a norm convergent Dyson series, uniformly in ¢t € 7, where the integrals are
understood in the strong sense

-\ J t U u N B
0 (t,5) = Y O5(t,5), @j(t,s):(—;> /// A (uy) A (g 1) .. A% (un)du . .. duy 1 du.
]EN S S S

The relation for j > 1,

3

-
VA ~
0% (t,5) = —/ A ()5, (u, 5)du
S
allows to prove by induction that t — @j(t, s) is continuous in norm and, for all p € H x H
€0 O3 (1, 8)p = A% (t) Go1(t 8)e.

Hence t — ©5(t,s)" is norm continuous as well, and the same is true for ©°(t,s)" = >-. 4 O5(t,s)".
Moreover, @j(t, s)* 1, for any ¢ € H x H, satisfies for any ¢ € H x H

(o105t = {2 [ Aoy shptalur) = [ w5 w9)elvid

€
1

- / (1051 (1, )" A% (u) ). (48)

3
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Since A%(t)" = itF0/e A*(t)e~tFo/e where t — A(t) is norm continuous, we get that ¢ As(t)" is
strongly continuous, see e.g. [Ki], and so is t — ©5_, (¢, s)*A%(t)". Hence we deduce from 1’ that for
any ¢ € H X H,

0% (1, 5)"t = é / 68 (u,5) A% (u) i,
which, as above, implies for all j > 1 and all v € H x H,
(2005, 8) " = —O5_y(t,5) A% (1) ).
This differential identity allows then to get the key property
(0,0 (t,5)" 1) = —O°(t, s)* A% (1) "4p,

which derives from the Dyson representation for ©¢(¢, s)*. Therefore, T¢(t,s)* = e~ "sF0/2@% (¢, 5)*ei0/°
is strongly continuously differentiable in ¢t on D, since all operators in the composition are, and 1’
holds. (]

4.4 The spectrum of F(t)

In order to be able to describe the spectrum of F(¢) in the same way as in the second statement of
Lemma [3.1] for dy small enough, we use that, as a consequence of the hypothesis So:

V(t,z) € To x XP, o(H(t,z))No(—H(t,z)) = {0}.

Note that the operator Fy(t) satisfies the assumptions of Theorem 4.15a in [K2], with the generalization
stated in b) of Remark 4.16a. We deduce that the spectrum of F'(t) consists in a sequence of eigenvalues

e =Li(t) < < —la(t) < () <O <y (t) < la(t) < --- < L(t) < ..., (4.9)

where +/¢;(t) are simple eigenvalues, while ¢y(t) = 0 has multiplicity 2, with zero eigennilpotent. Each
¢;(t) corresponds to a unique eigenvalue of the unperturbed operator Fy(t) determined by H (¢, [w(t)]).
We denote those corresponding eigenvalues of Fy(t) by £X;(t), j € N; recall that the labelling of
the Ajs may differ from that of the eigenvalues of H. Besides, there exists a constant c¢ such that
vt € To,Vj € Z,

i1 (t) = £5(0)] = cld]®, €5(t) = €5(0) + (£;(#) = £;(0)), and sup SuTglﬁj(t) —£(0)] <00 (4.10)

Moreover, ‘
vteTo, VjEZ, [41) <c, (4.11)

which derives from the observation F'(t)P;(t) = ¢;(t)P;(t): By differentiation,

AP (L) + F(6)P;(t) = £;(6)P; (1) + £;(t)P;(t)

whence, using P;(¢)P;(t)P;(t) = 0, one gets for the rank one projector P;(t), j # 0,

(5(1)P;(t) = Pj(t) BOP; ().
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The fact that F'(t) is a slightly non-selfadjoint operator in the sense of Section V.5 in [K2] allows us
to apply Theorem 4.16 in [K2] and Remark 4.17 following it, to get the following spectral decomposition,
under our assumption a > 1/2 in Sy, and for ¢y small enough:

F(t)= i 5 (t)P;(t), with the convention £_;(t) = —£;(t), where (4.12)
j=—00
Pj(t) = [W;())(@;(t)], 5 #0, Po(t) = > [UG() (@G (1), (4.13)
o=1,2

with {W;(t), ®;(t)}z0 U {¥E(t), ®§(t)}sef1,2y @ biorthogonal family of vectors, with [[¥;|| = [[¥F]| = 1.
The sum (4.12)) is understood in the strong convergence sense on the time independent domain

D={x=)_ o;¥;(0)st. Y |ajl;(0)]* < oo} CH xH. (4.14)
JEZ JEZL

Indeed, Theorem 4.16 in [K2] states that the normalised basis {¥;(t)};ez is a Riesz basis, and The-
orem 3.4.5 in [D], giving a characterisation of Riesz basis, allows for the explicit description of the
domain D. In particular, there exist 0 < C, M < oo such that for all t € T,

1> Pit)|| <M, VI€Z, (4.15)
jel
CHIxIP < Y IPixI1® < Clixll®, Yx € H x H, (4.16)
JEZL
where
2
X =)o ()W) + Y WE(t)ag (),
JEL o=1
J#0

Note that the domain of Hy is
D={p= ZBkSDk s.t. Z ‘Bj)\kfz < 0o},

keN keN

where (Ag, ¢r) are the eigenvectors and eigenvalues of Hy. The reader can refer to the paper [GZ], for
example, in which Riesz spectral systems are studied.

4.5 The adiabatic propagator and its properties

At this stage of the proof, we can define, as in the bounded case, the dynamical phase operator ®¢(¢, s)

(see (3.9) and (3.10))
(t,s) = Y P;(0)e < (e ¢ e (1, 5) L = D (s, 1), (4.17)
j=—o0
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which is a family of un1formly bounded operators that map D on D, thanks to . At this point,
further making use of (4.10) and of the fact that |(e’® — 1)/z| is uniformly bounded in x € R, one sees
by a dominated Convergence argument that ¢t — ®°(¢, s) is also a strongly continuously differentiable
two-parameter evolution operator on D, where holds.

We also define the intertwining operator W (t) given by

WOW(t) = K)W(t), W(0)=1d, with K(t) =i Z P, ( (4.18)
j=—o00

It is shown in Proposition 3.1 and Lemma 3.2 of [J3], that as soon as o > 0, K(t) is well defined,
smooth, and W (t) satisfies the intertwining property (3.11)) with each of the projectors.

Actually, theses properties of W are shown in [J3] for orthogonal projectors P;(t). However, as a
routine inspection reveals, the proofs hold mutatis mutandis in the non selfadjoint case, provided the
growing gap assumption S holds, and the resolvent (F(¢) —2)~! can be bounded in an approximate way
by the inverse of the distance to the spectrum. Our perturbative framework, characterised by dy small
ensures that this is the case.

We then introduce the bounded family of operators
VE(t,s) = W(t)®(t, s)W(s) "1, (4.19)
which map D on D and satisfy Ve(t,s)~! = V=(s,t), together with
VE(t,5)Ps(s) = Pj())VE(t 5) = W (P (0)e - @7y ()71

The latter intertwining property implies that W (¢) maps D on D: From 1) and the definition of
®;(t) and W;(t) in ([4.13), for j # 0,

W ()| W;(0))(®;(0)] = [; () (@ ()W () = W(t)¥;(0) = ¥;(t){®; (1) W (£)¥;(0)),

so that we have the following property: if xy € D, see (4.14)), with coefficient a; = (®;(0)|x), 7 # O,
in the basis at time 0, then W (t)x has an expansion in the basis at time ¢ with coeflicients o;(t) =

(®;(8)|W(t)¥;(0))ay, j # 0, where [(P;(¢)|W (t)¥;(0))| is uniformly bounded in j # 0, thanks to (4.15)).
We now describe the adjustments requested to argue as in Section to prove the analogue of

Lemma that is

Ta(t s) =Ve(t,s) + Oy 5(e).
We recall that the differential equatlon 4)) has to be understood in the strong sense on D, and T=(t, s)
is C! on D and maps D on D, accordmg to Lemma Analogously, VE(t, s) satisfies in the

strong sense on D, and the same holds for Q¢ (t,s) deﬁned by (3 Then, integration by parts on

the integrand of 1.' is to be understood in the strong sense, on vectors of D. To deal with .,
one notes that (3.30) holds in the strong sense on D, with F;(t) = F(t) — £;(t)Id the closed operator
on D obtained by extending the summation to k € Z in Slrmlarly, its reduced resolvent on
(Id — P;(0))H x H simply reads R;(t) = Zkez P (0)/(€x(t) — £;(t)). Note that thanks to (4.16]) and the

spectral behaviours and ., we have with the notation (j) = (1 4 j2)/2
max{|| B;(t)[l, [0:R; ()|} < e(j)™°,
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for some constant ¢ uniform in ¢t € 7, that may change from line to line below. Using this estimate in
the integration by parts formula (3.32) we now get

1P5()(E, 5) = Py (s)| < ce ()~ |12]], (4.20)

where [|[Q|]] = sup(, ;o7 [I2(¢, 5)||. Therefore, since 2a > 1,

sup_[|Q(t,s) —1d||> < ce?[||Q]][%,
(s,t)eT

from which we get, as in Section that for € < gg, g9 independent of ¢,
112 = 1d[[| = O(e).
In turn, this proves Lemma in our current unbounded context.

Given the observations above, we also note that the arguments used in proof of Lemma [3.5 are valid
in the unbounded case as well.

4.6 Conclusion of the proof

We set
oz = sup  sup [(x|A(t))| = sup [[A@)].
te[0,7] x€D, [|Ix[I=1 t€f0,7]
In particular, since e; € D for all j € {1,---,p}, we have

vt € (0.7, 1A;(0)] < 5%

Besides, for any family of bounded operators C(t) on H x H, for <>>§1> € D normalized and for
2
0<s<t<r, using (3.3

(s () e (30)))] = s 17 cves =6 sw joe)s

36[0’7} SE[O,T]

We then deduce from 1} that there exists a constant b > 0 such that for any <§1> € D and
2

O0<s<t<m,
[ (xalre ()] + [zl (s))] < (87)° (4.21)
We observe that T¢ (s, t)* = (T=(t, s)~')* satisfies in the strong sense on D

€0 (T%(s,t)") = F(t)"T*(s,t)*, T°(s,s)" =1d.

In view of , for any x1, x2 € D,
. € « [ X1 A(t)
w@<T(&® <m>‘<A@Q
* g « [ X1
+<F@)T(&ﬂ ( )‘(
X2

D> S~—"
I
/\
!
-~
%
N
(0}
2
N
*
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where the first term of the right hand side comes from the equation of 7%(s,?)*, and the second term
comes from the fact that A satisfies the equation in the weak sense, making use of T7¢(s,t)* : D — D.
Therefore, integrating between 0 and s, we obtain

()= (o QI f oo () ()

Since T¢(s,t)* <§1> € D x D, we can use estimate (4.21]) for normalised (f) and there exists b such
2 2

e ()] (20) ) ar] < sl
0 X2 (t)
Besides,

[ (e (LG = L) ren (5))
N /o <(§) V(s (ZEQ) > dt + 04(e) = Os(e)

by Lemma [3.3 and 3.5 Finally, by choosing x1 = x, x2 = 0, we obtain that there exists constants
a,b>0, un1form1n0§s§7'

that

[(x, A(s))| < ae + - \8\(58)
whence .
0l <ae+ gT(ég)Q,

which allows to conclude the proof. O

5 Appendix A

According to Remark we provide here an argument showing the spectrum of F'(t) is not necessarily
real if H (¢, x) is real. We consider a smooth Hamiltonian R x R? > (¢, z) + H (¢, ) on a Hilbert space H,
and of the form

3
H(t,x) = M(t,z)Pi(t,x) + Na(t, ) Pa(t,x) with ZPj(t,x) =1d, (5.1)
j=1

with the assumption that the eigenvalue 0 is simple and that the \;(¢,z) are of arbitrary multiplicities
(j = 1,2). With the assumptions of Section that means N’ = p = 2 and, dropping the arguments
(t,[w(t)]) in the variables, the Aronszajn-Weinstein determinant (3.22) takes the form

2\ wilej| Piog)
det 117 :
w(z) = e<3k+z A —z2) (N +2)
1<j,k<2
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Introducing ¢i2(2) = (A — 2)(A1 + 2) (A2 — 2) (A2 + 2) and g;(z) = (A\j — 2)(\j + 2), j = 1,2, we have

S p wier| (T Pugi(2)vn)  wilen (22, Pugi(2))vs)
— q12(z) det <CI12( )Id + 2 <W2<€2|(Zl21 P;)xg(];(i:))yﬁ w2<62|(2l2:1 Pl)\lql(Z))Ug>>> )

where 1 = 2 and 2 = 1. By assumption, all matrix elements are real-valued. If 29 € R\ {\1, A2} is a
zero of w(z), that is a real eigenvalue of F', that means —qi2(20)/2 is a real nonzero eigenvalue of the

matrix
L) = w1<61’(212: Pi\gi(z0))v1) w1<el|(zl2: Pgr(zo))vs)
b(z0) = <W2<€2|(2121 P\igi(z0))v1) w2<e2|(212:1 Pl>\qu(zo))v2>> € My(R).

This requires (Tr b(20))? — 4det b(zp) > 0, which is not granted for a generic matrix in Ma(R). While
b(z0) is not completely arbitrary, it doesn’t necessarily possess the symmetries that enforce this, as we
argue below. Hence, the existence of nonzero real eigenvalues for F' cannot be inferred from the sole
requirement that H is real.

To be more quantitative, assume the eigenvalue A2 of H(¢,z) is independent of (¢, x). Thus w(t) is
independent of Ao that we will consider as a large parameter. Consider ¢ fixed and zy in the vicinity of
A1 (t, [w(t)]), assumed to be of order one. Then, for Ay > 0 large, we have qi2(20) = A3(\? — 23) + O(1),
q2(20) = A3+ O(1), q1(20) = O(1) so that 212:1 Pihgi(z0) = PiAaA3 4+ O()\g) and

wi(e1|Prvr)  wier|Prva)

o 2
blz0) = Maka <w2<€2\Pwl> wa(ez| Prvz)

>+0Qﬁ (5.2)

The condition (Tr b(zg))? —4 det b(zp) > 0 for Ay large, is equivalent to saying the zy independent leading
order matrix in (|5.2)) has real eigenvalues, i.e. to having

(w1 <€1’P11)1> — (,U2<€2’P1’U2>)2 + 4w1w2<61]P1v2)(62\P11)1>) > 0. (5.3)

Recall that given (wi,ws) = [w], the operators H([w]), Pi([w]) and 0., H([w]), j = 1,2 are fixed, as is
w = ¢(w]). Hence, the same is true for

w; = Pu((w])o; = Pu((w)s, H([w])w = K;(w)w, with {(ujlw) =0, j=1,2, (5.4)

so that ((b.3) reads

(wiler|uy) — walea|us))? 4 dwiwaler|ug) (ezu)) > 0. (5.5)

For generic vectors {eq, e2,w, u1,us} satisfying , the above condition needs not be true. Actually,
for any real unitary operator R such that Rw = w, we have w; = (wle;) = (w|Re;j), so that {fi, fa} =
{Rei1, Rea} forms another orthonormal family defining the nonlinearity of the problem, keeping wj,
j = 1,2 fixed. It can be shown that if holds for {ey, e2,w, u1,us}, with dim(Cw)t > 3, w; # 0, and
0 < [(ui|u2)| < ||uil|||uz||, & real unitary R leaving w invariant can be chosen to that is false for
{f1, f2,w,u1,us}. The idea consists in discussing the restriction of R to (Cw)* so that the orthonormal
vectors { f1, fo} have scalar products with {uj,us} which make false.

31



6 Appendix B

Let us look for more general solutions to ([1.13]) and prove Lemma Reparametrising the time variable
t— s(t fo ~v(u)du and writing w(s(t)) = v(t) allows us to get rid of the factor ~(t),

. (12) = (1),

Writing out w1 (s) = x(s) + iy(s), wa(s) = z(s) + it(s), we get the equivalent system
ex = (2% + y?)t
ey = —(a% +1%)2
et = (22 + )y
et = — (22 +y?)x
It is readily checked that the three following expressions are constants of the motion

z? + t2, y2 + 22, rz + yt,

so that the system can be solved by quadratures. Refraining from spelling out the solution in full
generality, we consider solutions corresponding to the initial conditions

y(0) = t(0) = 0, (0) > 0,2(0) # 0.

We get for all s € R with a.(s) = —x(0)z(0)s/e

- z(0) cos(as(s)) — 2(0) cos(a=(s))
z(s) = 7z [2(s) = 7
(cos2 (ae (s))+(j§8;)zsin2 (ae (s))) (COS2 ae(s H‘(ZES;) sin? s))
x(0) sin(as(s ’ x2 sin(ae z
y(s) = (0) sin(ac(s)) t(s) = (0) ())/ ( )

/2 75 -
(COS2(045(5))+(Z§8§)QSiHQ(QS(S))) (COSQ(QE(S + IO)) sin? (e (s) ))1 ’

In case x(0) = 1 = +2(0), we recover (1.14), modulo the reparametrization of the time variable. In all
other cases, noting that R(w;wz) is conserved, we compute in the s variable

2(0)*2(0)
cos?(ag(s)) + (iég;f sin®(ac(s))

Ey(s) =2

9

which gives the result of the Lemma [1.9 with R(¢) = ca.(s), 2(0) = v1(0) and 2(0) = v2(0).
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