David Bryant
email: david.bryant@otago.ac.nz

Celine Scornavacca
email: celine.scornavacca@umontpellier.fr

An O(nlog n) time Algorithm for computing the Path-length Distance between Trees

Keywords: Phylogeny, Tree comparison metrics, Path-length metric, Tree decomposition

Tree comparison metrics have proven to be an invaluable aide in the reconstruction and analysis of phylogenetic (evolutionary) trees. The path-length distance between trees is a particularly attractive measure as it reflects differences in tree shape as well as differences between branch lengths. The distance equals the sum, over all pairs of taxa, of the squared differences between the lengths of the unique path connecting them in each tree. We describe an O(nlog n) time for computing this distance, making extensive use of tree decomposition techniques introduced by Brodal et al.

[2].

Introduction

A phylogenetic tree is a tree describing the evolution of a set of entities X (species, genes etc.), which will be called taxa from now onwards. Degree-one nodes are called leaves and a bijective function associates each taxon to a leaf. Internal nodes represent putative ancestral taxa and branch lengths quantify the evolutionary distances between nodes.

Tree comparison metrics provide a quantitative measure of the similarity or difference between two phylogenetic trees. They have proven invaluable for statistical testing (e.g. [START_REF] Penny | Trees from languages and genes are very similar[END_REF][START_REF] Holmes | Statistical approach to tests involving phylogenies[END_REF][START_REF] Susko | Improved least squares topology testing and estimation[END_REF]), for visualisation [START_REF] Hillis | Analysis and visualization of tree space[END_REF], and for the construction of consensus trees [START_REF] Swofford | When are phylogeny estimates from molecular and morphological data incongruent?[END_REF][START_REF] Bryant | A classification of consensus methods for phylogenetics[END_REF][START_REF] Lapointe | The average consensus procedure: combination of weighted trees containing identical or overlapping sets of taxa[END_REF]. By far the most well-known tree comparison metric is the Robinson-Foulds metric [START_REF] Robinson | Comparison of phylogenetic trees[END_REF], which equals the number of bipartitions 1 that are in one tree and not the other. However many other different metrics have also been proposed, each one based on a different characteristic of the trees being compared.

Here we consider pairs of trees on the same set of taxa. Also, our trees are binary, i.e. each internal node has degree three. The path-length between two taxa in a phylogenetic tree is the sum of the branch lengths along the unique path between them. The path-length distance between two trees T 1 and T 2 is given by

∆ (T 1 , T 2) = ∑ i j (p i j -q i j) 2 , (1)
where p i j is the path length between taxa i and j in the first tree and q i j is the path length in the second tree. We note that ∆ (T 1 , T 2) is a metric in the mathematical sense. The first explicit description of the metric appears in [START_REF] Penny | Trees from languages and genes are very similar[END_REF] (without branch lengths) and [START_REF] Lapointe | The average consensus procedure: combination of weighted trees containing identical or overlapping sets of taxa[END_REF] (with branch lengths), though closely related ideas appear much earlier (e.g. [START_REF] Hartigan | Representation of similarity matrices by trees[END_REF][START_REF] Farris | A successive approximations approach to character weighting[END_REF][START_REF] Williams | On the comparison of two classifications of the same set of elements[END_REF]). Given a phylogeny with n leaves, it takes O(n 2) time to construct the set of all path-lengths p 12 , p 13 , . . . , p (n-1)n , using the dynamic programming algorithm presented in [START_REF] Bryant | Rapid evaluation of least squares and minimum evolution criteria on phylogenetic trees[END_REF]. Hence the path-length distance can be easily computed in O(n 2) time. Our main contribution in this paper is to show that we can compute this distance in O(n log n) time, which is almost, but not quite, linear in the size of the problem input.

Expanding [START_REF] Brent | The parallel evaluation of general arithmetic expressions[END_REF] gives

∆ (T 1 , T 2) = ∑ i j (p i j) 2 + ∑ i j (q i j) 2 -2 ∑ i j p i j q i j . (2)
The first two terms can be evaluated in linear time using dynamic programming, as outlined in Section 2. To compute the second term efficiently we first introduce a tree decomposition technique (Section 3) allowing the sum to be evaluated in O(n log n) time (Section 4). Both the tree decomposition and algorithm of Section 4 draw heavily on an algorithm of [START_REF] Brodal | Computing the quartet distance between evolutionary trees in time o (n log n)[END_REF] for computing the quartet distance between two trees.

Sums of squared distances

In this section we show how to compute the sum of squared distances ∑ i j p 2 i j in a tree in linear time. We begin by introducing some notation that will be used in the rest of the paper.

Select an arbitrary leaf ρ and consider both T 1 and T 2 as rooted trees with root ρ. We think of ρ being at the top of the tree and the other leaves being at the bottom of the tree. For any two edges e, e we write e e if the path from e to ρ passes through e . We write e ≺ e if e e and e = e . Hence if e is the edge incident with the root ρ then e ≺ e for all other edges e . We say that e is external if it is incident to a leaf other than ρ; otherwise e is internal. When e is internal let e L and e R denote the edges incident and immediately below e.

We will use e, e to denote edges in T 1 and f , f to denote edges in T 2 . We let x e denote the length of an edge e in T 1 and y f the length of an edge f in T 2 . Let A i j denote the set of edges on the path from i to j in T 1 and let B i j denote the corresponding set in T 2 . Hence

p i j = ∑ e∈A i j x e q i j = ∑ f ∈B i j y f .
Let n(e) denote the number of leaves such that the path from to ρ passes through e. Define

∑ i j (p i j) 2 = ∑ e internal
x e (nn(e))(2α(e)n(e)x e) + 2α(e L)α(e R) .

Proof Given two edges e 1 , e 2 we let χ(e 1 , e 2) = |{pairs i j : e 1 , e 2 ∈ A i j }|,

the number of pairs having both e 1 and e 2 on the path between them. Then ∑ i j x e 1 x e 2 χ(e 1 , e 2) = x e 2 (n -n(e 2)) ∑ e 1 :e 1 ≺e 2

(p i j) 2 = ∑ i j ∑ e 1 ∈A i j x e 1 ∑ e 2 ∈A i j x e 2 = ∑ i j ∑ e 1 ,
x e 1 n(e 1)

= x e 2 (nn(e 2))(α(e 2)n(e 2)x e 2).

α(e L)α(e R) + ∑ e x e x e n(e)(nn(e))

and the result follows.

Proposition 2

The sum ∑ i j (p i j) 2 can be computed in linear time.

Proof Hence with a post-order traversal of the tree we can compute n(e) and α(e) for all edges e in O(n) time. Computing the sum takes a further O(n) time by Proposition 1. ∑ i j (q i j) 2 can be computed in the same way.

Segment decomposition

In this section we introduce a hierarchical decomposition of the edge set of T 2 that forms the structure used in our dynamical programming algorithm in Section 4.

Let Q be a connected subset of E(T 2), the set of edges of T 2 . We define the boundary of Q to be the set of vertices incident both to edges within Q and to edges outside Q:

∂ Q = {v : there are e ∈ Q, e ∈ Q incident with v }.
The degree of Q is the cardinality of ∂ Q. A segment of T 2 is a connected subset of E(T 2) with degree at most two.

A segment decomposition for T 2 is a binary tree T D such that (D1) The leaves of T D correspond to edges in E(T 2) (i.e. minimal segments); (D2) Each node of T D corresponds to a segment of T 2 ;

(D3) The segment corresponding to an internal node of T D equals the disjoint union of the segments corresponding to its children. An example of segment decomposition is given in Figure 1.

The main result in this section is that we can, in linear time, construct a segment decomposition for T with height O(log n).

The definition of a segment decomposition is based on the tree decomposition used by [START_REF] Brodal | Computing the quartet distance between evolutionary trees in time o (n log n)[END_REF] to compute quartet-based distances, which in turn are based on techniques for efficient parsing of expressions [START_REF] Brent | The parallel evaluation of general arithmetic expressions[END_REF][START_REF] Cohen | Dynamic expression trees[END_REF]. The main difference with [START_REF] Brodal | Computing the quartet distance between evolutionary trees in time o (n log n)[END_REF] is that the segment decomposition is based on partitioning the set of edges, rather that the set of vertices, and that we were able to obtain a tighter bound on the height.

Our algorithm for constructing T D is agglomerative: we start with a degree one vertex for each edge in E(T 2); these form the leaves of T D . Each iteration, we identify pairs of maximal nodes corresponding to pairs of segments which can be combined to give new segments. We make the nodes in each pair children of a new node. The process continues until one node remains and T D is complete.

The following Proposition shows that in any partition of E(T 2) into segments we can always find a large number of pairs of disjoint segments which can be merged to give other segments.

Proposition 3 Let T be a binary tree. Let M be a collection of segments which partition E(T). Then there are at least

|M | 4 non-overlapping pairs (A, B) such that A, B ∈ M and A ∪ B is a segment of T . Proof Let G M = (V M , E M) be the graph with vertex set V M = A∈M ∂ A and edge set E M = {{u, v} : ∂ A = {u, v} for some A ∈ M } .
Decompose G M into maximal paths P 1 , P 2 , . . . , P κ which contain no degree three vertices in their interiors. For each i, let M i be the set of elements A ∈ M such that ∂ A ⊆ P i . The sets M i partition M . Fix one path P i = v 1 , v 2 , v . We order the elements of M i lexicographically with respect to the indices of their boundary vertices. In other words, if m) and min(j, k) < min(, m). With this ordering, if A k and A k+1 are adjacent then (A k ∪ A k+1) is connected and has degree at most two. Hence by pairing off A 1 and A 2 , A 3 and A 4 , and so on, we can construct M i 2 disjoint pairs. An example is given in Figure 2. The corresponding G M . For this decomposition, there is a single maximal path P 1 = t, s, q := v 1 , v 2 , v 3 and boundary sets become respectively The total number of pairs we obtain this way is given by ∑

A, B ∈ M i satisfy ∂ A = {v j , v k } and ∂ B = {v , v m } (where we might have j = k or = m) then we write A < B if max(j, k) < max(, m) or max(j, k) = max(,
a
{v 1 , v 2 }, {v 1 , v 1 }, {v 2 , v 2 }, {v 2 , v 3 }, {v 3 , v 3 }.
κ i=1 |M i | 2 .
We will determine a lower bound for this sum. Let d be the number of degree three vertices in G M . Since G M is connected and acyclic there are d + 2 paths P i which contain a degree one vertex in G M and d -1 paths which do not. If P i contains a degree one vertex then M i contains at least one component with degree two and another component with boundary equal to the degree one vertex, so |M i | ≥ 2. If P i contains no degree one vertices then |M i | is at least one. Let x denote the number of paths P i which contain a degree one vertex and for which |M i | is odd (and hence at least three). We have

|M | = κ ∑ i=1 |M i | ≥ 3x + 2(d + 2 -x) + (d -1) = x + 3d + 3 as well as 0 ≤ x ≤ d + 2 and d ≥ 0.
We have that |M i | is even for at least (d + 2)x paths ending in a degree one vertex, and for these paths

|M i | 2 = |M i | 2 . Thus |M | 2 - κ ∑ i=1 |M i | 2 ≤ x 2 + d -1 2 .
To bound the right hand side, note that the linear program

max x + d subj. to x -d ≤ 2 x + 3d ≤ |M | -3 has solution d = |M |-5 4 , x = |M |+3 4 and so x + d ≤ 2|M |-2 4 . Hence |M | 2 - κ ∑ i=1 |M i | 2 ≤ |M | 4 - 3 4 and ∑ κ i=1 |M i |
2 , the number of pairs, is bounded below by |M | 4 .

We can now state the algorithm for constructing T D . Initially T D is a set of isolated vertices. As the algorithm progresses, vertices are combined into larger trees, so that each iteration T D is a forest. The algorithm terminates when T D contains a single tree.

At each iteration let M denote the partition of the edge set of E(T) into segments corresponding to the maximal elements of the incomplete tree T D . Rather than store this partition explicitly, we maintain a linked list B of boundary nodes. For each element v in the list we maintain pointers to maximal nodes T D corresponding to segments in M having v in their boundaries. In addition, we maintain pointers from each node in T D to the boundary nodes of the corresponding segments. Proof We only merge nodes if the union of their corresponding segments is also a segment. Hence T D will be a segment decomposition tree. It remains to prove the bound on height and running time.

We note that |M | reduces by a factor of 3 4 each iteration. Hence the number of iterations is at most log 4 3 (2n -3), which is also a bound on the height of the tree. Using the list of boundary points B we can construct construct G M and identify pairs, in O(|M |) time each iteration. Thus the total running time is at most O(n(∑ i=0

3 4 i)) = O(n) time.
We can strengthen the height bound. We say that a tree is k-locally balanced if, for all nodes v in the tree, the height of the subtree rooted at v is at most k •(1+log|v|). As the algorithm can be applied recursively on each node of T D we have that the global height bound applies to each node. Hence Corollary 5 The segment decomposition T D is (1/log 4 3)-locally balanced.

In this section we show that ∑ i j p i j q i j can be computed in O(n log n) time, so that the main result follows from Eq. (2). A (taxon) colouring is an assignment c of the colors black and white to the taxa. For each edge e of T 1 we let c e denote a coloring assigning black to those taxa on one side of e and white to those on the other. For each edge f in E(T 2) and each colouring c of the set of taxa, we let χ(c, f) denote the number of pairs of taxa i j such that i and j have different colours and they label leaves on different sides of f . Lemma 6

∑ i j p i j q i j = ∑ e∈E(T 1) ∑ f ∈E(T 2)
x e y f χ(c e , f)

Proof ∑ i j p i j q i j = ∑ i j ∑ e:e∈A i j x e ∑ f : f ∈B i j y f = ∑ i j ∑ e∈A i j ∑ f ∈B i j x e y f (8) = ∑ e∈E(T 1) ∑ f ∈E(T 2) (7)
x e y f χ(c e , f).

For the remainder of this section we will assume that the vertices in T 2 are indexed v 1 , v 2 , . . . , v 2n-3 . The actual ordering does not matter; it is only used to help presentation.

Let T D be the segment decomposition tree constructed for T 2 using the Algorithm in Section 3. For each node v of T D we let Q v ⊆ E(T 2) denote corresponding segment in T 2 . The overall strategy at this point is to compute values for each node in T D which will allow us to: (i) compute, for an initial choice of e ∈ E(T 1), the sum ∑ f ∈E(T 2) x e y f χ(c e , f) in linear time, and (ii) update this computation efficiently as we iterate in a particular way through edges e of T 1 .

We will store three pieces of information at every non-root node v of T D , the exact type of information stored being dependent on the degree of the segment Q v corresponding to v. If Q v is degree one then we store:

• Two integer counts w v , b v • A description (e.g. coefficients) for a quadratic polynomial φ v (•, •) with two variables.

If Q v has degree two then we store:

• Two integer counts w v , b v • A description (e.g. coefficients) for a quadratic polynomial φ v (•, •, •, •) with four variables.

We now show how the values b v , w v and φ v are computed using a colouring c of the taxa. We start at the leaves of T D and work upwards towards the root.

Suppose that v is a leaf of T D , so that Q v contains a single edge f of T 2 . There are two cases.

1. The edge f is incident with a leaf u of T 2 , so Q v has degree one. If c(u) is black then b v = 1 and w v = 0, while if c(u) is white we have w v = 1 and b v = 0. In either case

φ v (b, w) = y f (b • w v + w • b v). (10
)
2. The edge f is not incident with a leaf of T 2 , so Q v has degree two. Then b v = w v = 0 and

φ v (b 1 , w 1 , b 2 , w 2) = (b 1 w 2 + b 2 w 1)y f . (11
)
Now suppose that v is an internal vertex of T D . Once again there are several cases, however in all cases we have

b v = b v L + b v R w v = w v L + w v R . 3. Suppose Q v L and Q v R have degree one. Then φ v (b, w) = φ v L (b + b v R , w + w v R) + φ v R (b + b v L , w + w v L). (12)
4. Suppose Q v L has degree two and Q v R has degree one, where

∂ Q v L = {v i , v j } and Q v R = {v j }.
(a) If Q v has degree one and i < j then

φ v (b, w) = φ v L (b, w, b v R , w v R) + φ v R (b + b v L , w + w v L); (13)
(b) If Q v has degree one and i > j then φ v (b, w) = φ v L (b v R , w v R , b, w) + φ v R (b + b v L , w + w v L); (14)
(c) If Q v has degree two and i < j then

φ v (b 1 , w 1 , b 2 , w 2) = φ v L (b 1 , w 1 , b 2 + b v R , w 2 + w v R) + φ v R (b 1 + b 2 + b v L , w 1 + w 2 + w v L); (15)
(d) If Q v has degree two and i > j then

φ v (b 1 , w 1 , b 2 , w 2) = φ v L (b 1 + b v R , w 1 + w v R , b 2 , w 2) + φ v R (b 1 + b 2 + b v L , w 1 + w 2 + w v L). (16)
5. The case when Q v L has degree one and Q v R has degree two is symmetric.

6. Suppose that Q v L and Q v R have degree two, that ∂ Q v L = {v i , v j } and ∂ Q v R = {v j , v k }.
We can assume that i < k since the alternative case follows by symmetry. This leaves three possibilities:

(a) If i < j and j < k then

φ v (b 1 , w 1 , b 2 , w 2) = φ v L (b 1 , w 1 , b 2 + b v R , w 2 + w v R) + φ v R (b 1 + b v R , w 1 + w v R , b 2 , w 2); (17)
(b) If i < j and j > k then φ v (b 1 , w 1 , b 2 , w 2) = φ v L (b 1 , w 1 , b 2 + b v R , w 2 + w v R) + φ v R (b 2 , w 2 , b 1 + b v L , w 1 + w v L); (18)
(c) If j < i and (hence) j < k then

φ v (b 1 , w 1 , b 2 , w 2) = φ v L (b 1 + b v R , w 1 + w v R , b 1 , w 1) + φ v R (b 1 + b v R , w 1 + w v R , b 2 , w 2). (19)
An illustration for several of these cases can be found in Figure 3 below. Lemma 7 Suppose that b v , w v and φ v have been computed as above for all nodes of D except the root. Let v L and v R be the children of the root of T D . Then

v 1 v 1 + = v 1 v 1 v 2 v 2 + = v 1 v 2 v 1 v 2 v 2 + = v 1 v 1 v 2 v 2 v 3 + = v 1 v 3 (a)
∑ f ∈E(T 2) χ(c, f)y f = φ V L (b v R , w v R) + φ V R (b v L , w v L).
Proof For any node v of T D we let L v denote the set of leaves of T 2 not incident with an edge of Q v . If Q v has degree two and boundary {v i , v j }, i < j, then we let L

v be the leaves in L v which are closest to v i and L

(2) v the leaves in L v which are closest to v j . Let c be any colouring of the leaves of T 2 , possibly distinct from c. Let B and W be the sets of leaves that c colours black and white respectively.

We will establish the following claims for all nodes v in T D , using induction on the height of the node.

= |W ∩ L v | then ∑ f ∈Q v χ(c, f)y f = φ v (b, w). (C3) If Q v has degree two, b 1 = |B ∩ L (1) v |, w 1 = |W ∩ L (1) v |, b 2 = |B ∩ L (2) v |, and w 2 = |B ∩ L (2) v | then ∑ f ∈Q v χ(c, f)y f = φ v (b 1 , w 1 , b 2 , w 2).
We start by considering any leaf v of T D . In this case, Q v contains a single edge f . If f is an edge incident to a leaf coloured white then b v = 0, w v = 1 as required, and χ(c, f) equals the number of leaves coloured black by c, so

χ(c, f)y f = |B ∩ L v |y f = (bw v + wb v)y f = φ v (b, w).
The same holds if the leaf is coloured black. If the edge f is internal then b v = w v = 0, and χ(c, f) is equal to the number of paths crossing f connecting leaves with different colours, or

|B ∩ L (1) v ||W ∩ L (2) v | + |W ∩ L (1) v ||B ∩ L (2) v | = b 1 w 2 + w 1 b 2 , so χ(c, f)y f = φ v (b 1 , w 1 , b 2 , w 2).
Now consider the case when v is an internal node of T D , other than the root. Let v L and v R be the two children of v. Note that Q v is the disjoint union of

Q v L and Q v R , so b v = b v L + b v R and w v = w v L + w v R , proving (C1). Furthermore, we have ∑ f ∈Q v χ(c, f) = ∑ f ∈Q v L χ(c, f) + ∑ f ∈Q v R χ(c, f). If Q v L has degree one then, by the induction hypothesis, ∑ f ∈Q v L χ(c, f) = φ v L (b , w)
where b and w are the numbers of leaves coloured black and white that are not incident with edges in Q v L . Similarly, if Q v L has degree two then, by the induction hypothesis,

∑ f ∈Q v L χ(c, f) = φ v L (b 1 , w 1 , b 2 , w 2)
where b 1 and w 1 are the numbers of leaves coloured black and white that are not incident with edges in Q v L and are closer to the boundary vertex of Q v L with the smallest index, while b 2 and w 2 are the numbers of leaves coloured black and white that are not incident with edges in Q v L and are closer to the boundary vertex of Q v L with the largest index. The symmetric result holds for Q v R . The different cases in Eq. (12) to Eq. (19) now correspond to the different counts for b , w or for b 1 , w 1 , b 2 , w 2 depending on whether Q v L and Q v R have degree one or two, and whether the boundary vertices in common had the highest or lower index for each segment. Now suppose that v L and v R are the children of the root of T

B . Then ∂ (Q v L ∪ Q v R) = / 0 so Q v L and Q v R must both have degree one. We have that E(T 2) is the disjoint union of Q v L and Q v R . Any leaf not incident to a leaf in Q v L is incident to a leaf in Q v R
and vice versa. Hence as required.

Evaluating Eq. (12) to Eq. (19) takes constant time and space per each node of T D , since we manipulate and store a constant number of polynomials with at most four variables and total degree at most two. Thus, evaluating Eq. (12) to Eq. (19) takes O(n) time and space for each colouring, and since we want to sum this quantity over all colourings c e from edges e ∈ E(T 1) a naive implementation would still take O(n 2) time. The key to improving this bound is in the use of efficient updates.

Lemma 8 Suppose that we have computed b v , w v and the functions φ v for all v ∈ T D , using a leaf colouring c. Let c be a colouring which differs from c at k leaves. Then we can update the values b v , w v and the functions φ v in O(k + k log(n/k) time.

Proof Let F be the set of edges of T 2 which are incident to a leaf for which c and c have a different colour, so |F | = k. The only nodes v in T D which need to updated are those with f ∈ Q v for some f ∈ F . This is a union of the paths from k leaves of T D to the root of T D , and so by Lemma 2 of [START_REF] Brodal | Computing the quartet distance between evolutionary trees in time o (n log n)[END_REF] , it has size O(k + k • log(n k)).

The final step is to show that we can navigate the edges in E(T 1) so that the total number of changes in the colourings is bounded appropriately. Suppose that T 1 is rooted at the leaf ρ (the same as T 2). For each internal node u in T 1 we let Small(u) denote the child of u with the smallest number of leaf descendants and let Large(u) denote the child with the largest number of leaf descendants, breaking ties arbitrarily.

The following recursive procedure returns the sum of

∑ f ∈E(T 2)
x e y f χ(c e , f) over all edges e ∈ E(T 1). Initially we let e be the edge incident with the root ρ. Let c be the colouring where ρ is black and all other leaves white. We initialise T D and fill out the values b v , w v and φ v for all nodes v of T D using the colouring c. We then call SUM(u) where u is the unique internal node adjacent to ρ. We see that the algorithm makes a pre-order traversal of T 1 , evaluating the sum

∑ f ∈E(T 2)
x e y f χ(c e , f)

for each edge e and accumulating the total. Thus by Lemma 6, the algorithm returns ∑ i j p i j q i j .

The running time is dominated by the time required to update T D . For each leaf, the update is made after only one leaf changes colour, so this takes O(n log n) summed over all leaves. For every other node u in the tree, the number of nodes of T D to update is O(k + k log(n/k)) where k is the number of leaves in the subtree rooted at Small(u).

 α(e) = ∑ e e n(e)x e . Proposition 1

 If e is external, n(e) = 1 and α(e) = x e . Otherwise n(e) = n(e L) + n(e R) α(e) = α(e L) + α(e R) + n(e)x e .

Fig. 1 (

 1 Fig. 1 (a) A phylogenetic tree and (b) a segment decomposition for it.

1 . 4 pairs (A 1 ,Theorem 4

 1414 Initialize T D with a forest of degree-one vertices corresponding to each edge of E(T 2). Hence we initialise B with one element for each vertex in V (T 2), with the associated pointers. At this point, M is the partition of E(T 2) putting each edge into a separate block. 2. While T D is disconnected do (a) Using the construction in Proposition 3 determine a set of at least k ≥ |M | B 1), . . . , (A k , B k) of disjoint elements of M such that A j ∪ B j has at most two boundary points. (b) For each pair (A i , B i), i = 1, 2, . . . , k, create a new node of T D corresponding to A i ∪ B i and with children corresponding to A i and B i . (c) Update the list B of boundary vertices and the associated pointers. We can construct a segment decomposition tree T D for T 2 with height O(log n) in O(n) time.

Fig. 3

 3 Fig.3Cartoons of segment merging for several cases discussed in the main text.

(

 C1) b v and w v are the number of leaves incident with edges in Q v which are coloured black and white by c (and hence by c). (C2) If Q v has degree one, b = |B ∩ L v | and w

 , e 2 , e 3 , e 7 }, {e 4 , e 5 , e 6 }, {e 8 }, {e 9 , e 13 }, {e 10 , e 11 , e 12 }} drawn on it, with boundary sets respectively {t, s}, {t,t}, {s, s}, {s, q}, {q, q}. (b)

			e 1	b c d e f e 4 e 8 e 7 e 5 e 13 e 10 e 9 ρ e 2 e 3 t q s e 6	e 12	g e 11		t	s	q
				(a)						(b)
	Fig.	2 (a)	A	phylogenetic	tree	with	the	segment	decomposition	M =
	{{e 1									

 Thus, the ordering of M is {{e 4 , e 5 , e 6 }, {e 1 , e 2 , e 3 , e 7 }, {e 8 }, {e 9 , e 13 }, {e 10 , e 11 , e 12 }}.

A bipartition A|B with A ∪ B = X is in a phylogenetic tree T = (V, E) if there exists an edge e ∈ E such that its removal creates two trees with taxon sets A and B.

Acknowledgements This research was made possible due to travel funds made available from a Marsden grant to DB.

procedure SUM(u)

Let e be the edge connecting u to its parent (in T 1).

x e y f χ(c, f), computed using T D .

if u is a leaf then Color u black and update T D return x else

Color the leaves in the subtree of T 1 rooted at Small(u) in black and update T D y ← SUM(Large(u))

Color the leaves in the subtree of T 1 rooted at Small(u) in white and update T D z ← SUM(Small(u)) return x + y + z end if end procedure Fig. 4 Recursive algorithm SUM Lemma 9 Let T be a rooted binary tree with n leaves and for each internal node u of T let k u denote the number of leaves in the smallest subtree rooted at a child of u. Then

Proof This is a restatement of Lemma 7 in [START_REF] Brodal | Computing the quartet distance between evolutionary trees in time o (n log n)[END_REF].

Theorem 10 Algorithm SUM computes ∑ i j p i j q i j in O(n log n) time. Hence the path length distance between T 1 and T 2 can be computed in O(n log n) time.