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Abstract One of the central issues in statistics and machine learning is how to select an adequate model that
can automatically adapt its complexity to the observed data. In the present paper, we focus on the issue of
determining the structure of clustered data, both in terms of finding the appropriate number of clusters and
of modelling the right dependence structure between the observations. Bayesian nonparametric (BNP) models,
which do not impose an upper limit on the number of clusters, are appropriate to avoid the required guess on
the number of clusters but have been mainly developed for independent data. In contrast, Markov random fields
(MRF) have been extensively used to model dependencies in a tractable manner but usually reduce to finite
cluster numbers when clustering tasks are addressed. Our main contribution is to propose a general scheme
to design tractable BNP-MRF priors that combine both features: no commitment to an arbitrary number of
clusters and a dependence modelling. A key ingredient in this construction is the availability of a stick-breaking
representation which has the three-fold advantage to allowing us to extend standard discrete MRFs to infinite
state space, to design a tractable estimation algorithm using variational approximation and to derive theoretical
properties on the predictive distribution and the number of clusters of the proposed model. This approach is
illustrated on a challenging natural image segmentation task for which it shows good performance with respect
to the literature.

Keywords Hidden Markov random fields · Bayesian nonparametrics · Variational approximation · Clustering ·
Image segmentation · Predictive distribution

1 Introduction

Hidden Markov random field (HMRF) models are widely used for clustering data under spatial constraints.
Spatial dependencies are encoded by modelling the cluster labels as a discrete state Markov random field (MRF)
such as Ising (two clusters or states) or Potts (more than two clusters) model [11,35]. HMRF can be seen
as spatial extensions of independent mixture models. As for standard mixtures, one concern is the automatic
selection of the proper number of clusters in the data, or equivalently the number of states in the HMRF. In the
independent data case, several criteria exist to select this number automatically based on penalized likelihoods
(e.g., AIC, BIC, ICL, etc.) and have been extended in the HMRF framework using variational approximation
[18]. They require running several models with different cluster numbers so as to choose the best one, with a
potential waste of computational effort as all the other models are usually discarded. Other techniques use a
fully Bayesian setting including a prior on the number of components. The most celebrated method in this case
is reversible jump Markov chain Monte Carlo [20]. Although simplifications in the inference have been proposed
recently in [24], the computational cost of reversible jump techniques remains considerably high.

In the present work, we investigate alternatives based on Bayesian nonparametric (BNP) methods. In partic-
ular, Dirichlet process mixture (DPM) models have emerged as promising candidates for clustering applications
where the number of clusters is unknown. Nevertheless, applications of DPMs involve observations which are
assumed to be independent. For more complex tasks such as unsupervised image segmentation with spatial
relationships or dependencies between the observations, DPMs are not satisfactory. Therefore, we propose to
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introduce MRF dependencies between data points in BNP models, and we term the resulting model BNP-MRF.
This requires to extend finite state space MRF models to an infinite number of states. We show that this can be
achieved by incorporating a stick-breaking scheme in an MRF formulation more general than the standard Potts
model commonly used.

The addition of MRF dependencies between data points in BNP models raises the question of how they
impact the natural clustering and rich-get-richer properties of BNP priors. We answer this question by providing
theoretical results about two quantities of interest for BNP priors: the predictive distribution, that represents
the distribution of one datum conditional on previous observations, and the number of clusters induced by a
BNP-MRF prior.

For a practical illustration of the BNP-MRF combination, we detail the example of the Pitman-Yor pro-
cess prior for which we provide a variational Bayes Expectation-Maximization (VBEM) algorithm. Although
the model and theoretical results are more general, the derivation of an explicit variational inference requires
specifications.

The links to other similar attempts is reviewed in Section 2. The proposed BNP-MRF model is explained in
Section 3 and theoretical properties are investigated in Section 4. The model implementation using variational
approximation is detailed in Section 5. An illustration of its performance on an image segmentation task on
simulated and real data is provided in Section 6. A conclusion and perspectives are provided in Section 7, while
an appendix containing proofs and additional computational derivations ends the paper.

2 Related work

Attempts to build countably infinite state space MRF models using BNP priors have already appeared in the liter-
ature. In particular, we can distinguish attempts such as [12,13,33] from the work in [2,27,42,34]. The approach
in [12,13,33] differs in that it is not based on a generalization of the Potts model but on a transformation of an
inference algorithm. More specifically in [12,13], a standard mean field approximation is first considered and
then transformed to account for an infinite number of states. In that sense it is closer to an Iterated Conditional
Mode (ICM) algorithm [7], but does not provide a spatial generalization of DPMs. Typically, the simple Potts
model considered in [12,13] cannot be extended to an infinite number of states as it will become clear in our
Section 3.2. Other attempts include the work in [22], but there the number of states is known to be three and
the Dirichlet process (DP) prior is used instead to model intensity distributions non-parametrically. Segmenta-
tion with spatially dependent Pitman–Yor processes (PY) has also been considered in [36], but using Gaussian
processes.

We build on the approach in [2] which differs from [27,42,34] which all use a partition model representation.
In particular, [42] generalizes [27] and proposes a more efficient Markov chain Monte Carlo (MCMC) inference
by means of the Swendsen–Wang algorithm, while [34] extends this idea to hierarchical DP priors for multiple
image segmentation. In contrast to [27,42,34], we propose to use a stick-breaking-based scheme for the mixing
weights, thus providing a more comprehensive representation than partition models which integrate out the
process. In addition, stick-breaking representations lead naturally to variational approximations for performing
inference [8]. The advantage is to reduce the computational cost in complex data clustering without suffering
from label switching complications. In other words, in our approach the MRF is imposed internally in the BNP
mechanics leading to well defined infinite state HMRF models. This construction is valid for any stick-breaking
representation. We show how it can be implemented for the DP and PY priors, and provide references for
extensions to larger classes of BNP priors.

3 BNP-MRF mixture models

The clustering task is addressed through a missing data model that includes a set y = (y1, . . . , yn) of observed
variables from Rd and a set z = (z1, . . . , zn) of missing (also called hidden) variables whose joint distribution
p(y, z | Θ) is governed by a set of parameters denoted by Θ and possibly by additional hyperparameters φ
not specified in the notation. The latter ones are usually fixed and not considered at first. Typically, the zi’s
corresponding to group memberships (or labels), take their values in {1, . . . ,K} where K is the number of
clusters or groups. We shall denote by Z = {1, . . . ,K}n the set in which z takes its values and by Θ the
parameter space. To account for dependencies between the zi’s, z can be modeled as a discrete MRF. If in
addition, the yj’s are independent conditionally on z, the joint distribution p(y, z | Θ) is referred to as an
HMRF model. In this case, the conditional distribution p(z | y,Θ) is also an MRF. For clustering dependent
data into K groups, the most commonly used MRF is the so-called Potts model [11,35].
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As already mentioned, our goal is to bypass the issue of selecting the number K of clusters by considering
a countably infinite number of them while allowing MRF dependencies between the yi’s. The construction of
the proposed model is explained starting from the link between standard finite mixtures and Dirichlet process
mixtures. Basic DP principles and notations are recalled in Section 3.1. The extension of finite state space MRF
to a countably infinite number of states is given in Section 3.2 and the resulting BNP-MRF mixture models is
summarized in Section 3.3.

3.1 From finite mixtures to DP mixture models

A generative approach to clustering consists of picking one of K clusters from a multinomial distribution with
weights parameter π = (π1, . . . , πK) and then to generate a data point y from a cluster specific distribution
p(y | θ∗k) with cluster specific parameter θ∗k. This yields a finite mixture model

p(y | θ∗,π) =
K∑
k=1

πk p(y | θ∗k) (1)

where θ∗ = (θ∗1 , . . . , θ
∗
K) and π are the parameters. For instance, for Gaussian mixtures, θ∗k = (µk, Σk)

and p(y | θ∗k) is a Gaussian distribution with mean µk and covariance matrix Σk, denoted by N (µk, Σk) or
N (y | µk, Σk) when referring to the probability density function (pdf). The observations (y1, . . . , yn) are
therefore i.i.d. and generated from the same mixture (1). It follows that the kth cluster is by definition the set
of data points arising from the kth mixture component. This is usually expressed by introducing for each yj an
additional hidden variable Zj that takes its values in {1, . . . ,K}, so that p(zj = k | π) = πk. Another way to
obtain a sample from a finite mixture model consists of defining a discrete measure G =

∑K
k=1 πkδθ∗k and then

of considering the following hierarchical representation, for all j = 1, . . . , n,

θj | G
iid∼ G,

yj | θj
ind∼ p( . | θj).

The subset of θj’s that are equal to θ∗k corresponds to the yj’s in the kth cluster.
In a Bayesian setting, in addition, a prior distribution is placed on θ∗ and π. The most common choice for π

is the Dirichlet distribution Dir(α1, . . . αK) depending on a vector of positive parameters α = (α1, . . . , αK).
The choice of the prior on θ∗ (denoted by G0) is model-specific, usually following a conjugate prior such as a
Normal inverse-Wishart distribution for Gaussian mixture models. Other cases are possible and tractable (e.g.
[14]). It follows the hierarchical representation:

θ∗1 , . . . , θ
∗
K | G0 ∼ G0, (2)

π | α ∼ Dir(α1, . . . αK), (3)

G =
K∑
k=1

πkδθ∗k , (4)

θj | G
iid∼ G, j = 1, . . . , n, (5)

yj | θj
ind∼ p( . | θj) j = 1, . . . , n.

To become non-parametric, a first approach is to consider an infinite number of πk’s. Using an infinite number
of random variables τ = (τ1, τ2, . . . ) on [0, 1], we can construct an infinite number of πk’s that sum to one as
follows:

π1(τ ) = τ1 and πk(τ ) = τk

k−1∏
l=1

(1− τl), k = 2, 3, . . .

A necessary and sufficient condition to guarantee that these πk’s sum to 1 almost surely is that the expectation
E[
∏k
l=1(1− τl)] tends to 0 as k tends to∞. In particular, if τ1, τ2, . . . are i.i.d. it suffices that p(τ1 > 0) > 0.

The proof and additional details can be found in Lemma 3.4 of [19]. The intuition behind this construction,
referred to as stick-breaking and proposed by [31], is that it consists of recursively breaking a unit-length stick
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Fig. 1 Illustration of the stick-breaking representation.

as shown in Fig. 1. It follows an explicit formula for the πk’s. Hence, the τk’s simulation replaces step (3), and
G in (4) can be replaced by

G =
∞∑
k=1

πk(τ )δθ∗k .

We can also add after step (5) the fact that zj = k if θj = θ∗k and replace the last step by yj |zj , θ∗
ind∼ p( . |

θ∗zj ). Then the distributions of the τk’s need to be specified. The Dirichlet process [17], denoted by DP(G0, α),
is characterized by a base distribution G0 and a positive scaling parameter α. Its stick-breaking representation
corresponds to i.i.d τk’s that follow the same beta B(1, α) distribution [21]. All together, using the same notation
G0 for the prior of each θ∗k simulated as i.i.d. variables, it comes the following hierarchical representation:

θ∗k | G0
iid∼ G0, k = 1, 2, . . . , (6)

τk | α
iid∼ B(1, α), k = 1, 2, . . . ,

πk(τ ) = τk

k−1∏
l=1

(1− τl), k = 1, 2, . . . , (7)

G =
∞∑
k=1

πk(τ)δθ∗k , (8)

θj | G
iid∼ G, and zj = k if θj = θ∗k (9)

yj | zj , θ∗
ind∼ p( . | θ∗zj ). (10)

The above hierarchical representation corresponds to a countably infinite mixture model referred to as a Dirichlet
process mixture (DPM) model. It is an explicit characterization of the DP (Eq. (6) to (8)) and of the DPM (Eq. (6)
to Eq. (10)) using a stick-breaking construction. The stick-breaking representation will be particularly useful in
our study for both the definition of our model (Sections 3.2 and 3.3) and its estimation (Section 5).

3.2 Infinite MRF priors

The explicit use of the labels z = (z1, . . . , zn) in the DPM construction above makes it closer to clustering
generative models and opens the way to an HMRF extension. Such a generalization is only possible from Potts
models with an external field parameter. In the finite state space case, an MRF model is defined using a depen-
dence structure coded via a graph G whose nodes correspond to the variables. A K-state Potts model with an
external field, defined over z = (z1, . . . , zn) with for all j = 1, . . . , n, zj ∈ {1, . . . ,K}, corresponds to the
following pdf,

p(z;β, v) ∝ exp

 n∑
j=1

vzj + β
∑
i∼j

δ(zi=zj)

, (11)

where i ∼ j means that i and j are neighbors, i.e. linked by an edge, in the considered dependence structure
described by graph G, δ(zi=zj) is the indicator function which is 1 if zi = zj and 0 otherwise, β is a positive
scalar interaction parameter and v = (v1, . . . , vK) represents an additional external field parameter where
each vk is a scalar. The distribution (11) is insensitive to an addition of the same constant to all the vk’s. Such
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non-identifiability can be overcome by an additional constraint on v such as requiring
∑K
k=1 πk = 1 with

vk = log πk. The Potts model in (11) can then be rewritten as

p(z;β,π) ∝

 n∏
j=1

πzj

 exp

β∑
i∼j

δ(zi=zj)

. (12)

In the finite state space case, we can equivalently use the Gibbs representation,

p(z;β,π) ∝ eV (z;β,π), (13)

where V (z;β,π) :=
∑n
j=1 log πzj +β

∑
i∼j δ(zi=zj) is often referred to as the energy function. The first sum

in V represents the first order potentials while the second sum represents the second order potentials. In the finite
state space case, the Hammersley–Clifford theorem [7] applied to the Gibbs representation (13) entails that the
distribution in (11) is a Markov random field. What is interesting about formulas (11) and (12) is that they do not
involve the number of statesK. As long as a stick-breaking construction is available, we can consider a countably
infinite number of probabilities πk that sum to one, i.e.,

∑∞
k=1 πk = 1 and define the same energy function V as

before but over an infinite countable set of states. Using the Gibbs representation (13), the Hammersley–Clifford
theorem still holds if we can show that

∑
z eV (z;π,β) < ∞, where the sum runs over all n-uples of positive

integers z ∈ {1, 2, . . .}n. Note that this latter condition that is automatically satisfied in the finite state space
case (for reasonable potential functions), may not be satisfied in the infinite case. However, the stick-breaking
representation of π ensures this property since:

∑
z

eV (z;β,π)
(a)

≤

∑
z

n∏
j=1

πzj

 eβ
n(n−1)

2
(b)
= eβ

n(n−1)

2 <∞

where we used for (a) the fact that n(n − 1)/2 is the maximum number of neighbors among n observations
(complete dependence or graph), while (b) comes from

∑
z

∏n
j=1 πzj =

(∑∞
k=1 πk

)n
= 1. It follows that

p(z;β,π), in the infinite state space case, is still a valid probability distribution and is an MRF by the Hammer-
sley–Clifford theorem. Such a generalization is possible because of the presence of the external field parameters
πk that satisfy

∑∞
k=1 πk = 1 as ensured by the stick-breaking construction. A standard Potts model with equal

or no external field parameters cannot be as simply extended to an infinite countable state space because in the
K-state case this Potts model is equivalent to πk = 1/K for all k which possesses a degenerate limit when K
tends to infinity.

3.3 BNP-MRF mixture models

The stick-breaking representation amounts to identifying a set of random variables τ = (τk)∞k=1 with each
τk ∈ [0, 1] and so that the weights πk are defined by (7). Then the Potts model construction (12) is valid for any
set of parameters τ = (τk)∞k=1 with each τk ∈ [0, 1]. Bayesian non-parametric priors specify a prior distribution
on τk’s. For instance, as already mentioned for the DP stick-breaking, all τk’s are independent and identically
distributed according to a B(1, α) distribution. For the Pitman–Yor (PY) process [29], the τk’s are independent
but not identically distributed with

τk | α, σ
ind∼ B(1− σ, α+ kσ) for k = 1, 2, . . . , (14)

where σ ∈ (0, 1) is a discount parameter and α a concentration parameter α > −σ. The PY is a two-parameter
generalisation of the DP which allows to control the tail behavior when modeling data with either exponential
or power-law tails [21,29]. When σ = 0, the PY reduces to a DP. More general stick-breaking representations
are possible (e.g., for Gibbs-type priors [15,19] or homogeneous normalized random measures with independent
increments (NRMIs) [16]) but the Pitman–Yor case provides a clear interpretation in terms of number of clusters.
The rich-gets-richer property of the DP is preserved meaning that there are a small number of large clusters, but
there is also a large number of small clusters with parameter σ decreasing the probability that observations join
small clusters. The PY yields a power-law behavior which can make it more suitable for a number of applications.
In other words, the number of clusters grows as O(nσ) for the PY while it grows more slowly at O(logn) for
the DP.
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The extension we propose is therefore to augment the original HMRF formulation with additional variables
(τk)∞k=1. We refer to it as the BNP-MRF mixture model. It corresponds to the following hierarchical construction
written here in the PY case:

θ∗k | G0
iid∼ G0, k = 1, 2, . . . , (15)

τk | α, σ
ind∼ B(1− σ, α+ kσ), k = 1, 2, . . . , (16)

πk(τ ) = τk

k−1∏
l=1

(1− τl), (17)

p(z | τ ;β) ∝

 n∏
j=1

πzj (τ )

 exp

β∑
i∼j

δ(zi=zj)

, (18)

yj | zj , θ∗
ind∼ p(yj | θ∗zj ) . (19)

The prior on τk’s from (16) can be adapted to more general classes of BNP priors, see for example Theorem
14.23 of [19] for Gibbs-type priors, and [16] for NRMIs. Importantly, in the BNP-MRF model above, the θj’s
and zj’s are not i.i.d conditionally onG anymore. The joint distribution (18) on z = (z1, . . . , zn) induces a joint
distribution on (θ1, . . . , θn) using that θj = θ∗zj . If we still denote for simplicity by G this joint distribution, we
can define it in a similar manner as in the i.i.d. case, using its conditional specifications,

θj |θNj ;G ∼
∞∑
k=1

p(zj = k|zNj , τ ;β) δθ∗k ,

whereNj denotes the neighbors of j in the graph dependence structure G and the p(zj = k|zNj , τ ;β)’s are the
conditional specifications of (18).

In Section 5.2, we detail the case when cluster specific distributions are Gaussian, with θ∗k = (µk, Σk) and
p(yj | θ∗k) = N (yj | µk, Σk).

4 Predictive distribution and probabilistic properties of the BNP-MRF prior

In this section, we provide theoretical results about two quantities of interest for Bayesian nonparametric priors:
the predictive distribution, that represents the distribution of one datum conditional on previous observations,
and the number of clusters induced by a BNP-MRF prior. We then turn to an empirical, simulation-based inves-
tigation of the distribution of the cluster sizes, for which we do not have theoretical results.

4.1 Predictive distribution

We consider data of varying sample size, and denote by Gn the subgraph of G induced by node {1, . . . , n}.
We focus on the large class of Gibbs-type priors [15], of which the DP and PY are special cases. Consider n
observations (θ1, . . . , θn) sampled from a BNP-MRF prior Eq (15)-(18) but using a Gibbs-type prior instead of
PY prior (16). We are interested in the predictive distribution of observation θn+1 conditional on (θ1, . . . , θn),
but unconditional on G. With a BNP-MRF prior, this predictive distribution depends on the structure of the
graph G, more specifically on the neighbors of θn+1. Denote by Kn the number of clusters in (θ1, . . . , θn),
by (θ?1 , . . . , θ

?
Kn) their Kn different values1 and by (n1, . . . , nKn) their size. We first consider the Gibbs-type

prior case without the addition of a Markov component. The predictive distribution [19] is given by,

p(θn+1 | θ1, . . . , θn) =
Vn+1,Kn+1

Vn,Kn
G0 +

Vn+1,Kn

Vn,Kn

Kn∑
`=1

(n` − σ)δθ?` (20)

where the triangular array of non-negative parameters Vn,k, 1 ≤ k ≤ n, satisfy the backward recurrence relation

Vn,k = (n− σk)Vn+1,k + Vn+1,k+1, (21)

1 Note that the notation introduced for the different θ?j differs from that devoted to the stick-breaking variables, θ∗j .
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with V1,1 = 1. This predictive can be specialized to the PY case with

Vn,k =
σk(1 + α

σ )(k−1)

(1 + α)(n−1)
,

where (a)(x) := Γ (a+ x)/Γ (a) denotes the rising factorial. It follows

p(θn+1 | θ1, . . . , θn) =
α+ σKn
α+ n

G0 +
1

α+ n

Kn∑
`=1

(n` − σ)δθ?` , (22)

while the case of the DP is obtained by setting σ = 0 above.
For the sake of simplicity, we propose to use the labels notation z1:n = (z1, . . . , zn) defined so that zj = `

when θj = θ?` , we denote by {z1, . . . , zn} the set of label values which includes only Kn different labels. In
the Gibbs-type prior case, it is clear from (20) that

p(zn+1 | z1:n) =
Vn+1,Kn+1

Vn,Kn
if zn+1 6∈ {z1, . . . , zn}, (23)

p(zn+1 = ` | z1:n) =
Vn+1,Kn

Vn,Kn
(n` − σ) if ` ∈ {z1, . . . , zn} .

The next proposition indicates how the predictive is impacted by the addition of a Markov dependence. The
neighbors of θn+1 in Gn is denoted byNn+1 and ñ` is the number of neighbors of θn+1 which belong to cluster
`, hence satisfying ñ` ≤ n`. Also zNn+1

= {zi, i ∈ Nn+1} denotes the labels in the neighborhood. The proof
of the proposition is given in Appendix A.1.

Proposition 1 (Predictive distribution of a Gibbs-MRF prior) The predictive distribution for a Gibbs-MRF
prior is given by

p(θn+1 | θ1, . . . , θn) =
Vn+1,Kn+1

Vn,Kn + Vn+1,Knηn+1

G0 +
Vn+1,Kn

Vn,Kn + Vn+1,Knηn+1

Kn∑
`=1

λn+1,` δθ?` (24)

where

ηn+1 = ηn+1(σ, β) =
∑

`∈zNn+1

(n` − σ)(eβñ` − 1),

λn+1,` = λn+1,`(σ, β) = (n` − σ) eβñ`δNn+1
(`).

and δNn+1
(`) is 1 when ` is a label present in the neighborhood of θn+1 and 0 otherwise.

Remark 1 When β = 0, ηn+1(σ, 0) = 0 and λn+1,`(σ, 0) = n` − σ so that the Gibbs-type prior predictive
(20) is recovered. In contrast, for β > 0, the above predictive specialized to the PY-MRF case is,

p(θn+1 | θ1, . . . , θn) =
α+ σKn

α+ n+ ηn+1

G0 +
1

α+ n+ ηn+1

Kn∑
`=1

λn+1,` δθ?` , (25)

while the case of the DP-MRF is obtained by setting σ = 0. Comparing the probability of a new draw for a
Gibbs-type prior, Vn+1,Kn+1

Vn,Kn
, with that of a new draw for a Gibbs-MRF prior, Vn+1,Kn+1

Vn,Kn+Vn+1,Kn+1ηn+1
, we see

that the MRF has the effect of reducing this probability. In the PY case, this increase corresponds to increasing
the sample size from n to n+ηn+1 when β > 0, where ηn+1 can be quite a large number. More specifically for
a label ` in the neighborhood of zn+1, the weight of each previous observations with label ` (in the neighborhood
or not) is multiplied by a factor (eβñ` − 1). The effect is then all the more important as β is large and as n` is
large.
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4.2 Number of clusters

The predictive distribution (24) provides in turn the following lower bounds on the prior expectation of the
number of clusters. The proof of Proposition 2 is given in Appendix A.2.

Proposition 2 (Lower bound for expected number of clusters) Assume that the graph G has maximal degree
D. Then the expected prior number of clusters for a BNP-MRF distribution has the following lower bound

E[Kn] &
α

eDβ
logn

for the Dirichlet process and

E[Kn] & cnσe
−Dβ

, (26)

for the Pitman–Yor process, with some positive constant c, and where an & bn stands for lim sup an/bn ≥ 1.

Remark 2 We do not have a proof for the general case of Gibbs-type priors, but we conjecture that the same
power-law lower bound (26) as for PY holds.

Note that the MRF component of a BNP prior can only reduce the prior expected number of clusters. For
instance, for the DP with a simple graph where the first two nodes are connected, we have

E[K2] = 1 +
α

α+ eβ
≤ 1 +

α

α+ 1
= E[K2;β = 0]

where the last two terms above correspond the expectation of K2 for a DP, i.e. when β = 0. Thus natural upper
bounds that complement the lower bounds of Proposition 2 are given by

E[Kn] . α logn

for the Dirichlet process and

E[Kn] .
Γ (α+ 1)

σΓ (α+ σ)
nσ

for the Pitman–Yor process (see [28]).

4.3 Clusters sizes

We conclude this section by empirically investigating the cluster sizes. To this purpose, let us introduce the
notation Kj,n, j = 1, . . . , n, for the number of clusters of size j in a sample of n from the BNP-MRF prior.
Note that

∑n
j=1Kj,n = Kn and

∑n
j=1 jKj,n = n.

The distribution of cluster sizes is mentioned for instance in [40] in the context of Dirichlet process and Pitman–
Yor priors (without MRF component), with their asymptotics when n tend to infinity given by their Equations
(6) for the DP and (8) for PY. Those equations are best illustrated in a log-log scale as they yield, for n large
enough:

log (E[Kj,n]) ≈ c− (1 + σ) log j, (27)

where c is a constant. This is easily seen for the DP from Equation (6) of [40]. For the PY, this comes from the
approximation Γ (j−(1+σ))

Γ (j) ≈ j−(1+σ) for large j in Equation (8) of [40]. Hence in a log-log scale plot, the
cluster size distribution for large n in the DP case has a slope equal to −1, while a PY features a steeper slope
of −(1 + σ). Note that [40] also illustrate (see their Figure 2) that the asymptotic behaviours are close to the
finite sample behaviours for small j but require n to be greater than 105 for larger j values. For n = 1000 the
asymptotic formula do not provide a so close fit to the true distributions.
In order to empirically assess the cluster sizes for the DP and PY specifications and their MRF counterparts,
we have sampled 105 images of size 32 × 32 = 1024 from the predictive distribution (20) of Proposition 1.
The number of neighbors is set to 4 and various values of β and σ are investigated while α is set to 2. The
approximate expectations E[Kj,n] for varying j size can be seen in Figure 2 where the Monte Carlo means have
been further smoothed over j for visualization. The effect of β can be clearly visualized. Larger β values tend
to create larger clusters with maximum sizes while the number of clusters of intermediate sizes tend to decrease.
An interpretation is that for large enough β, above a certain size, clusters tend to attract all samples so that
eventually they reach a close to maximum size. Also it appears that β has some effect when combined with σ on
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Fig. 2 Empirical cluster sizes obtained over 105 images of size 32 × 32 = 1024 with 4 neighbors, simulated using the BNP-MRF
predictive distribution (20) with Pitman–Yor specifications with α = 2, σ ∈ {0, 0.25, 0.5} and β ∈ {0, 0.1, 0.3, 0.5}. The curves
correspond to the Monte Carlo approximations of the expected number of clusters of size j with an additional smoothing over j for
visualization.

the intercept of the slopes, see Figure 2 (b,c). As regards the final peaks observed when β is greater than 0.1, we
believe it is not an artefact. It may be the result of a competition in the BNP-MRF model between two opposite
effects. While in pure BNP models (β = 0) the probability of a large cluster decreases to 0 with its size (see the
black curves in Figure 2), configurations with larger clusters have higher probability in a Potts model and all the
higher as β increases. In other words, for small j values, the high number of configurations with Kn,j clusters
of size j compensates the low probability of each of these configurations. While for larger j values, the number
of such configurations decreases but their probability is much higher. This compensation based on the fact that a
Potts model tends to favor large clusters, depends on the interaction parameter β and is only effective and visible
for large enough β (here above 0.1) and large enough clusters. Empirically, the peaks in the BNP-MRF curves
correspond to the drop in the gradients of the pure BNP curves, that is when the expected number of clusters of
size j drops significantly faster.

5 Inference using variational approximation

Sampling based inference (MCMC) for a similar BNP-MRF model has been proposed in [27,42] for the case
of a DP prior. As an alternative, we propose a variational approximation that is facilitated by the stick-breaking
representation. For that purpose, we shall briefly recall the variational principle.

5.1 Variational Bayesian Expectation Maximization

The clustering task consists primarily of estimating the unknown labels z = (z1, . . . , zn) from observed y =
(y1, . . . , yn) assuming a joint distribution p(y, z | Θ;φ) governed by a set of parameters denoted by Θ and
often by additional hyperparametersφ. However to perform good label estimation, the parametersΘ values (and
hyperparameters φ) have to be available. A natural approach for parameter estimation is based on maximum
likelihood, where Θ is estimated by Θ̂ = arg maxΘ∈Θ p(y | Θ). Then an estimate of z can be obtained by
maximizing p(z | y, Θ̂). However, p(y | Θ) is a marginal distribution over the unknown z variables, so that
direct maximum likelihood is intractable in general. The Expectation-Maximization (EM) algorithm [23] is a
general iterative technique for maximum likelihood estimation in the presence of unobserved latent variables or
missing data. An EM iteration consists of two steps usually referred to as the E-step in which the expectation of
the so-called complete log-likelihood is computed and the M-step in which this expectation is maximized over
Θ. An equivalent way to define EM is the following. As discussed in [26], EM can be viewed as an alternating
maximization procedure of a function F0 defined, for any probability distribution qZ on Z by

F0(qZ ,Θ,φ) =
∑
z∈Z

qZ(z) log p(y, z | Θ;φ) + I[qZ ]

= EqZ
[
log

p(y,Z | Θ;φ)

qZ(z)

]
(28)

where I[qZ ] = −EqZ [log qZ(Z)] is the entropy of qZ (Eq denotes the expectation with regard to q). The
function F0 depends on observations y which are fixed throughout, hence are omitted from the notation.
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Instead of considering only point estimation ofΘ, a fully Bayesian approach can be carried out, for instance
when prior knowledge on the parametersΘ is available. In this case, we have to compute

p(z | y) =

∫
Θ

p(z | y,Θ) p(Θ | y)dΘ (29)

Integrating out Θ in this way requires the computation of p(Θ | y) which is not usually available in closed-
form. As an alternative to costly simulation-based methods (MCMC), an EM-like procedure using variational
approximation can provide approximations of the marginal posterior distributions p(Θ | y) and p(z | y). This
approach is referred to as VBEM for Variational Bayesian EM [5]. Note however, that we slightly changed the
names of the different steps compared to [5]. While our VB-E-Z step is the VB-E step in [5], our VB-E-θ step
corresponds to the VB-M step in [5]. Our VB-M step has then no equivalent in the formulation of [5], which does
not consider hyperparameters estimation. However this step corresponds to what M. Beal in his thesis [6] referred
to as the hyperparameter optimisation step. The VB-EM procedure presented below therefore corresponds to the
VB-EM with hyperparameters optimisation of [6], (see for instance Fig. 2.5 or Algorithm 5.3 therein). Let qZ
and qΘ denote respectively distributions over Z and Θ that will serve as approximations to the true posteriors.
Similarly to standard EM, VBEM is maximizing the following free energy function defined for any qZ and qΘ
distributions

F(qZ , qΘ,φ) = EqZqΘ
[
log

p(y,Z,Θ;φ)

qZ(z)qΘ(Θ)

]
alternatively over qZ , qΘ and φ. Adding a prior onΘ is formally the same as addingΘ to the missing variables,
while the hyperparameters φ play the role of the parameters of interest in maximum likelihood estimation.

The alternate maximization of F yields the VBEM algorithm that decomposes into three steps. It is easy to
show, using the Kullback–Leibler (KL) divergence properties, that the maximization over qZ and qΘ leads to the
following E-steps (see Appendix A of [10]). At the rth iteration, using current values φ(r−1) and q(r−1)

Θ , we get
the following updating,

VB-E-Z: q
(r)
Z (z) ∝ expE

q
(r−1)
Θ

[log p(y, z,Θ;φ(r−1))],

VB-E-Θ: q
(r)
Θ (Θ) ∝ expE

q
(r)
Z

[log p(y,Z,Θ;φ(r−1))],

VB-M-φ: φ(r) = arg max
φ

E
q
(r)
Z q

(r)
Θ

[log p(y,Z,Θ;φ)].

Also, it is worth noticing that if Y and Z are independent of φ conditionally onΘ, as this is often the case when
φ gathers the parameters that describe the prior onΘ, then the VB-M-step simplifies into

φ(r) = arg max
φ

E
q
(r)
Θ

[log p(Θ;φ)] = arg min
φ

KL(q
(r)
Θ ‖p(Θ;φ)). (30)

Then φ(r) is the value that minimizes the KL distance between the prior p(Θ;φ) and the variational posterior
q
(r)
Θ (Θ). In the conjugate exponential family case, it is known that both distributions belong to the same family

[5]. If this family is identifiable it follows that φ(r) = φ̂
(r)

where φ̂
(r)

are the variational parameters defining
q
(r)
Θ (Θ). A more detailed example is given in Section 5.2.

In practice, we can decide which parameters are treated as genuine parameters Θ or as hyperparameters
φ, depending on whether some prior knowledge is available only for a subset of the parameters or whether the
model has hyperparameters φ for which no prior information is available. Also for complex models, qΘ and
qZ may need to be further restricted to simpler forms, such as factorized forms, in order to ensure tractable
VB-E-steps. This is illustrated in the next section for the PY-MRF inference.

5.2 VBEM for a PY-MRF mixture model with Gaussian components

The VBEM steps are described for a PY-MRF mixture model as defined in Eq. (16) to (19), with Gaussian
distributed observations y. As hyperparameters α and σ may have a significant effect on the growth of the
number of clusters with data sample size, it is possible to specify priors on them. For the DP case obtained
with σ = 0, it is suggested in [8] to use a gamma prior over α with two hyperparameters s1 and s2, i.e.
α ∼ G(s1, s2) where s1 and s2 can be estimated or fixed. A natural question that arises is then whether one can



Bayesian nonparametric priors for hidden Markov random fields 11

also find a tractable prior for the discount parameter σ. We propose to use the following prior that accounts for
the constraints σ ∈ (0, 1) and α > −σ,

p(α, σ; s1, s2, a) = p(α | σ; s1, s2) p(σ; a) (31)

where p(α | σ; s1, s2) is a shifted gamma distribution SG(s1, s2, σ) and p(σ; a) is a distribution depending on
some parameter a not specified for the moment but that can typically be taken as the uniform distribution on the
interval (0, 1). Such a shifted gamma distribution is the distribution of a variable U−σ where σ is considered as
fixed and U follows a gamma distribution G(s1, s2). The pdf of this shifted gamma distribution is obtained from
the standard gamma distribution as p(α | σ; s1, s2) = G(α + σ; s1, s2). It follows that the joint distribution of
the observed data y and all latent variables becomes

p(y, z,Θ;φ) = p(α, σ; s1, s2, a)
n∏
j=1

p(yj |zj , θ∗)p(z|τ ;β)
∞∏
k=1

p(τk|α, σ)
∞∏
k=1

p(θ∗k; ρk),

where the notation
∏∞
k=1 is a distributional notation, and in addition to the terms already defined in (16) and

(18), we specify the likelihood term (19) as a Gaussian distribution p(yj |θ∗zj ) = N (yj |µzj , Σzj ) and the G0

prior on cluster specific parameters θ∗k = (µk, Σk) as a Normal-inverse-Wishart distribution parameterized by
ρk = (mk, λk, Ψk, νk) with a pdf

p(θ∗k; ρk) = NIW(µk, Σk; ρk) = N (µk;mk, λ
−1
k Σk) IW(Σk;Ψk, νk).

In the above notation, we consider as hyperparameters the setφ = (s1, s2, a, β, (ρk)∞k=1) whileΘ = (τ , α, σ, θ∗).
In most variational approximations, the posteriors are approximated in a factorized form (mean-field ap-

proximation). In particular, the intractable MRF posterior on z is approximated as qz(z) that factorizes so as to
handle intractability due to spatial dependencies, namely

qz(z) =
n∏
j=1

qzj (zj).

Then, the infinite state space for each zi is dealt with by choosing a truncation of the state space to a maximum
label K [8]. In practice, this consists of assuming that the variational distributions qzj , for j = 1, . . . , n, satisfy
qzj (k) = 0 for k > K and that the variational distribution on τ also factorizes as qτ (τ ) =

∏K−1
k=1 qτk(τk),

with the additional condition that τK = 1. Thus, the truncated variational posterior of parametersΘ is given by

qΘ(Θ) = qα,σ(α, σ)

K−1∏
k=1

qτk(τk)
K∏
k=1

qθ∗k(θ∗k). (32)

These forms of qz and qΘ lead to four VB-E steps and three VB-M steps summarized below with details in the
Appendix. Set the initial value of φ to φ(0). Then, repeat iteratively the following steps. The iteration index is
omitted in the update formulas for simplicity.

VB-E-τ step

The VB-E-τ step corresponds to a variational approximation in the exponential family case and results in a
posterior from the same family as the prior. It comes for k = 1, . . . ,K,

qτk(τk) = B(τk; γ̂k,1, γ̂k,2) (33)

with

γ̂k,1 = 1− Eqσ [σ] + n̄k, γ̂k,2 = Eqα [α] + kEqσ [σ] +
K∑

`=k+1

n̄`, (34)

where

for k = 1, . . . ,K, n̄k =
n∑
j=1

qzj (k) (35)

corresponds to the weight of cluster k.
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VB-E-(α, σ) step

The (α, σ) variational posterior is more complex but has a simple gamma form in the DP (σ = 0) case. More
specifically, we need to compute

ŝ1 = s1 +K − 1, and ŝ2 = s2 −
K−1∑
k=1

ψ(γ̂k,2)− ψ(γ̂k,1 + γ̂k,2) (36)

where ψ(·) is the digamma function defined by ψ(z) = d
dz logΓ (z) = Γ ′(z)

Γ (z) . When σ = 0 then qα is a gamma

distribution G(ŝ1, ŝ2) and Eqα [α] =
ŝ1
ŝ2

. Otherwise (PY case), qα,σ is only identified up to a normalizing

constant but the required Eqα [α] and Eqσ [σ] can be computed by importance sampling (see Appendix A.4 for
details).

VB-E-Z step

Due to the mean field approximation and the truncation, this step consists in computing (see details in Appendix
A.5), for all j = 1, . . . , n and for k ≤ K,

qzj (k) =
q̃j(k)∑K
`=1 q̃j(`)

, (37)

where log q̃j(k) is defined by

− 1

2

{
log

∣∣∣∣ Ψ̂k2
∣∣∣∣− d∑

i=1

ψ

(
ν̂k + (1− i)

2

)
+ ν̂k(yj − m̂k)T Ψ̂−1

k (yj − m̂k) +
d

λ̂k

}
+

ψ(γ̂k,1)− ψ(γ̂k,1 + γ̂k,2) +

k−1∑
l=1

ψ(γ̂l,2)− ψ(γ̂l,1 + γ̂l,2) + β
∑
i∈Nj

qzi(k),

(38)

where in the last sum, Nj represents the neighbours of j. In the above formula, symbols (m̂k, λ̂k, Ψ̂k, ν̂k) are
the variational hyperparameters for qθ∗k more specifically defined in the following step and d is the dimension
of the data. The advantage of Eq. (37) is that it provides assignment probabilities qzi(k) and does not require
intermediate commitments to hard assignments of the zj’s. The hard assignments can be postponed to the end if
desired to get a segmentation through the following maximum a posteriori (MAP) estimation:

ẑj = arg max
k∈{1,...,K}

qzj (k). (39)

VB-E-θ∗ step

This step is divided into K parts where the computation is similar to that in standard Bayesian finite mixtures
with a choice of conjugate prior, here for Gaussian distributions. Hence, for each k ≤ K, the variational posterior
is a Normal-inverse-Wishart distribution defined as

qθ∗k(µk, Σk) = NIW(µk, Σk; m̂k, λ̂k, Ψ̂k, ν̂k), (40)

where the hyperparameters are updated as follows (see for instance [25])

λ̂k = λk + n̄k, ν̂k = νk + n̄k,

Ψ̂k = Ψk + Sk +
λkn̄k
λk + n̄k

(mk − µ̄k)(mk − µ̄k)T ,

m̂k =
λkmk + n̄kµ̄k
λk + n̄k

=
λkmk + n̄kµ̄k

λ̂k
,

(41)

with n̄k defined in (35) and

µ̄k =
1

n̄k

n∑
j=1

qzj (k)yj ,

Sk =
n∑
j=1

qzj (k)(yj − µ̄k)(yj − µ̄k)T .

(42)
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VB-M steps

The maximization step consists of updating the hyperparametersφ = (β, s1, s2, a,ρ), where ρ = (ρ1, . . . , ρK),
by maximizing the free energy, if they are not set heuristically:

φ(r) = arg max
φ

E
q
(r)
Z q

(r)
τ q

(r)
α,σq

(r)

θ∗
[log p(y,Z, τ , α, σ, θ∗;φ)] . (43)

The VB-M-step can therefore be divided into 3 independent sub-steps as listed below. From the conditional
independence of (s1, s2, a,ρ) and (Y ,Z) given (τ , α, σ, θ∗), the VB-M-step writes as in (30) so that the so-
lutions for the VB-M-(s1, s2) (in the DP case) and VB-M-ρ steps are straightforward. Only the β step and the
M-(s1, s2, a) step (in the PY case) are more involved.

VB-M-β: The maximization of (43) with respect to β leads to

β(r) = arg max
β

E
q
(r)
Z q

(r)
τ

[log p(Z|τ ;β)] . (44)

This step does not admit a closed-form solution but can be solved numerically. More details are given in Ap-
pendix A.6.

VB-M-(s1, s2, a): This step is straightforward in the DP case (σ = 0). It can be expressed easily using the fact
that both the prior and the variational posterior are Gamma distributions, and using the cross-entropy properties,

(s1, s2)(r) = arg max
(s1,s2)

E
q
(r)
α

[log p(α; s1, s2)] = (ŝ
(r)
1 , ŝ

(r)
2 ) (45)

where (ŝ
(r)
1 , ŝ

(r)
2 ) is given in (36). In the more general PY case, we can solve this step numerically using also

importance sampling. See Appendix A.7.

VB-M-ρ: This step divides into K sub-steps that involve again cross-entropies,

ρ
(r)
k = arg max

ρ
E
q
(r)

θ∗
k

[log p(θ∗k; ρk)] = ρ̂
(r)
k (46)

where ρ̂(r)k = (λ̂
(r)
k , ν̂

(r)
k , Ψ̂

(r)
k , m̂

(r)
k ) is given in Eq. (41).

6 Application to image segmentation

To validate the proposed approach, we consider its application to unsupervised image segmentation as a spatial
clustering task. Image segmentation consists of partitioning a digital image into distinct regions that contain
pixels with similar properties. Extensive research work has been done in this field using various clustering
techniques. In practice, to be meaningful for image analysis and interpretation, the segmented regions should
closely relate to depicted objects or features of interest. A number of tasks in image analysis often depends
on the reliability of preliminary segments, but an accurate partitioning of an image is still quite challenging. To
assess our variational approximation solution, we first provide some results on synthetic grey-level images before
testing on real color images for which it is often necessary to consider higher level characteristics (features).

6.1 Experiments on simulated images

In this section, we focus on testing the ability of our variational approximation to handle the typical complica-
tions due to the addition of a Potts component, namely the estimation of the Potts interaction parameter β. We
simulated grey-level images by adding some Gaussian noise to the realizations of a Potts model with different
values of β (βtrue ∈ {0.6, 0.8, 1}) and K (Ktrue ∈ {5, 7}). Given each pair of βtrue and Ktrue, 100 images of size
64×64 were generated following a Potts model with a second order neighborhood (each pixel has 8 neighbors).
The obtained Ktrue different labels were turned into different grey-levels, eg. 80, 100, 120, 140, 160, etc. to
which we added a centered Gaussian noise with standard deviation equal to

√
20 to get final grey-level images.

We then applied our algorithm on each image with a truncation at K = 30. The estimated values of β, α, σ
were averaged over all 100 simulated images from a given (βtrue,Ktrue) pair. They are reported in Table 1 with
their standard deviations and the frequencies of the numbers of clusters found. The inferred β and K values are
generally very close to the true values. In addition, the estimated posterior means of α and σ seem to be quite
stable.
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(βtrue, Ktrue) α std(α) σ std(σ) β std(β) cluster numbers frequency (%)
(0.6, 5) 0.96 0.23 0.46 0.19 0.58 0.04 [3, 4, 5, 6] [1, 7, 87, 5]
(0.8, 5) 0.90 0.22 0.50 0.16 0.81 0.03 [4, 5, 6] [7, 85, 8]
(1.0, 5) 0.98 0.30 0.45 0.18 1.08 0.06 [4, 5, 6] [8, 81, 11]
(0.6, 7) 1.09 0.32 0.45 0.28 0.66 0.04 [6, 7, 8] [2, 91, 7]
(0.8, 7) 1.00 0.25 0.43 0.21 0.79 0.04 [4, 5, 6, 7 ,8] [1, 3, 25, 60, 11]
(1.0, 7) 1.03 0.27 0.44 0.21 1.05 0.05 [5, 6, 7, 8] [1, 33, 61, 5]

Table 1 Simulated 64× 64 images from a Potts model with additional Gaussian noise with varying β and K values (first column).
Each model is simulated 100 times. The variational algorithm results are summarized through the parameters means (α, σ, β) and their
standard deviations. The numbers of clusters found are also given with their frequencies (most frequent number in bold characters).

Input image Feature maps Segmented image

MR8 filter bank BNP-MRF

Pre-processing Segmentation

HSV color

(a) (b)

Fig. 3 Pre-processing steps: (a) color and texture feature extraction, each pixel is associated to 3 color indices (green slice in the
middle image) and 8 texture indices (blue slice) ; (b) example of a super-pixel pre-segmentation.

6.2 Feature extraction for image segmentation

The goal of segmentation is to group pixels that are similar usually in terms of color and texture. The evaluation
of this similarity can be based on the comparison of quantitative characteristics or features. The color and texture
features in a natural image are often very complex. For our experiments, we mainly focus on two special types
of features based on the HSV (Hue, Saturation, Value) color space and the maximum response (MR) filter bank.
The HSV color space is often used in natural image analysis because it corresponds better to how people experi-
ence color than the RGB color space does. Regarding the texture information, we shall consider the MR8 filter
bank [39], which consists of 38 filters but only 8 filter responses. More precisely, the MR8 filter bank contains
filters at multiple orientations but their outputs are compressed by recording only the maximum filter response
across all orientations. This achieves rotation invariance. It follows that each pixel can be associated to three
color indices and eight texture indices resulting in 11 features as summarized in Figure 3(a). Furthermore, the
images are presegmented into super-pixels that group pixels similar in color and other low-level properties [1].
More specifically, pixels are grouped to form a single super-pixel. The super-pixel representation is a frequently
used techniques to pre-group pixels in image processing. In this respect, super-pixels are regarded as more nat-
ural entities that allow reducing the number of observations drastically for running clustering algorithms. In all
our experiments, each image is pre-segmented into approximately 1 000 super-pixels using the SLIC algorithm
proposed in [1]. For illustration, Figure 3(b) shows a super-pixel segmentation. Finally, we compute the 11-
dimensional feature vectors at the super-pixel level by considering the centroid of each super-pixel and taking
the average of features over the pixels in the super-pixel. The entire segmentation procedure is summarized in
Algorithm 1.

6.3 Berkeley Segmentation Data Set

Previous empirical studies on similar annotated image data [36,32] have shown that segment sizes in a set
of manually segmented images follow a power law distribution well modeled by a Pitman–Yor process. The
Berkeley Segmentation Data Set 500 (BSDS500) contains 500 images associated each with several manual seg-
mentations, for a total number of 2696 manually segmented images. From these segmentations, we computed for
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Algorithm 1: Summary of the image segmentation procedure.
Input: An input color image.
Output: A segmented image.
Procedure:

– Use the SLIC algorithm to form an over-segmentation [1].
– Compute HSV color and texture features at super-pixel level [39].
– Partition the aggregated features by BNP-MRF.

Return: Multiple segmented regions.
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Fig. 4 Empirical segment sizes (black dots) computed over the 2696 manually segmented images of BSDS500. The curves represent
theoretical segment size distributions obtained with 105 simulations respectively from Pitman–Yor (α = 1.5, σ = 0.2, red curve)
and Dirichlet processes (α = 2.7, blue curve).

each of them the segment sizes evaluated in number of super-pixels to obtain the empirical segment size distri-
bution shown in Figure 4. To check the adequation with the Pitman–Yor and Dirichlet process size distributions,
we simulated 105 samples of size n = 1000 of both processes. These samples were then used to evaluate the
theoretical size distributions for given values of the parameters α and σ. A sample size of 1000 was chosen so
as to match the image sizes in terms of super-pixels. The resulting curves are shown, after additional smoothing,
in Figure 4. They exhibit similar shapes as in [40] (Figure 2) which interestingly also shows the deviation from
the usual asymptotic formulas (eq. (6) and (8) in [40]) when n tends to infinity. In Figure 4, the plotted curves
correspond to the best fits we could find for the Pitman–Yor and Dirichlet processes. They show that the Pitman–
Yor process fits better the empirical distribution for small segment sizes with a steeper slope than that of the DP
(see the discussion in Section 4.3). For large segment sizes the empirical distribution is not precise enough to
conclude on a real difference between the two processes. In terms of segmentation quality, both options would
probably be acceptable, but we report below mainly results with the Pitman–Yor process for its extra flexibility.

To quantify the performance of our segmentation algorithm, numerical experiments were conducted on a
subset of images selected from the BSDS500 data set already studied by [3,12], which provides multiple human
annotated segments as many ground truths for each image. The considered subset consists of 154 images as
listed in Tables 1 and 2 in [12].

In the literature, a standard measure for comparing a test segmentation to another is the rand index (RI)
[30]. The RI is one when two segmentations are exactly the same. However, when having for one image a set of
ground truths which do not completely agree, the probabilistic rand index (PRI) [38] is preferable. Given a set
of ground truths S = (S1, . . . , ST ), the PRI is defined as follows:

PRI(Stest,S) =
2

n(n− 1)

∑
i<j

[cijpij + (1− cij)(1− pij)] (47)

where cij = 1 if pixels i and j belong to the same segment in Stest and cij = 0 otherwise, n is the number of
image pixels and pij is the probability of two pixels i and j having the same label, i.e., the fraction of all available
ground truths in S where pixels i and j belong to the same segment. In fact, it can be shown that Eq. (47) is simply
the mean of the RI computed between each pair (Stest, Sk), namely 1

T

∑T
k=1 RI(Stest, Sk). By definition, the

PRI always takes values in [0, 1], where 0 means that Stest and (S1, . . . , ST ) have no similarities and 1 means
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Fig. 5 PY-MRF mixture model: Mean and standard deviation of the PRI score over the considered subset of the BSDS500 data set
as a function of the truncation level K.

Proposed model Results given in [12]
PRI (%) PY-MRF DPM iHMRF MRF-PYP Graph Cuts
Mean 79.05 74.15 75.50 76.49 76.10
Median 80.62 75.49 76.89 78.08 77.59
St. Dev. 7.9 8.4 8.2 7.9 8.3

Table 2 Performance comparison: summary statistics of the PRI score over the 154 images from BSDS500 studied by [13] for our
PY-MRF mixture model and the approaches tested in [13,12].

all segments are identical. The larger the PRI, the better. In practice, PRI values are often reported as percentages
in [0, 100].

Our approach has been tested on the considered subset of the BSDS500 and the summary statistics of the
PRI score are shown in Figure 5 as a function of the truncation level K for the PY-MRF case. Similar results
were observed for the DP. It appears that for K ≥ 30, the global performance does not change much and is
satisfying with respect to existing results in the literature. We compared our best results with those reported in
[12]. Table 2 shows that our approach outperforms the existing results. The improvement in PRI may appear
overall small but it can be assessed by visualizing original images and their segmentations. We show in Figure
6 segmentation results for four images. The main differences between the non spatial PY and PY-MRF mixture
models can be visualized for the first image in the ground and water which are segmented in the latter case into
a smaller number of regions whose shapes are in addition smoother. This is typical of more spatial interaction in
the clustering process. Similarly, the same phenomenon is also visible in the peak part of the second image, in
the sky and grass parts of the third image and in the plant parts of the fourth image.

We also examined, for the PY-MRF mixture model with K = 50, the values of the expected α, σ and β
for each of the 154 segmented images presented in Figure 7 as scatter plots (one point per image). Recall from
Section 5.2 that α and σ are elements of the parameters Θ while β is considered as a hyperparameter from
φ. Figure 7 shows also the correlations (across the 154 images) between the expected values of α, σ and β. It
appears that the estimated σ values are most of the time smaller than 0.5 and sometimes closer to 0 with some
anti-correlation with respect to α values. In contrast, β values appear quite independent from α or σ.

In terms of pure PRI performance, the BSDS500 data set is not an easy example because the ground truth
segmentations are labeled manually by humans and are sometimes quite subjective and inconsistent across users.
However, this example allows comparison of methods and visualization. Two interesting findings are that the
choice of K does not seem to be too sensitive as soon as K is large enough, and there seems to be some
correlation between α and σ while β is rather independent of the latest. Further analysis would be needed to
confirm these properties but in practice, they could be used to guide the segmentations into more or less spatially
smooth versions without risking to eliminate too small segments.

The code used for these experiments is available at https://team.inria.fr/mistis/software/
under the name BNP-MRF.

7 Conclusion and perspectives

In this paper, we proposed a general scheme to build BNP priors that can model dependencies through the
addition of a Markov random field term. In contrast to other existing attempts that reduce to spatially constrained

https://team.inria.fr/mistis/software/
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Fig. 6 Segmentation results for four images from the BSDS500 data set. From left to right, columns show respectively, the original
images, the segmentation results with the PY and PY-MRF mixture models.

standard BNP priors such as [12,13], our proposal leads to proper spatial priors. Our construction is based on the
stick-breaking representation and was illustrated starting from the Dirichlet and Pitman–Yor processes, although
this approach could be extended to other forms of BNP priors admitting a stick-breaking representation such as
Gibbs-type priors. The stick-breaking representation was further exploited to derive clustering properties of the
model and to provide a variational inference algorithm. In addition to the usual BNP parameters, an estimation
of the Markov interaction parameter β was proposed. The variational approximation chosen was based on a
standard truncation but it would be interesting to investigate other approximations, e.g. [41]. Also the variational
algorithm is greatly simplified for standard stick-breaking representations (e.g. DP and PY) with independent
weight variables. Nevertheless, it would be interesting to investigate more general stick-breaking representations
possibly using some MCMC counterpart for estimation.

The approach was illustrated on a challenging unsupervised image segmentation task with good results with
respect to the literature, but the proposed scheme is quite flexible and can be used in more general settings
including community detection or disease mapping in epidemiology.

A Appendix

Proofs of propositions 1 and 2 are given in the two first sections. Details on the VBEM steps, to complete the previous developments
when necessary, follow.
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Fig. 7 Estimated parameter values (ᾱ, σ̄) obtained from VB-E steps and β̂ obtained from a VB-M step using the PY-MRF model
with truncation level K = 50, on the 154 images from the Berkeley benchmark.

A.1 Proof of Proposition 1

Integrating out π from distribution (12) and noticing that the Markov term does not depend on π, leads to

p(z1:n+1;β) ∝ p(z1:n+1;β = 0) eβH(z1:n+1)

where H(z1:n+1) =
∑
i∼j δzi=zj is counting the number of homogeneous edges. It follows that

p(zn+1|z1:n;β) ∝ p(zn+1|z1:n;β = 0) eβH(z1:n+1) .

When β = 0, the model (12) reduces to standard Gibbs-type priors for which the quantities above have been given in (23). Using
(23) and enumerating how zn+1 can affect the number of homogeneous edges, it comes that:
for zn+1 6∈ {z1, . . . , zn},

p(zn+1|z1:n;β) ∝
Vn+1,Kn+1

Vn,Kn
eβH(z1:n)

and for ` ∈ {z1 . . . zn},

p(zn+1 = ` | z1:n;β) ∝
Vn+1,Kn

Vn,Kn
(n` − σ) e

βñ`δNn+1
(`)

eβH(z1:n) .

The result follows by normalizing the quantities above, using (21) and noticing that

∑
`∈{z1...zn}

(n` − σ)e
βñ`δNn+1

(`)
= ηn+1 + n− σKn .

�
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A.2 Proof of Proposition 2

Consider the DP first. Let Dn = δθn is new|θ1:n−1
be the Bernoulli random variable equal to one when θn is a fresh draw, which for

the DP-MRF happens with probability
α

α+ n− 1 + ηn(0, β)
.

Then Kn =
∑n
i=1Di, so we have for the DP-MRF

E[Kn] =

n−1∑
i=0

E

[
α

α+ i+ ηi+1(0, β)

]
. (48)

By definition of the maximal degree D of the graph, the multiplicity ñ` is at most D for any `, hence we have the following upper
bound ∑

`∈zNi+1

n`(e
βñ` − 1) ≤

∑
`∈zNi+1

n`(e
Dβ − 1) ≤ i(eDβ − 1). (49)

Plugging (49) into (48) provides the desired inequality

E[Kn] ≥
n−1∑
i=0

α

α+ ieDβ

=
α

eDβ

n−1∑
i=0

1

i+ αe−Dβ
&

α

eDβ
logn.

Turning to the Pitman–Yor process, we follow the proof technique of [37]. The prior expectation of the number of clusters satisfies
the following recursion

E[Kn+1] = E[Kn] + E

[
α+ σKn

α+ n+ ηn+1

]
.

Assuming here that α ≥ 0 and using the lower bound (49) yields

E[Kn+1] ≥ E[Kn]

(
1 +

σ

α+ neDβ

)
.

By induction, and using K1 = 1,

E[Kn] ≥
n−1∏
i=1

(
1 +

σ

α+ ieDβ

)
= exp

(
n−1∑
i=1

log

(
1 +

σ

α+ ieDβ

))

' exp

(
n−1∑
i=1

σ

α+ ieDβ

)
' exp

( σ

eDβ
logn

)
= nσe

−Dβ
,

where an ' bn means an/bn converges to some positive constant when n → ∞. The desired inequality for PY is obtained by
writing this constant equal to c. �

A.3 VB-E-τ step

qτk (τk) ∝ exp

(
Eqα,σ [log p(τk | α, σ)] +

n∑
j=1

Eqzj qτ\{k} [log πzj (τ )]

)

∝ exp

(
−Eqα,σ [σ] log τk + (Eqα,σ [α] + kEqα,σ [σ]− 1) log(1− τk)

+

n∑
j=1

K∑
l=k+1

qzj (l) log(1− τk) +

n∑
j=1

qzj (k) log(τk)

)
.

(50)

Considering the terms involving τk , we recognize the beta distribution B(τk; γ̂k,1, γ̂k,2) specified in (33). It follows the expressions
of the following quantities,

Eqτk [log(τk)] = ψ(γ̂k,1)− ψ(γ̂k,1 + γ̂k,2)

Eqτk [log(1− τk)] = ψ(γ̂k,2)− ψ(γ̂k,1 + γ̂k,2)
(51)

where ψ(·) is the digamma function defined in Section 5.2.
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A.4 VB-E-(α, σ) step

In the PY case, qα,σ(α, σ) is proportional to

q̃α,σ(α, σ) ∝ p(α, σ; s1, s2, a) exp

(
K−1∑
k=1

Eqτk [log p(τk | α, σ)]

)

∝ p(α, σ; s1, s2, a)

K−1∏
k=1

B(1− σ, α+ kσ)−1 ×

exp

(
−σ(

K−1∑
k=1

Eqτk [log τk]−
K−1∑
k=1

k Eqτk [log(1− τk)]) + (α− 1)

K−1∑
k=1

Eqτk [log(1− τk)]

)
,

where B(a, b) :=
Γ (a)Γ (b)
Γ (a+b)

represents the beta function. The last term simplifies into

K−1∏
k=1

B(1− σ, α+ kσ)−1 =
Γ (α)

Γ (1− σ)K−1 Γ (α+ (K − 1)σ)

×
K−1∏
k=1

(α+ (k − 1)σ).

(52)

The difficulty is that except in the DP-MRF case, the normalizing constant for q̃α,σ(α, σ) is not tractable. Nevertheless, to carry out
the VBEM algorithm, we do not need the full qα,σ distribution but only the means Eqσ [σ] and Eqα [α]. One solution is therefore to
use importance sampling or MCMC to compute these expectations via Monte Carlo sums. Using the prior on (α, σ) given in (31), it
comes that

q̃α,σ(α, σ) = G(α+ σ; ŝ1, ŝ2) e−σξ

p(σ; a)
Γ (α)

Γ (1− σ)K−1 Γ (α+ (K − 1)σ)

K−1∏
k=1

(
α+ (k − 1)σ

α+ σ

) (53)

where G(α+ σ; ŝ1, ŝ2) is the pdf of a σ-shifted gamma distribution with ŝ1, ŝ2 given in (36). The parameter ξ is defined as

ξ =

K−1∑
k=1

Eqτk [log τk]−
K−1∑
k=1

(k − 1) Eqτk [log(1− τk)], (54)

which can be computed using (51). We propose then to use as importance distribution ν(α, σ) = G(α + σ; ŝ1, ŝ2) p(σ; a) with
p(σ; a) the uniform distribution on [0,1], U[0,1](σ). It comes an expression for the importance weights,

W (α, σ) =
q̃α,σ(α, σ)

ν(α, σ)

= e−σξ
Γ (α)

Γ (1− σ)K−1 Γ (α+ (K − 1)σ)

K−1∏
k=1

(
α+ (k − 1)σ

α+ σ

)
.

(55)

The importance sampling scheme then consists of:

– For i = 1 to M , simulate first independently σi from U[0,1](σ) and then simulate conditionnaly αi using the σi-shifted gamma
SG(σi, ŝ1, ŝ2). This later simulation is easily obtained by simulating a standard G(ŝ1, ŝ2) and then substracting σi to the result.

– Compute the importance weights wi = W (αi, σi).

– Approximate the means Eqσ [σ] ≈
∑M
i=1 wiσi∑M
i=1 wi

and Eqα [α] ≈
∑M
i=1 wiαi∑M
i=1 wi

Note that this complication is due to the PY. In the DP-MRF case, the E-α step is considerably simpler as it reduces to computing
the approximate posterior expectation of α, namely Eqα [α] = ŝ1/ŝ2.

A.5 VB-E-Z step

The VB-E-Z is divided into n steps. Since we assume qzj (zj) = 0 for zj > K, it is only necessary to compute the distributions for
zj ≤ K, namely

qzj (zj) ∝ exp

(
Eqθ∗zj

[log p(yj | θ∗zj )] + Eqτ [log πzj (τ )] + β
∑
i∈Nj

qzi (zj)

)
, (56)

where for zj = k,

Eqτ [log πk(τ )] = Eqτk [log τk] +

k−1∑
l=1

Eqτl [log(1− τl)]. (57)
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The term Eqθ∗zj
[log p(yj |θ∗zj )] is computed using the fact that qθ∗

k
is a Normal-inverse-Wishart distribution as described in Eq. (40)

of the next VB-E-θ∗ step, namely

qθ∗
k

(µk, Σk) = NIW(µk, Σk; m̂k, λ̂k, Ψ̂k, ν̂k)

= N
(
µk; m̂k,

Σk

λ̂k

)
IW(Σk; Ψ̂k, ν̂k).

(58)

It comes out that (d is the dimension of yj )

Eqθ∗
k

[log p(yj | θ∗k)] = −
d

2
log 2π −

1

2
Eqθ∗

k
[log |Σk|]

−
1

2
Eqθ∗

k
[(yj − µk)TΣ−1

k (yj − µk)].

(59)

Using the decomposition (cf. Eq. (58)) and the fact that Σ−1
k follows a Wishart distribution, it comes out that

Eqθ∗
k

[log |Σk|] = EqΣk [log |Σk|] = −EqΣk [log |Σ−1
k |]

= −
d∑
i=1

ψ(
ν̂k + (1− i)

2
) + log

∣∣∣∣∣ Ψ̂k2
∣∣∣∣∣ , (60)

Then, one has

Eqθ∗
k

[(yj − µk)TΣ−1
k (yj − µk)]

= EqΣk [(yj − m̂k)TΣ−1
k (yj − m̂k) + Tr(Σ−1

k Σk/λ̂k)]

= ν̂k(yj − m̂k)T Ψ̂−1
k (yj − m̂k) +

d

λ̂k
.

(61)

Plugging in all of the above expressions back into Eq. (56) yields, for zj = k and k = 1, . . . ,K, qzj (k) ∝ q̃j(k) with q̃j(k) given
in (38).

A.6 VB-M-β step

This step does not admit a closed-form expression but can be solved numerically. The maximization in β admits a unique solution.
Indeed, it is equivalent to solve the following equation:

β̂ = arg max
β

Eqzqτ [log p(z | τ ;β)]

= arg max
β

Eqzqτ [V (z; τ , β)]− Eqτ [logC(τ , β)].
(62)

where C denotes the normalizing constant that depends on τ and β. Denoting the gradient vector and Hessian matrix respectively by
∇β and∇2

β , it comes that

∇βEqzqτ [log p(z | τ ;β)] = Eqzqτ [∇βV (z | τ ;β)]− Ep(z|τ ;β)qτ [∇βV (z | τ ;β)],

∇2
βEqzqτ [log p(z | τ ;β)] = Eqzqτ [∇2

βV (z | τ ;β)]− Ep(z|τ ;β)qτ [∇2
βV (z | τ ;β)]

− Eqτ [Varp(z|τ ;β)[∇βV (z | τ ;β)]].

(63)

It follows that whenever V (z | τ ;β) is linear in β, ∇2
βV (z | τ ;β) is zero, the Hessian matrix is negative semidefinite and the

function to optimize is concave.
Unfortunately, due to the intractable normalizing constant C, it is necessary to evaluate the terms involving p(z | τ ;β) in an

approximate manner. A natural approach is to use a mean-field-like approximation that consists of replacing all neighbors in the
interaction term by non-random values. Thus, the Potts model is approximated by

p(z | τ ;β) '
n∏
j=1

pMF
zj

(zj | τ ;β), (64)

with pMF
zj

(zj | τ ;β) defined as

pMF
zj

(zj = k | τ ;β) ∝ exp

(
log πk(τ ) + β

∑
i∈Nj

qzi (k)

)
. (65)



22 Hongliang Lü et al.

This approximation induced by the posterior variational approximation has been proposed in [9,18] and also exploited in [10]. It thus
follows that

Eqzqτ [∇βV (z | τ ;β)] =

K∑
k=1

∑
i∈Nj

qzj (k)qzi (k)

Ep(z|τ ;β)qτ [∇βV (z | τ ;β)] ' Eqτ

 K∑
k=1

∑
i∈Nj

pMF
zj

(k | τ ;β)pMF
zi

(k | τ ;β)

 .
(66)

The additional difficulty is that we have to compute the expectation with respect to each qτk . This can be done using simulations. To
avoid the Monte Carlo sum, we can use instead of (65) another approximation where the random τ is replaced by a set of fixed values
τ̃ given by

τ̃k = Eqτk [τk] =
γ̂k,1

γ̂k,1 + γ̂k,2
. (67)

Thus, Eq. (65) turns into

pMF
zj

(zj = k;β) ∝ exp

(
log πk(τ̃ ) + β

∑
i∈Nj

qzi (k)

)
, (68)

where log πk(τ̃ ) = log τ̃k +
∑k−1
l=1 log(1− τ̃l). Similarly, it follows that

Ep(z|τ ;β)qτ [∇βV (z | τ ;β)] '
K∑
k=1

∑
i∈Nj

pMF
zj

(k;β)pMF
zi

(k;β). (69)

By setting them equal to each other and solving this equation for β over an interval, say [0, 10], one obtains an updated value β̂.

A.7 VB-M-(s1, s2, a) step

For the sake of simplicity, we use for σ a uniform prior so that parameter a does not have to be taken into account. With the previous
choice of priors on α and σ for PY-MRF mixture models, this VB-M-step becomes

(s1, s2)(r) = arg max
(s1,s2)

E
q
(r)
α,σ

[log p(α | σ; s1, s2)] (70)

But the issue is now that the precise form of q(r)α,σ is not known. We can use again importance sampling for the optimization.
More specifically, these steps do not admit an explicit closed-form expression but can be solved numerically using gradient ascent

schemes. Indeed, for s1, s2, it is equivalent to solve

∇s1Eqα [log p(α | σ; s1, s2)] = Eqα [∇s1 log p(α | σ; s1, s2)]

= log s2 + Eqα,σ [log(α+ σ)]− Ψ(s1)

= 0

∇s2Eqα [log p(α | σ; s1, s2)] = Eqα [∇s2 log p(α | σ; s1, s2)]

=
s1

s2
− Eqα [α]−Eqσ [σ]

= 0.

(71)

As before, when σ = 0, this step simplifies into s(r)1 = ŝ
(r)
1 and s(r)2 = ŝ

(r)
2 , namely to the DP-MRF case.

A.8 Initialization of the VBEM algorithm

An important question which is not often addressed in details is how to initialize the VBEM algorithm. In contrast to the standard
EM that we can equivalently start with an initial E-step or an initial M-step, VBEM requires several steps to be initialized depending
on the complexity of the model.

In the present work, we propose the following procedure for initializing the VBEM algorithm. First, we set values for s1 and
s2, which are taken in our experiments to s1 = 1 and s2 = 200/K. From this, we can initialize the VB-E-(α, σ) step by setting
E[α] = s1/s2 and E[σ] = 0. It is then required to set values for the other hyperparameters. The interaction parameter β can be
initialized to β = 0 assuming no initial spatial interaction and for the ρk’s defining the Normal-inverse-Wishart priors, we suggest to
use for all k, mk = 0, Ψk = 1 · 103, νk = d and λk = 1 in order to start with a large variance for the µk’s.

In addition, we need to initialize the cluster assignments which correspond to the VB-E-Z step. Several approaches are possible
depending on the available information and model. A common way often used in image segmentation is to initialize the qZ(zj)’s
randomly or using an initial segmentation coming either from preliminary information or from a simpler non spatial clustering
procedure, e.g. k-means. In our experiments, an initialization into K clusters obtained with k-means++ [4] was used. k-means++
is basically identical to the k-means algorithm, except for the selection of initial centers. More concretely, k-means++ starts with
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allocating one cluster center at random and then searches for the next ones which will be selected with a probability proportional
to the distance to the closest center already chosen. The essential idea is to make all centers that would be selected as far away as
possible from each other. It should be noted that k-means++ also uses random initialization as a starting point, so it can give different
results on different runs. To overcome the issue of poor initialization, we propose to run k-means++ several times and use the labels
that yield the best compactness (the sum of squared distances from each point to their corresponding center) to initialize the qZ(zj)’s
and thus update the ρk’s. From the initialization of qZ(z) and ρ, the VB-E-τ and VB-E-θ∗ steps can then be derived. This simple
scheme has the advantage of accelerating the convergence of the VBEM algorithm.
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