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Abstract One of the central issues in statistics and machine learning is how to select an adequate model that
can automatically adapt its complexity to the observed data. In the present paper, we focus on the issue of
determining the structure of clustered data, both in terms of finding the appropriate number of clusters and
of modelling the right dependence structure between the observations. Bayesian nonparametric (BNP) models,
which do not impose an upper limit on the number of clusters, are appropriate to avoid the required guess on
the number of clusters but have been mainly developed for independent data. In contrast, Markov random fields
(MRF) have been extensively used to model dependencies in a tractable manner but usually reduce to finite
cluster numbers when clustering tasks are addressed. Our main contribution is to propose a general scheme
to design tractable BNP-MRF priors that combine both features: no commitment to an arbitrary number of
clusters and a dependence modelling. A key ingredient in this construction is the availability of a stick-breaking
representation which has the three-fold advantage to allowing us to extend standard discrete MRFs to infinite
state space, to design a tractable estimation algorithm using variational approximation and to derive theoretical
properties on the predictive distribution and the number of clusters of the proposed model. This approach is
illustrated on a challenging natural image segmentation task for which it shows good performance with respect
to the literature.

Keywords Hidden Markov random fields - Bayesian nonparametrics - Variational approximation - Clustering -
Image segmentation - Predictive distribution

1 Introduction

Hidden Markov random field (HMRF) models are widely used for clustering data under spatial constraints.
Spatial dependencies are encoded by modelling the cluster labels as a discrete state Markov random field (MRF)
such as Ising (two clusters or states) or Potts (more than two clusters) model [10,32]. HMRF can be seen
as spatial extensions of independent mixture models. As for standard mixtures, one concern is the automatic
selection of the proper number of clusters in the data, or equivalently the number of states in the HMRF. In the
independent data case, several criteria exist to select this number automatically based on penalized likelihoods
(e.g., AIC, BIC, ICL, etc.) and have been extended in the HMRF framework using variational approximation
[17]. They require running several models with different cluster numbers so as to choose the best one, with a
potential waste of computational effort as all the other models are usually discarded. Other techniques use a
fully Bayesian setting including a prior on the number of components. The most celebrated method in this case
is reversible jump Markov chain Monte Carlo [19]. Although simplifications in the inference have been proposed
recently in [23]], the computational cost of reversible jump techniques remains considerably high.

In the present work, we investigate alternatives based on Bayesian nonparametric (BNP) methods. In partic-
ular, Dirichlet process mixture (DPM) models have emerged as promising candidates for clustering applications
where the number of clusters is unknown. Nevertheless, applications of DPMs involve observations which are
assumed to be independent. For more complex tasks such as unsupervised image segmentation with spatial
relationships or dependencies between the observations, DPMs are not satisfactory. Therefore, we propose to
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introduce MRF dependencies between data points in BNP models, and we term the resulting model BNP-MRF.
This requires to extend finite state space MRF models to an infinite number of states. We show that this can be
achieved by incorporating a stick-breaking scheme in an MRF formulation more general than the standard Potts
model commonly used.

The addition of MRF dependencies between data points in BNP models raises the question of how they
impact the natural clustering and rich-get-richer properties of BNP priors? We answer this question by providing
theoretical results about two quantities of interest for BNP priors: the predictive distribution, that represents
the distribution of one datum conditional on previous observations, and the number of clusters induced by a
BNP-MREF prior.

The links to other similar attempts is reviewed in Section[2] The proposed BNP-MRF model is explained in
Section [3] and theoretical properties are investigated in Section @] The model implementation using variational
approximation is detailed in Section [5] An illustration of its performance on an image segmentation task is
provided in Section[6and a conclusion ends the paper.

2 Related work

Attempts to build countably infinite state space MRF models using BNP priors have already appeared in the liter-
ature. In particular, we can distinguish attempts such as [[11,/12,30] from the work in [226,38l31]. The approach
in [11L12L30] differs in that it is not based on a generalization of the Potts model but on a transformation of an
inference algorithm. More specifically in [[11i[12], a standard mean field approximation is first considered and
then transformed to account for an infinite number of states. In that sense it is closer to an Iterated Conditional
Mode (ICM) algorithm [6], but does not provide a spatial generalization of DPMs. Typically, the simple Potts
model considered in [[11,[12] cannot be extended to an infinite number of states as it will become clear in our
Section @ Other attempts include the work in [21]], but there the number of states is known to be three and
the Dirichlet process (DP) prior is used instead to model intensity distributions non-parametrically. Segmenta-
tion with spatially dependent Pitman—Yor processes (PY) has also been considered in [33], but using Gaussian
processes.

We build on the approach in [2]] which differs from [26.[38.31] which all use a partition model representation.
In particular, [38] generalizes [26] and proposes a more efficient Markov chain Monte Carlo (MCMC) inference
by means of the Swendsen—Wang algorithm, while [31]] extends this idea to hierarchical DP priors for multiple
image segmentation. In contrast to [26/38l31], we propose to use a stick-breaking-based scheme for the mixing
weights, thus providing a more comprehensive representation than partition models which integrate out the
process. In addition, stick-breaking representations lead naturally to variational approximations for performing
inference [7]. The advantage is to reduce the computational cost in complex data clustering without suffering
from label switching complications. In other words, in our approach the MRF is imposed internally in the BNP
mechanics leading to well defined infinite state HMRF models. This construction is valid for any stick-breaking
representation. We show how it can be implemented for the DP and PY priors, and provide references for
extensions to larger classes of BNP priors.

3 BNP-MRF mixture models

The clustering task is addressed through a missing data model that includes a sety = (y1, .. ., yn) of observed
variables from R? and a set z = (21, ..., zn) of missing (also called hidden) variables whose joint distribution
p(y,z | ©) is governed by a set of parameters denoted by @ and possibly by additional hyperparameters ¢
not specified in the notation. The latter ones are usually fixed and not considered at first. Typically, the z;’s
corresponding to group memberships (or labels), take their values in {1,..., K} where K is the number of
clusters or groups. We shall denote by £ = {1,..., K}" the set in which z takes its values and by © the
parameter space. To account for dependencies between the z;’s, z can be modeled as a discrete MRF. If in
addition, the y;’s are independent conditionally on z, the joint distribution p(y,z | @) is referred to as an
HMRF model. In this case, the conditional distribution p(z | y, @) is also an MRF. For clustering dependent
data into K groups, the most commonly used MRF is the so-called Potts model [10.32].

As already mentioned, our goal is to bypass the issue of selecting the number K of clusters by considering
a countably infinite number of them while allowing MRF dependencies between the y;’s. The construction of
the proposed model is explained starting from the link between standard finite mixtures and Dirichlet process
mixtures. Basic DP principles and notations are recalled in Section [3.I] The extension of finite state space MRF
to a countably infinite number of states is given in Section [3.2] and the resulting BNP-MRF mixture models is
summarized in Section 3.3
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3.1 From finite mixtures to DP mixture models

A generative approach to clustering consists of picking one of K clusters from a multinomial distribution with
weights parameter w = (71,...,7x) and then to generate a data point y from a cluster specific distribution
p(y | 0%) with cluster specific parameter 6;;. This yields a finite mixture model

K
ply |6, m) = ply | OF) M

k=1
where 0° = (67,...,0%) and 7 are the parameters. For instance, for Gaussian mixtures, 0 = (ug, Xk)

and p(y | 60%) is a Gaussian distribution with mean 1, and covariance matrix X, denoted by A (ug, %) or
N(y | pr,X%) when referring to the probability density function (pdf). The observations (y1,...,y»n) are
therefore i.i.d. and generated from the same mixture (I). It follows that the kth cluster is by definition the set
of data points arising from the kth mixture component. This is usually expressed by introducing for each y; an

additional hidden variable Z; that takes its values in {1, ..., K}, so that p(z; = k | ) = 7). Another way to
obtain a sample from a finite mixture model consists of defining a discrete measure G = Zszl Tk 59; and then
of considering the following hierarchical representation, forall j = 1,...,n,
0;1G %G,
ind

yi |05 ~ p(. |6;).

The subset of §;’s that are equal to §j; corresponds to the y;’s in the kth cluster.

In a Bayesian setting, in addition, a prior distribution is placed on " and 7. The most common choice for 7
is the Dirichlet distribution Dir(a1, ... ax) depending on a vector of positive parameters &« = (a1, ..., aK).
The choice of the prior on 8* (denoted by Go) is model-specific, usually following a conjugate prior such as a
Normal inverse-Wishart distribution for Gaussian mixture models. Other cases are possible and tractable (e.g.
[[L3]). It follows the hierarchical representation:

05,...,0% | Go ~ G, )
7 | a ~ Dir(a,. .. ax), 3)
K
G=> s, )
k=1
0, GG, j=1,...,n, (5)
ind

yi10; ~p(. 160;)j=1,...,n.

To become non-parametric, a first approach is to consider an infinite number of 7 ’s. Using an infinite number
of random variables T = (71,72, ...) on [0, 1], we can construct an infinite number of 7, ’s that sum to one as
follows:

k—1
m(T) =71 and Wk(T)ZTkH(l—Tz), k=23,...
=1

The intuition behind this construction, referred to as stick-breaking, is that it consists of recursively breaking
a unit-length stick as shown in Fig. [T} It follows an explicit formula for the 7j’s. Hence, the 75’s simulation
replaces step (3), and G in (@) can be replaced by

G = Z 71'}6(7')(59;.
k=1

We can also add after step (5) the fact that z; = k if 0; = 0, and replace the last step by y;|z;, 0™ ind p(. |

9;“]. ). Then the distributions of the 71’s need to be specified. The Dirichlet process [[16], denoted by DP(Go, ),
is characterized by a base distribution Gig and a positive scaling parameter «. Its stick-breaking representation
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0 M, T, T, mn, 1
| | | | | ]
I [ | | I I
Tl 1'1'1
- -— — >
Recursively break the T . 1-1
stick of unit length 2 . 2

Fig. 1 Illustration of the stick-breaking representation.

corresponds to i.i.d 71 ’s that follow the same beta B(1, ) distribution [20]. All together, using the same notation
G for the prior of each 6}, simulated as i.i.d. variables, it comes the following hierarchical representation:

iid

0x | Go ~ Go, k=1,2,..., (6)
| a X B(1,a), k=1,2,...,
k—1
ﬂk(T):TkH(lle), k=1,2,..., 7
=1
G =Y mk(r)do;, ®)
k=1
0,1 G G, and z; = kif 0, = 0} ©)
yi | 2,0" X p( .| 63). (10)

The above hierarchical representation corresponds to a countably infinite mixture model referred to as a Dirichlet
process mixture (DPM) model. It is an explicit characterization of the DP (Eq. (6)) to (8)) and of the DPM (Eq. (6)
to Eq. (I0)) using a stick-breaking construction. The stick-breaking representation will be particularly useful in
our study for both the definition of our model (Sections[3.2]and [3.3) and its estimation (Section[5).

3.2 Infinite MRF priors

The explicit use of the labels z = (z1,...,2,) in the DPM construction above makes it closer to clustering
generative models and opens the way to an HMRF extension. Such a generalization is only possible from Potts
models with an external field parameter. In the finite state space case, an MRF model is defined using a depen-
dence structure coded via a graph G whose nodes correspond to the variables. A K -state Potts model with an

external field, defined over z = (z1,...,2n) withforall j = 1,...,n, z; € {1,..., K}, corresponds to the
following pdf,
p(z;B,v) ocexp [ Y v + 8D Szi=z | (11
i=1 i)

where ¢ ~ j means that ¢ and j are neighbors, i.e. linked by an edge, in the considered dependence structure
described by graph G, d., =) is the indicator function which is 1 if z; = z; and 0 otherwise, f3 is a positive
scalar interaction parameter and v = (v1,...,vk) represents an additional external field parameter where
each vy, is a scalar. The distribution (1)) is insensitive to an addition of the same constant to all the vy ’s. Such
non-identifiability can be overcome by an additional constraint on v such as requiring Zszl T = 1 with
v, = log . The Potts model in can then be rewritten as

n
pzBm)oc | [[ 7y | exp | 8D ez |- (12)
j=1 invj

In the finite state space case, we can equivalently use the Gibbs representation,

p(z; B, 7) oc eV =8 (13)
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where V(z; 8, ) =37 logmz; + B, ; 0(z,==,) is often referred to as the energy function. The first sum
in V represents the first order potentials while the second sum represents the second order potentials. In the finite
state space case, the Hammersley—Clifford theorem [6] applied to the Gibbs representation (I3) entails that the
distribution in is a Markov random field. What is interesting about formulas and is that they do not
involve the number of states K. As long as a stick-breaking construction is available, we can consider a countably
infinite number of probabilities 7, that sum to one, i.e., Y~ ; T, = 1 and define the same energy function V" as
before but over an infinite countable set of states. Using the Gibbs representation (I3), the Hammersley—Clifford
theorem still holds if we can show that 3, eV (#™B) < o, where the sum runs over all n- uples of positive
integers z € {1,2,...}". Note that this latter condition that is automatically satisfied in the finite state space
case (for reasonable potential functions), may not be satisfied in the infinite case. However, the stick-breaking
representation of 7r ensures this property since:

ZeV(Z;Bﬂr) ) H m, | P
z

z j=1

® 8"

where we used for (a) the fact that n(n — 1)/2 is the maximum number of neighbors among n observations
(complete dependence or graph), while (b) comes from >°, [[}_, 7=, = (352, ™)™ = 1.1t follows that
p(z; B, ), in the infinite state space case, is still a valid probability distribution and is an MRF by the Hammer-
sley—Clifford theorem. Such a generalization is possible because of the presence of the external field parameters
, that satisfy 2, mp = 1 as ensured by the stick-breaking construction. A standard Potts model with equal
or no external field parameters cannot be as simply extended to an infinite countable state space because in the
K -state case this Potts model is equivalent to 7m, = 1/K for all k£ which possesses a degenerate limit when K
tends to infinity.

3.3 BNP-MRF mixture models

The stick-breaking representation amounts to identifying a set of random variables 7 = (7%)j—; with each
Tk € [0, 1] and so that the weights 7, are defined by (7). Then the Potts model construction (I2)) is valid for any
set of parameters T = (7 )5— With each 7, € [0, 1]. Bayesian non-parametric priors specify a prior distribution
on 7% s. For instance, as already mentioned for the DP stick-breaking, all 74 s are independent and identically
distributed according to a 3(1, o) distribution. For the Pitman—Yor (PY) process [28]], the 7;,’s are independent
but not identically distributed with

| a0 B B(1—o,a+ko) fork=1,2,..., (14)

where o € (0, 1) is a discount parameter and « a concentration parameter o > —o. The PY is a two-parameter
generalisation of the DP which allows to control the tail behavior when modeling data with either exponential
or power-law tails [20,28]]. When o = 0, the PY reduces to a DP. More general stick-breaking representations
are possible (e.g., for Gibbs-type priors [[14.[18] or homogeneous normalized random measures with independent
increments (NRMIs) [[15]]) but the Pitman—Yor case provides a clear interpretation in terms of number of clusters.
The rich-gets-richer property of the DP is preserved meaning that there are a small number of large clusters, but
there is also a large number of small clusters with parameter o decreasing the probability that observations join
small clusters. The PY yields a power-law behavior which can make it more suitable for a number of applications.
In other words, the number of clusters grows as O(n?) for the PY while it grows more slowly at O(logn) for
the DP.

The extension we propose is therefore to augment the original HMRF formulation with additional variables
(T ) 721 - We refer to it as the BNP-MRF mixture model. It corresponds to the following hierarchical construction
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written here in the PY case:
iid

05 | Go ~ Go, k=1,2,..., (15)
| a0 B B(1—o,a+ ko), k=1,2,..., (16)
k—1
me(r) =7 [ =7), (17
=1
pz|78) o [ [[m(m) | exp [ B 6=z | (18)
j=1 i~
% ind *
yj | 2,0~ ply; | 0%,) - (19)

The prior on 74’s from (I6) can be adapted to more general classes of BNP priors, see for example Theorem
14.23 of [18]] for Gibbs-type priors, and [15] for NRMIs. Importantly, in the BNP-MRF model above, the ;s

and z;’s are not i.i.d conditionally on G anymore. The joint distribution onz = (z1,...,2zy) induces a joint
distribution on (61, .. ., 6 ) using that §; = 67 . If we still denote for simplicity by G this joint distribution, we

can define it in a similar manner as in the i.i.d. case, using its conditional specifications,

0;10n:G ~ > plz5 = klan;, 75 8) do,

k=1

where N denotes the neighbors of j in the graph dependence structure G and the p(z; = k|2 N> T3 B )’s are the
conditional specifications of (T8).

In Section[5.2] we detail the case when cluster specific distributions are Gaussian, with 65 = (ux, X%) and
p(y; 1 05) = N(y; | pe, Z).-

4 Predictive distribution and number of clusters for a BNP-MRF prior

In this section, we provide theoretical results about two quantities of interest for Bayesian nonparametric priors:
the predictive distribution, that represents the distribution of one datum conditional on previous observations,
and the number of clusters induced by a BNP-MRF prior. We consider data of varying sample size, and denote
by G, the subgraph of G induced by node {1,...,n}.

We focus on the large class of Gibbs-type priors [14], of which the DP and PY are special cases. Consider n
observations (61, . . ., 05 ) sampled from a BNP-MRF prior Eq (I5)-(I8) but using a Gibbs-type prior instead of

PY prior . We are interested in the predictive distribution of observation 0,41 conditional on (61, ..., 0x),
but unconditional on G. With a BNP-MRF prior, this predictive distribution depends on the structure of the
graph G, more specifically on the neighbors of 0,,41. Denote by K, the number of clusters in (61, ...,605),

by (07,...,0%,) their K, different valuesﬂ and by (n1,...,nk, ) their size. We first consider the Gibbs-type
prior case without the addition of a Markov component. The predictive distribution [18] is given by,

K
Vo, 41 Viot1,K,
p(Ont1 | 01,...,0n) = T Go + Virc, eg_l(ne — 0)de; (20)

where the triangular array of nonnegative parameters V;, 5, 1 < k < n, satisfy the backward recurrence relation
Vigk = (n—0k)Viti1,k + Vag1,k41, 21

with V1,1 = 1. This predictive can be specialized to the PY case with

Vo " (1+ ) w-1)
ok (1 +a)(n71)

where (a) () = I'(a + x)/I"(a) denotes the rising factorial. It follows

a+ oKy,

K

| K

POnta |01, 0n) = = —— = Go + ——— > (ne — a)do;, (22)
=1

' Note that the notation introduced for the different 0; differs from that devoted to the stick-breaking variables, 9;-‘.
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while the case of the DP is obtained by setting o = 0 above.

For the sake of simplicity, we propose to use the labels notation z1:.p, = (21, ..., zn) defined so that z; = ¢
when 0; = 07, we denote by {z1,...,2n} the set of label values which includes only K, different labels. In
the Gibbs-type prior case, it is clear from (20) that

Vo .
Plant1 | 21m) = L i oy {2, ), 23)
Vn,Kn
o o Vn+1,Kn .
p(znt1 =L | 21:n) = ——""(ng — o) ifle{z1,...,2n}.
Vn,Kn

The next proposition indicates how the predictive is impacted by the addition of a Markov dependence. The
neighbors of 0,11 in Gy, is denoted by N,,+1 and 7, is the number of neighbors of 6,1 which belong to cluster
2, hence satisfying iy < ng. Also zn,,, = {2i,% € Nng1} denotes the labels in the neighborhood. The proof

of the proposition is given in Appendix [A-T]

Proposition 1 (Predictive distribution of a Gibbs-MREF prior) The predictive distribution for a Gibbs-MRF
prior is given by

K
Vat1, K, 41 Vot K =
Ont1|61,...,0n) = = Go + — A ¢ Go* (24)
p(Ont1 | ) VoK, + Vat1, K, M 41 Vo, g, + Va1, K, M1 ez::l et

where

Mnt+1 = nn—i—l(gv /8) = Z (nf - U)(eﬁﬁz - 1)7

L€2N, 1,

Ant 1,6 = An1,6(0, 8) = (ng — ) 77 0nia (O,

and ., , (£) is 1 when £ is a label present in the neighborhood of 0,11 and 0 otherwise.

Remark 1 When 8 = 0,n,,,1(0,0) = 0and Ap41.¢(0,0) = ng — o so that the Gibbs-type prior predictive
(20) is recovered. In contrast, for 5 > 0, the above predictive specialized to the PY-MRF case is,

K
a+ oK, 1 =

Onir |01, .. 600) = Go + PNy . 25

p(Ont1 | 01 ) T 04+n+77n+1;=:1 +1,¢ 06; (25)

while the case of the DP-MREF is obtained by setting ¢ = 0. Comparing the probability of a new draw for a

Gibbs-type prior, ‘/"{;1’7};"“, with that of a new draw for a Gibbs-MRF prior. LEESH oS! , We see

> VoK Vot 1 Kp+1Mn 41

that the MRF has the effect of reducing this probability. In the PY case, this increase corresponds to increasing
the sample size from n to n+mn,, . ; when 8 > 0, where n,, , ; can be quite a large number. More specifically for
a label £ in the neighborhood of 2,41, the weight of each previous observations with label ¢ (in the neighborhood
or not) is multiplied by a factor (e*B e _ 1). The effect is then all the more important as 3 is large and as 7y is

large.

The predictive distribution (24) provides in turn the following lower bounds on the prior expectation of the
number of clusters. The proof of Proposition [2]is given in Appendix [A.2]

Proposition 2 (Lower bound for expected number of clusters) Assume that the graph G has maximal degree
D. Then the expected prior number of clusters for a BNP-MRF distribution has the following lower bound

@
E[Ky] 2 oD logn (26)
for the Dirichlet process and
E[K.] > en®® ", @7

for the Pitman—Yor process, with some positive constant ¢, and where ar, 2, by, stands for lim sup an, /by, > 1.
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Remark 2 We do not have a proof for the general case of Gibbs-type priors, but we conjecture that the same
power-law lower bound as for PY holds.
Note that the MRF component of a BNP prior can only reduce the prior expected number of clusters. For
instance, for the DP with a simple graph where the first two nodes are connected, we have
a a

[Ko] =14 oo s 1+ 57 — Bl 5 =0)

where the last two terms above correspond the expectation of K> for a DP, i.e. when 3 = 0. Thus natural upper
bounds that complement the lower bounds of Proposition [2]are given by

E[K,] S alogn

for the Dirichlet process and

E[Kn] < I'la+1) ne

S ol(a+0) @

for the Pitman—Yor process (see [27]).

5 Inference using Variational approximation

Sampling based inference (MCMC) for a similar BNP-MRF model has been proposed in [26[38] for the case
of a DP prior. As an alternative, we propose a variational approximation that is facilitated by the stick-breaking
representation. For that purpose, we shall briefly recall the variational principle.

5.1 Variational Bayesian Expectation Maximization

The clustering task consists primarily of estimating the unknown labels z = (z1,.. ., 2, ) from observed y =
(y1,...,yn) assuming a joint distribution p(y,z | @;¢) governed by a set of parameters denoted by @ and
often by additional hyperparameters ¢p. However to perform good label estimation, the parameters @ values (and
hyperparameters ¢) have to be available. A natural approach for parameter estimation is based on maximum
likelihood, where @ is estimated by @ = arg maxgco P(y | @). Then an estimate of z can be obtained by

maximizing p(z | y, ©). However, p(y | ©) is a marginal distribution over the unknown z variables, so that
direct maximum likelihood is intractable in general. The Expectation-Maximization (EM) algorithm [22] is a
general iterative technique for maximum likelihood estimation in the presence of unobserved latent variables or
missing data. An EM iteration consists of two steps usually referred to as the E-step in which the expectation of
the so-called complete log-likelihood is computed and the M-step in which this expectation is maximized over
©. An equivalent way to define EM is the following. As discussed in [25], EM can be viewed as an alternating
maximization procedure of a function Fq defined, for any probability distribution gz on Z by

Folgz,0,0) = Y qz(z) logp(y,z | ©; ) + I[g7]

z€EZ
P(y,Z|©;9)
=Ey, |log————F"" 29
qz [ g qz (Z) ( )
where I[gz] = —Eq,[loggz(Z)] is the entropy of gz (E, denotes the expectation with regard to ¢). The

function Fo depends on observations y which are fixed throughout, hence are omitted from the notation.
Instead of considering only point estimation of @, a fully Bayesian approach can be carried out, for instance
when prior knowledge on the parameters @ is available. In this case, we have to compute

p(z | y) = /@ p(z | y,0) p(@ | y)dO (30)

Integrating out @ in this way requires the computation of p(© | y) which is not usually available in closed-
form. As an alternative to costly simulation-based methods (MCMC), an EM-like procedure using variational
approximation can provide approximations of the marginal posterior distributions p(@ | y) and p(z | y).
This approach is referred to as VBEM for Variational Bayesian EM [5]]. Let gz and go denote respectively
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distributions over Z and @ that will serve as approximations to the true posteriors. Similarly to standard EM,
VBEM is maximizing the following free energy function defined for any gz and ge distributions

p(y,Z,0;9)
q2(z)qe0(O)

alternatively over gz, qo and ¢. Adding a prior on @ is formally the same as adding @ to the missing variables,
while the hyperparameters ¢ play the role of the parameters of interest in maximum likelihood estimation.

The alternate maximization of F yields the VBEM algorithm that decomposes into three steps. It is easy to
show, using the Kullback—Leibler (KL) divergence properties, that the maximization over gz and ge leads to the
following E-steps (see Appendix A of [9]). At the rth iteration, using current values ¢("~%) and qg _1), we get
the following updating,

]:(QZ7 qe, ¢) =Eq,40 |log

VB-E-Z: qf’(z) x exp E,o-nllogp(y, 2, 0;¢" 1)),
VBE-©: 45 (0) x expE o [logply, Z, O;¢" )],

VB-M-¢: ¢\ = argmaxFE ) (» [logp(y, Z, ©; ¢)].
(2.'7 z e

Also, it is worth noticing that if Y and Z are independent of ¢ conditionally on @, as this is often the case when
¢ gathers the parameters that describe the prior on @, then the VB-M-step simplifies into

¢ = argmaxE ., log p(6; ¢)) = arg min KL(¢5 (6 9)). 31

Then ¢(") is the value that minimizes the KL distance between the prior p(@; ¢) and the variational posterior

qg ) (©). In the conjugate exponential family case, it is known that both distributions belong to the same family

[3]. Tf this family is identifiable it follows that ¢ = "

qg ) (®). A more detailed example is given in Section

In practice, we can decide which parameters are treated as genuine parameters @ or as hyperparameters
¢, depending on whether some prior knowledge is available only for a subset of the parameters or whether the
model has hyperparameters ¢ for which no prior information is available. Also for complex models, go and
qz may need to be further restricted to simpler forms, such as factorized forms, in order to ensure tractable
VB-E-steps. This is illustrated in the next section for the PY-MRF inference.

where (ﬁ(r) are the variational parameters defining

5.2 VBEM for a PY-MRF mixture model with Gaussian components

The VBEM steps are described for a PY-MRF mixture model as defined in Eq. @[) to @I), with Gaussian
distributed observations y. As hyperparameters o and ¢ may have a significant effect on the growth of the
number of clusters with data sample size, it is possible to specify priors on them. For the DP case obtained
with o = 0, it is suggested in [7] to use a gamma prior over o with two hyperparameters s1 and s2, i.e.
a ~ G(s1,s2) where s1 and sz can be estimated or fixed. A natural question that arises is then whether one can
also find a tractable prior for the discount parameter o. We propose to use the following prior that accounts for
the constraints o € (0,1) and a > —o,

p(a, 0581, 82,a) = pla | 0581, 82) p(o;a) (32)

where p(« | 03 81, $2) is a shifted gamma distribution SG(s1, s2, o) and p(o; a) is a distribution depending on
some parameter a not specified for the moment but that can typically be taken as the uniform distribution on the
interval (0, 1). Such a shifted gamma distribution is the distribution of a variable U — o where o is considered as
fixed and U follows a gamma distribution G(s1, s2). The pdf of this shifted gamma distribution is obtained from
the standard gamma distribution as p(« | o; s1, s2) = G(a + o; 51, s2). It follows that the joint distribution of
the observed data y and all latent variables becomes

(e}

p(y>Z:@;¢) = p(a70;s1,52,a) Hp(yj|zjve*)p(z|‘r75) H p(Tk‘O[?U) H p(el:apk)a
j=1 k=1

k=1

where the notation [ ; is a distributional notation, and in addition to the terms already defined in and
, we specify the likelihood term as a Gaussian distribution p(y;10%,) = N (y;|us,, 2-;) and the Go
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prior on cluster specific parameters 03 = (pk, X)) as a Normal-inverse-Wishart distribution parameterized by
pr = (Mg, Ak, P, Vi) with a pdf

POk pre) = NIW (e, Sis i) = N (e mues Ay " Ze) IW( D Wi, vic).

In the above notation, we consider as hyperparameters the set ¢ = (s1, 2, a, 8, (pk ) ey ) While @ = (7, a, 0, 0™).

In most variational approximations, the posteriors are approximated in a factorized form (mean-field ap-
proximation). In particular, the intractable MRF posterior on z is approximated as g»(z) that factorizes so as to
handle intractability due to spatial dependencies, namely

4z(z) = H qz, (%)
j=1

Then, the infinite state space for each z; is dealt with by choosing a truncation of the state space to a maximum
label K [[7]. In practice, this consists of assuming that the variational distributions g, for j = 1, ..., n, satisfy
gz, (k) = 0 for k > K and that the variational distribution on T also factorizes as ¢-(7) = [[1—," ¢r. (%),
with the additional condition that 75 = 1. Thus, the truncated variational posterior of parameters @ is given by

K—1 K
q6(0@) = qa,o(a, o) H qr.(Tk) H q0; (0;;) (33)
k=1 k=1

These forms of ¢, and g lead to four VB-E steps and three VB-M steps summarized below with details in the
Appendix. Set the initial value of ¢ to ¢ Then, repeat iteratively the following steps. The iteration index is
omitted in the update formulas for simplicity.

VB-E-7 step
The VB-E-7 step corresponds to a variational approximation in the exponential family case and results in a
posterior from the same family as the prior. It comes for k = 1,..., K,
ar. (k) = B(Tk; .1, V5,2) (34)
with
K
Aka =1—Eg,[0] +7n, An2=Eqla] + kEq, [0] + > i, (35)
e=k+1
where
n
for k=1,....K, nx=Y_q(k) (36)
j=1

corresponds to the weight of cluster k.

VB-E-(¢, 0) step

The (v, o) variational posterior is more complex but has a simple gamma form in the DP (o = 0) case. More
specifically, we need to compute

K-1
s1=s1+K—1, and $2 =50 — Y _ P(k2) — ¥(Fk.1 + Fn.2) 37
k=1
where 1) (-) is the digamma function defined by ¥(2) = <L log I'(2) = 1;((;)) . When o = 0 then ¢, is a gamma
distribution G (31, $2) and Eq_[a] = ‘f—l Otherwise (PY case), ¢a,o is only identified up to a normalizing
52

constant but the required E,, [a] and E4, [o] can be computed by importance sampling (see Appendix for
details).
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VB-E-Z step

Due to the mean field approximation and the truncation, this step consists in computing (see details in Appendix
[A3), forallj=1,...,nandfork < K,

q; (k)
4z (k) = =%~ (38)
>0l di(6)
where log §; (k) is defined by

1 7, (1 - . d
- i{log ?k - ;¢<W> + o1y — i) T (g — ) + j\k}—’_
B K1 (39
(k1) = V(A1 +Fk2) + D 0 (F12) = (Fin +A12) + B8 Y g (),
=1 PiEN;

where in the last sum, N represents the neighbours of j. In the above formula, symbols (7, 5\k7 @k, D) are
the variational hyperparameters for gox more specifically defined in the following step and d is the dimension
of the data. The advantage of Eq. is that it provides assignment probabilities ¢, (k) and does not require
intermediate commitments to hard assignments of the z;’s. The hard assignments can be postponed to the end if
desired to get a segmentation through the following maximum a posteriori (MAP) estimation:

Zj = argmax ¢, (k). (40)
ke{1,...,K}

VB-E-0* step

This step is divided into K parts where the computation is similar to that in standard Bayesian finite mixtures
with a choice of conjugate prior, here for Gaussian distributions. Hence, for each £ < K, the variational posterior
is a Normal-inverse-Wishart distribution defined as

ao; (s Zie) = NIW (e, S 17, Mo, W, ), 41)

where the hyperparameters are updated as follows (see for instance [24])

Ak = A + g, D = v + N,y

- AT _ _\T
by, =, ARk (e — -
& k+ Sk + e+ ik (mue — ) (e — k)™ (42)
e = Ak + Nkl _ AkTk + Rk fik
Ak + g e ’

with 7, defined in (36) and

_ 1
ik = - 2; gz, (k)y;,
J:

. 3)
_ _N\T
Sk =Y a= (k) (y; — i) (y; — ix)
j=1
VB-M steps
The maximization step consists of updating the hyperparameters ¢ = (3, s1, s2, a, p), where p = (p1,..., pK),
by maximizing the free energy, if they are not set heuristically:
") = arg max E () ), (0 [logp(y,Z,T,a,0,0%;9)] . (44)
® 2 4 as b ays

The VB-M-step can therefore be divided into 3 independent sub-steps as listed below. From the conditional
independence of (s1, s2,a, p) and (Y, Z) given (T, a, 0,0™), the VB-M-step writes as in so that the so-
lutions for the VB-M-(s1, s2) (in the DP case) and VB-M-p steps are straightforward. Only the 3 step and the
M-(s1, s2, a) step (in the PY case) are more involved.
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VB-M-[3: The maximization of (@4) with respect to /3 leads to

B = argmaxE ¢ o [log p(Z|7; B)] 45)
B z 7

This step does not admit a closed-form solution but can be solved numerically. More details are given in Ap-
pendix [A.6]

VB-M-(s1, s2,a): This step is straightforward in the DP case (¢ = 0). It can be expressed easily using the fact
that both the prior and the variational posterior are Gamma distributions, and using the cross-entropy properties,

(s1,52)" = argmaxE, o [logp(as s1,52)] = (3”,35"”) (46)

(s1,82)

where (§Y), §g>) is given in l) In the more general PY case, we can solve this step numerically using also
importance sampling. See Appendix [A.7]

VB-M-p: This step divides into K sub-steps that involve again cross-entropies,

) = argmaxE o, [log p(0; pr)] = py 7
p k

where [)5:) = (5\5:), ﬁ,(:), @é”, ﬁzl(:)) is given in Eq. .

6 Application to image segmentation

To validate the proposed approach, we consider its application to unsupervised image segmentation as a spatial
clustering task. Image segmentation consists of partitioning a digital image into distinct regions that contain
pixels with similar properties. Extensive research work has been done in this field using various clustering
techniques. In practice, to be meaningful for image analysis and interpretation, the segmented regions should
closely relate to depicted objects or features of interest. A number of tasks in image analysis often depends on
the reliability of preliminary segments, but an accurate partitioning of an image is still quite challenging.

6.1 Feature extraction for image segmentation

The color and texture features in a natural image are often very complex. For our experiments, we mainly focus
on two special types of features based on the HSV (Hue, Saturation, Value) color space and the maximum
response (MR) filter bank. The HSV color space is often used in natural image analysis because it corresponds
better to how people experience color than the RGB color space does. Regarding the texture information, we shall
consider the MR8 filter bank [36], which consists of 38 filters but only 8 filter responses. More precisely, the
MRS filter bank contains filters at multiple orientations but their outputs are compressed by recording only the
maximum filter response across all orientations. This achieves rotation invariance. Furthermore, the images are
presegmented into superpixels that group pixels similar in color and other low-level properties [[1]]. In this respect,
superpixels are regarded as more natural entities that allow reducing the number of observations drastically for
running clustering algorithms. In all our experiments, each image is presegmented into approximately 1 000
superpixels using the SLIC algorithm proposed in [[1]. Finally, we compute the feature vectors at superpixel level,
i.e., the average of features on the centroid of each superpixel. The entire segmentation procedure is summarized
in Algorithm T}

Algorithm 1: Summary of the image segmentation procedure.

Input: An input color image.
Output: A segmented image.
Procedure:

— Use the SLIC algorithm to form an over-segmentation [1.
— Compute HSV color and texture features at superpixel level [36].
— Partition the aggregated features by BNP-MRF.

Return: Multiple segmented regions.
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Fig. 2 PY-MRF mixture model: Mean and standard deviation of the PRI score over the considered subset of the BSDS500 data set
as a function of the truncation level K.

Proposed model Results given in [[11]
PRI (%) PY-MRF DPM iHMRF MRF-PYP  Graph Cuts
Mean 79.05 74.15 75.50 76.49 76.10
Median 80.62 75.49 76.89 78.08 77.59
St. Dev. 7.9 8.4 8.2 7.9 8.3

Table 1 Performance comparison: Summary statistics of the PRI score over the 154 images from BSDS500 studied by [12]] for our
PY-MRF mixture model and the approaches tested in [12,/11].

6.2 Berkeley Segmentation Data Set

To quantify the performance of our segmentation algorithm, numerical experiments were conducted on a subset
of images selected from the Berkeley Segmentation Data Set 500 (BSDS500) already studied by [3l11], which
provides multiple human annotated segments as many ground truths for each image. The considered subset
consists of 154 images as listed in Tables 1 and 2 in [[L1]].

In the literature, a standard measure for comparing a test segmentation to another is the rand index (RI)
[29]. The RI is one when two segmentations are exactly the same. However, when having for one image a set of
ground truths which do not completely agree, the probabilistic rand index (PRI) [35] is preferable. Given a set
of ground truths & = (S1, ..., S7), the PRI is defined as follows:

2
PRI(Stest, S) = m Z[Cijpij + (1 — Cij)(l — pij)} (48)

i<J

where ¢;; = 1 if pixels 7 and j belong to the same segment in Siest and ¢;; = 0 otherwise, n is the number of
image pixels and p;; is the probability of two pixels ¢ and j having the same label, i.e., the fraction of all available
ground truths in S where pixels ¢ and j belong to the same segment. In fact, it can be shown that Eq. is simply
the mean of the RI computed between each pair (Stest, Sk ), namely Zle RI(Stest, Sk). By definition, the
PRI always takes values in [0, 1], where 0 means that Stest and (S1, . .., S7) have no similarities and 1 means
all segments are identical. The larger the PRI, the better. In practice, PRI values are often reported as percentages
in [0, 100].

Our approach has been tested on the considered subset of the BSDS500 and the summary statistics of the
PRI score are shown in Figure [2] as a function of the truncation level K for the PY-MRF case. Similar results
were observed for the DP. It appears that for K > 30, the global performance does not change much and is
satisfying with respect to existing results in the literature. We compared our best results with those reported in
[11]. Table[T] shows that our approach outperforms the existing results. The improvement in PRI may appear
overall small but it can be assessed by visualizing original images and their segmentations. We show in Figure
segmentation results for four images. The main differences between the non spatial PY and PY-MRF mixture
models can be visualized for the first image in the ground and water which are segmented in the latter case into
a smaller number of regions whose shapes are in addition smoother. This is typical of more spatial interaction in
the clustering process. Similarly, the same phenomenon is also visible in the peak part of the second image, in
the sky and grass parts of the third image and in the plant parts of the fourth image.

We also examined, for the PY-MRF mixture model with K = 50, the values of the expected «, ¢ and 3
for each of the 154 segmented images presented in Figure [d as scatter plots (one point per image). Recall from
Section that o and o are elements of the parameters @ while /3 is considered as a hyperparameter from
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Original image

PY PY-MRF

Fig. 3 Segmentation results for four images from the BSDS500 data set. From left to right, columns show respectively, the original
images, the segmentation results with the PY and PY-MRF mixture models.

¢. Figure [] shows also the correlations (across the 154 images) between the expected values of «, o and §. It
appears that the estimated o values are most of the time smaller than 0.5 and sometimes closer to 0 with some
anti-correlation with respect to « values. In contrast, 8 values appear quite independent from « or o.

In terms of pure PRI performance, the BSDS500 data set is not an easy example because the ground truth
segmentations are labeled manually by humans and are sometimes quite subjective and inconsistent across users.
However, this example allows comparison of methods and visualization. Two interesting findings are that the
choice of K does not seem to be too sensitive as soon as K is large enough, and there seems to be some
correlation between « and o while S is rather independent of the latest. Further analysis would be needed to
confirm these properties but in practice, they could be used to guide the segmentations into more or less spatially
smooth versions without risking to eliminate too small segments.

7 Conclusion and perspectives

In this paper, we proposed a general scheme to build BNP priors that can model dependencies through the
addition of a Markov random field term. In contrast to other existing attempts that reduce to spatially constrained
standard BNP priors such as [T1[12], our proposal leads to proper spatial priors. Our construction is based on the
stick-breaking representation and was illustrated starting from the Dirichlet and Pitman—Yor processes, although
this approach could be extended to other forms of BNP priors admitting a stick-breaking representation such as
Gibbs-type priors. The stick-breaking representation was further exploited to derive clustering properties of the
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Fig. 4 Estimated parameter values (&, &) obtained from VB-E steps and ﬁ obtained from a VB-M step using the PY-MRF model
with truncation level K = 50, on the 154 images from the Berkeley benchmark.

model and to provide a variational inference algorithm. In addition to the usual BNP parameters, an estimation
of the Markov interaction parameter 3 was proposed. The variational approximation chosen was based on a
standard truncation but it would be interesting to investigate other approximations, e.g. [37]]. Also the variational
algorithm is greatly simplified for standard stick-breaking representations (e.g. DP and PY) with independent
weight variables. Nevertheless, it would be interesting to investigate more general stick-breaking representations
possibly using some MCMC counterpart for estimation.

The approach was illustrated on a challenging unsupervised image segmentation task with good results with
respect to the literature, but the proposed scheme is quite flexible and can be used in more general settings
including community detection or disease mapping in epidemiology.

A Appendix

Proofs of propositionsmandare given in the two first sections. Details on the VBEM steps, to complete the previous developments
when necessary, follow.

A.1 Proof of Proposition|T]
Integrating out 7 from distribution (I2) and noticing that the Markov term does not depend on 7, leads to
P(21:n415 B) o p(21:m41; 8 = 0) & H Frint)

where H(21:n41) = 2 ;0 J 0z;=2 , is counting the number of homogeneous edges. It follows that

P(Zn+1|21:n5 B) o p(2n+121:0; 8 = 0) PH(1n41)

When 8 = 0, the model (T2)) reduces to standard Gibbs-type priors for which the quantities above have been given in . Using
@) and enumerating how z,, 1 can affect the number of homogeneous edges, it comes that:
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for Zn+1 € {21, ey Zn},

) o Vil Kn+1 BH(z1.0)
n,Kn

p(zn+1 |len§ B

andforl € {z1...2n},

) 7‘/""'1’1(” (ng — o) eﬁﬁe5N”+1(2) oBH(z1:n)

z =4 21.n;
p( n+1 | 1:n; B Vn,Kn

The result follows by normalizing the quantities above, using @) and noticing that

Z (ne — J)eﬂﬁgémlﬂ(é’) =Ny +n—oKy .
te{z1...2n}

A.2 Proof of Proposition 2]

Consider the DP first. Let Dy = 8, is new|61..,
the DP-MREF happens with probability

_, be the Bernoulli random variable equal to one when 6, is a fresh draw, which for

«a
06+7l—1+77n(075)
Then K, = Y1 | D;, so we have for the DP-MRF

n—1

E[K,] = i E
t=0

k3

ey
_ . 49
O¢+i+77i+1(075):| @

By definition of the maximal degree D of the graph, the multiplicity 72, is at most D for any ¢, hence we have the following upper
bound

Do 1)< > my(ePP —1) <i(ePP —1). (50)

ZEZNH»I [GzNi+1

Plugging (50) into {@9) provides the desired inequality
n—1 o
E[K,] > _—
[Kn] 2 Z a + ieDB
i=0
n—1

a 1 a
= — E - - > ___
eDB < - i+ oe—DB ™~ DB logn.
im

Turning to the Pitman—Yor process, we follow the proof technique of [34]. The prior expectation of the number of clusters satisfies
the following recursion

E[Kp41] = E[Kn] + E

a+ oK,
atn4n,,q |

Assuming here that o > 0 and using the lower bound (30) yields

g
E[K, >EKy) 14+ ———= |-
(Konet) 2 B[R] (14 )

By induction, and using K1 = 1,

n—1 n—1
o o
el > 1 (1+ 559 —e"P<;1°g (HM))
it o o DB
~ — | =~ —1 =no¢ ",
o (5 ) = )

where an, ~ bp means an /b, converges to some positive constant when n — oo. The desired inequality for PY is obtained by
writing this constant equal to c. |
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A.3 VB-E-1 step

n
(1) o050 (B Do p(rn | )] 4 3 B o o, (7))
j=1

o exp (—Eqa,a [o]log T + (Eqa,o [0] + kEqq o [0] — 1) log(1 — %) (5D
n K n
D> a;(Dlog(l =) + Y az; (k) log(m))-
j=11=k+1 J=1

Considering the terms involving 7y, we recognize the beta distribution B(7y; Y,1, Yk,2) specified in (34). It follows the expressions
of the following quantities,

Eq., [log(me)] = ¥(4k,1) — ¥(Fk,1 + Fr,2)

N N N (52)
Eq., [log(1 — )] = ¥(4k,2) — ¥ (k1 + Yk,2)
where 9 (-) is the digamma function defined in Section
A4 VB-E-(a, 0) step
In the PY case, ¢o,o (e, o) is proportional to
K-1
qa,o’(ay U) X p(a» g5 81,82, a) exp < Z qu—k [logp(Tk | «, U)])
k=1
K-1
x p(a, 05 81, S2,a) H B(l—o,a+ ko)fl X
k=1
K-1 K-1 K—1
exp (—a( S Eq,, logmil = 3 kEq flog(l— 7)) + (@ 1) S, flog(1 - m)]),

k=1 k=1 k=1
where B(a, b) = %ﬂf;) represents the beta function. The last term simplifies into

K-1

- (@)
B(l-o,a+ko) ! =
kUl (I=oat ko) = 50 = " Fa 1 (K= 1)0)
- (53)

K-—1
x [] (@+ (k=1)o).
k=1

The difficulty is that except in the DP-MRF case, the normalizing constant for ¢, (v, o) is not tractable. Nevertheless, to carry out
the VBEM algorithm, we do not need the full g, distribution but only the means Eq,, [0] and Eq, [o]. One solution is therefore to
use importance sampling or MCMC to compute these expectations via Monte Carlo sums. Using the prior on (a, o) given in (32), it
comes that

Ga,o (@, 0) = Gla+ 0381, 82) e ¢

I'(a)
Irl-o)%=!t I'a+ (K -1)o)

=

-1

a — 1o (54)
1( + (k 1))

a+o

p(o;a)

where G(a + o3 81, §2) is the pdf of a o-shifted gamma distribution with §1, §2 given in . The parameter £ is defined as

K—-1 K—-1
£= > Eq, [logri] — > (k—1)Eq, [log(1—74)], (55)
k=1 k=1

which can be computed using (52). We propose then to use as importance distribution v(c, o) = G(a + 05 81, 82) p(o;a) with
p(o; a) the uniform distribution on [0,1], U, 1) (o). It comes an expression for the importance weights,

a.o) = q'&,o'(a’ U)
Wia,o) = Tlcg) .
— oot (o) Iﬁl (a + (k- 1)0),
Irl—-o)%=1 I'a+ (K -1)0) = a+o

The importance sampling scheme then consists of:
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- Fori = 1to M, simulate first independently o; from U 1) (o) and then simulate conditionnaly «; using the o;-shifted gamma

SG(oi, 81, 82). This later simulation is easily obtained by simulating a standard G (51, 82) and then substracting o; to the result.
— Compute the importance weights w; = W (ay, 04).

M
# and Eg, [o] = i
i=1 Wi D im1 Wi

Note that this complication is due to the PY. In the DP-MREF case, the E-« step is considerably simpler as it reduces to computing
the approximate posterior expectation of v, namely Eq,, [a] = §1/32.

- Approximate the means Eg_ [o] ~

A.5 VB-E-Z step

The VB-E-Z is divided into n steps. Since we assume g (zj) = O for z; > K, itis only necessary to compute the distributions for
z; < K, namely

qz; (25) x exp (qu; [log p(yj | 9;)} + Eqg. [log Tzj (M) +8 Z qzi(zj))a (57)
J ZENJ
where for z; = k,
k—1
Eq, log m,(T)] = Eq,, log 7] + Y _ Eq., [log(1 —7)]. (58)
=1

The term Eq,, [log p(y; \9;‘], )] is computed using the fact that qo; is a Normal-inverse-Wishart distribution as described in Eq.
Zi
of the next VB-E-0* step, namely

qoy (ks Z) = NIW (g, Z; g, A, P, Ug;)

o . (59)
=N (Mk; Mg, < ) IW(Zg; W, D).
Ak
It comes out that (d is the dimension of y;)
N d 1
Eqy. [log p(y; | 0)] = — 7 log 2m — SEq,. [log | X |]
k 2 2 k (60)
1 _
— 5B [(y5 — )T Sy — )]
Using the decomposition (cf. Eq. ) and the fact that )~ ! follows a Wishart distribution, it comes out that
Eay; 108 |5k ]) = Bqs, l0g | Zkl) = —Eqs, llog |55
d 5 ; 7 (61)
U+ (1—1 4
= _Zw(y) +log |21,
£ 2
i=1
Then, one has
Eagy (5 — 1) T (wy — pe)]
= Eqy, [y — )" 25 (g5 — i) + Te(Z D/ M) (62)

N N P . d

= Dk (y; — ) T (g — ) + <
Ak
Plugging in all of the above expressions back into Eq. yields, for z; = kand k = 1,..., K, gz, (k) o gj (k) with g; (k) given

in (39).

A.6 VB-M-{ step

This step does not admit a closed-form expression but can be solved numerically. The maximization in 5 admits a unique solution.
Indeed, it is equivalent to solve the following equation:

ﬁ = arg;naxIquq_r logp(z | T; 8)]

(63)
= arg;naxquq, [V (z;T,B8)] — Eq, [log C(T, B)].
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where C' denotes the normalizing constant that depends on 7 and 3. Denoting the gradient vector and Hessian matrix respectively by
Vg and V%, it comes that

VBEqu‘I' [Ing(z ‘ 75 6)] =Eq,q- [VHV(Z | T; B)] - Ep(z\f;ﬁ)q-,— [VﬁV(Z | 5 5)]7
V%Elhq-r [logp(z | T;8)] = Eg,qr [V?}V(Z | 7:8)] — ]Ep(z\f;/i)q.,- [V%V(Z | 75 8)] (64)
—Eq., [Varp(z\f;ﬁ) [VBV(Z | 75 /8)”
It follows that whenever V' (z | 7; ) is linear in 3, V%V(z | T; B) is zero, the Hessian matrix is negative semidefinite and the
function to optimize is concave.
Unfortunately, due to the intractable normalizing constant C, it is necessary to evaluate the terms involving p(z | 7; 3) in an

approximate manner. A natural approach is to use a mean-field-like approximation that consists of replacing all neighbors in the
interaction term by non-random values. Thus, the Potts model is approximated by

p(z | 758) = [[ 2 (z5 | 7 8), (65)
j=1
with p%F(zJ' | 7; B) defined as
plejF(ZJ =k|T;8) xexp (logﬂ'k +8 Z qz; k)) (66)
€N

This approximation induced by the posterior variational approximation has been proposed in [8l|17] and also exploited in [9]. It thus
follows that

Bgrq- [VaV(z | 758)] = Z > gz (k)az, (K
k=1iEN;

(67)
K

Ep(z\-r;ﬁ)q-,— [VBV(Z | 5 IB)} = Eq-.— Z Z plzv][F(k ‘ T 6)plzv£F(k | T B)
k=14i€EN. j
The additional difficulty is that we have to compute the expectation with respect to each gr, . This can be done using simulations. To
avoid the Monte Carlo sum, we can use instead of @ another approximation where the random 7 is replaced by a set of fixed values
T given by

- Ak,1
Tk =Eq, [Th] = ———. (68)
7 V1 + Vi,2
Thus, Eq. (66) turns into
P (2 = k; B) ox exp (log LGENDY qzi(k)), (69)
’iGNj
where log 7, (T) = log T, + Zé:f log(1 — 77). Similarly, it follows that
Ep(zlri6)q- [VaV (2| 73 8)] Z > pMF (ks B)PYF (k; B). (70)

k= leN

By setting them equal to each other and solving this equation for 3 over an interval, say [0, 10], one obtains an updated value B .

A7 VB-M-(s1, s2,a) step

For the sake of simplicity, we use for o a uniform prior so that parameter a does not have to be taken into account. With the previous
choice of priors on « and o for PY-MRF mixture models, this VB-M-step becomes

(s1,82)(") = afgmaXEq(v) [logp(a | o551, 52)] (1)
(s1,82)

But the issue is now that the precise form of q< ") is not known. We can use again importance sampling for the optimization.
More specifically, these steps do not admit an explicit closed-form expression but can be solved numerically using gradient ascent
schemes. Indeed, for s1, s2, it is equivalent to solve
Vis1Bgo [logp(a | o351, 82)] = Eq, [V logp(a | 0351, 52)]
= log sz + Eq, , [log(a + )] — ¥(s1)
=0
Vs Bga[logp(a | o351, 52)] = Eq, [V, logp(a | 03 51, 52)] (72)
S1
= - Ero [a]_EQU [U]
$2
=0.

As before, when o = 0, this step simplifies into s(lr) = §§7‘) and sg) = §(2T), namely to the DP-MREF case.
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A.8 Initialization of the VBEM algorithm

An important question which is not often addressed in details is how to initialize the VBEM algorithm. In contrast to the standard
EM that we can equivalently start with an initial E-step or an initial M-step, VBEM requires several steps to be initialized depending
on the complexity of the model.

In the present work, we propose the following procedure for initializing the VBEM algorithm. First, we set values for s; and
s2, which are taken in our experiments to s1 = 1 and s2 = 200/ K. From this, we can initialize the VB-E-(«v, o) step by setting
E[a] = s1/s2 and E[o] = 0. It is then required to set values for the other hyperparameters. The interaction parameter /3 can be
initialized to 8 = 0 assuming no initial spatial interaction and for the pj’s defining the Normal-inverse-Wishart priors, we suggest to
use for all k, my, = 0, ¥}, = 1103, v, = dand A\, = 1 in order to start with a large variance for the yy,’s.

In addition, we need to initialize the cluster assignments which correspond to the VB-E-Z step. Several approaches are possible
depending on the available information and model. A common way often used in image segmentation is to initialize the gz (z;)’s
randomly or using an initial segmentation coming either from preliminary information or from a simpler non spatial clustering
procedure, e.g. k-means. In our experiments, an initialization into K clusters obtained with k-means++ [4] was used. k-means++
is basically identical to the k-means algorithm, except for the selection of initial centers. More concretely, k-means++ starts with
allocating one cluster center at random and then searches for the next ones which will be selected with a probability proportional
to the distance to the closest center already chosen. The essential idea is to make all centers that would be selected as far away as
possible from each other. It should be noted that k-means++ also uses random initialization as a starting point, so it can give different
results on different runs. To overcome the issue of poor initialization, we propose to run k-means++ several times and use the labels
that yield the best compactness (the sum of squared distances from each point to their corresponding center) to initialize the gz (2;)’s
and thus update the py,’s. From the initialization of ¢z (z) and p, the VB-E-7 and VB-E-0* steps can then be derived. This simple
scheme has the advantage of accelerating the convergence of the VBEM algorithm.
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