
HAL Id: hal-02162937
https://hal.science/hal-02162937v1

Submitted on 23 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Measuring the Expertise of Workers for Crowdsourcing
Applications

Jean-Christophe Dubois, Laetitia Gros, Mouloud Kharoune, Yolande Le Gall,
Arnaud Martin, Zoltán Miklós, Hosna Ouni

To cite this version:
Jean-Christophe Dubois, Laetitia Gros, Mouloud Kharoune, Yolande Le Gall, Arnaud Martin, et
al.. Measuring the Expertise of Workers for Crowdsourcing Applications. Advances in Knowledge
Discovery and Management, pp.139-157, 2019. �hal-02162937�

https://hal.science/hal-02162937v1
https://hal.archives-ouvertes.fr


Measuring the expertise of workers for
crowdsourcing applications

Jean-Christophe Dubois, Laetitia Gros, Mouloud Kharoune, Yolande Le Gall,
Arnaud Martin, Zoltan Miklos and Hosna Ouni

Abstract Crowdsourcing platforms enable companies to propose tasks to a large
crowd of users. The workers receive a compensation for their work according to the
serious of the tasks they managed to accomplish. The evaluation of the quality of
responses obtained from the crowd remains one of the most important problems in
this context. Several methods have been proposed to estimate the expertise level of
crowd workers. We propose an innovative measure of expertise assuming that we
possess a dataset with an objective comparison of the items concerned. Our method
is based on the definition of four factors with the theory of belief functions. We
compare our method to the Fagin distance on a dataset from a real experiment,
where users have to assess the quality of some audio recordings. Then, we propose
to fuse both the Fagin distance and our expertise measure.

1 Introduction

Crowdsourcing was introduced by [Howe, 2006]. It consists in using a collective
participation to perform specific complex or time-consuming tasks that companies
do not wish to carry out internally because of a lack of resource or time. Based on
sharing and collaboration, crowdsourcing belongs to the web 2.0 work framework,
which enables websites users to share ideas and knowledge through dedicated plat-
forms and websites.
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Platforms like Amazon Mechanical Turk (AMT), Microworker and Foule Fac-
tory are designed to perform short tasks that computers would be unable to complete
in a quick and reliable way. These tasks, such as emotion analysis, and product cat-
egorization or design comparison, are usually simple and short.

Nevertheless, crowdsourcing platforms lead to some uncertainty, due to an un-
controlled user environment. As a result, quality assessment and reliability of con-
tributions and workers is essential to guarantee a trouble-free process. Thus, several
studies have been suggested in order to identify the experts and the most serious
workers of the platform.

This paper introduces a new expertise measure using a graph distance based on
the theory of belief functions. This measure enables to assess the accuracy of the
workers’ answers in the context of a campaign designed by Orange Labs. During
this campaign, people on a crowdsourcing platform are asked to evaluate the quality
of musical sequences processed by different audio encoders.

During this 2-step study, workers have to listen to 4 HITs (Human Intelligence
Task) composed of 12 musical sequences of different qualities and evaluate their
sound quality on a 5-category scale (Bad, Poor, Fair, Good, Excellent). Each cate-
gory is assigned a rating from 1 (Bad) to 5 (Excellent) [ITU, 1996]. Workers listen
to the musical sequences in a random order. Only 5 of these sequences have a known
quality thanks to the addition of a signal-modulated noise, with different signal-to-
noise ratios (MNRUs: Modulated Noise Reference Unit [ITU, 1996]). These five
signals, called Ri, i = 1, . . .5, in the following, are considered as main references to
compare the sequences inside the quality. They are expected to give quality scores
from 1 (the worst) to 5 (the best). In this study, the Ri reference signals allow to
define expertise degrees. The purpose of the method is to structure the workers’
answers using oriented graphs based on the 1 to 5 ratings which represent the pref-
erences between the Ri signals. Those graphs are then compared to the reference
graph which is generated on the base of expected theoretical ratings. The results
will then be used to select the experts and to focus on their performance in the 2nd
step of the study. It consists in classifying the remaining 7 musical sequences in
order to achieve the quality classification of these signals.

Comparing a set of graphs requires to be able to quantify the similarity between
two graphs. It is a very common problem when working on social networks. Indeed,
we raise this issue to understand and compare the topological properties of those
graphs. Unfortunately, there is no metric or universal method for graph similarity
assessment and the comparison of their geometric characteristics is an extremely
complex problem. Moreover, from the algorithmic point of view, the classical meth-
ods to approach this kind of problems are complex.

Usually, conventional listening tests are performed in laboratories. In this study
concerning crowdsourcing, the answers are provided by humans in an uncontrolled
environment, and it is therefore necessary to model the imperfections and undesired
effects. The theory of belief functions provides a way to tackle the issue and to bring
a theoretical frame to combine the pieces of information collected from different
sources (workers).
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In this paper, we propose an innovative approach which allows to estimate a mea-
sure of expertise using a comparison of graphs. The following section introduces the
reader to the basic concepts of the theory of belief functions and then we will briefly
review the existing approaches in section 3. The section 4 will be structured in two
parts: we will firstly present our original approach to measure an expertise degree by
using a representation of answers based on graphs. Then, we will present the Fagin
distance as a reference and comparison in this ranking issue. Finally, the evaluation
of the method on actual data will be discussed in section 5.

2 The theory of belief functions

The theory of belief functions has been introduced by [Dempster, 1967] and
[Shafer, 1976]. It provides a way to represent both uncertainty and imprecision, and
also to allow the ignorance of a source (i.e. a worker who can’t give a response in our
case). Considering a set Ω = {ω1,ω2, . . . ,ωn} which represents the universe of pos-
sible answers to a question, a mass function is defined on 2Ω (set of all disjunctions
of Ω ) in the [0,1] interval with the constraints:{

∑
A⊆Ω

m(A) = 1

m( /0) = 0
(1)

The mass value m(A) represents the part of the belief allocated to the A proposi-
tion and that can not be assigned to a strict subset of A. It might be seen as a family
of weighted sets or as a generalized probability distribution. A set A is a focal ele-
ment if m(A) 6= 0. For example, if we consider the mass function m({ω1,ω2}) = 0.8,
m(Ω) = 0.2, this quantity represents an imprecision on ω1 or ω2 and an uncertainty
because the value assigned to this proposition is 0.8.

Dealing with imperfect data from different sources requires to merge informa-
tion. We therefore need to combine the mass functions in order to obtain a generic
and relevant knowledge state. The conjunctive combination operator proposed by
[Smets, 1990] can be computed from two mass functions from two sources through
the following:

(m1 ∩©m2)(A) = ∑
B1∩B2=A

m1(B1)m2(B2) (2)

At the end of this combination, the mass assigned to the empty set might be
interpreted as the inconsistency coming from the fusion. In order to make a decision
or to define a measure, we need to evaluate the deviation from an expected mass
function. Several distances have been proposed for this task. The most commonly
used distance is the one from [Jousselme et al., 2001]. It has been adopted thanks
to its properties of weight distributions as a function of the inaccuracy of the focal
elements. It is given by:
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dJ(m1,m2) =
1
2
(m1−m2)

T D(m1−m2) (3)

with:

D(X ,Y ) =

1 if X = Y = /0
|X ∩Y |
|X ∪Y |

∀X ,Y ∈ 2Ω (4)

3 Related works for expert characterization in crowdsourcing

The identification of experts on crowdsourcing platforms has been the subject of
several recent studies. Two different types of approach have been used: the ones
where no prior knowledge is available and the ones using questions whose cor-
rect answers are known in advance. These questions with their known values are
called “golden data”1. [Ben Rjab et al., 2016] have been working under the “no
prior knowledge” hypothesis and managed to calculate the degree of accuracy and
precision, assuming that the majority is always right. They defined this degree us-
ing the distance of [Jousselme et al., 2001] between the response and all the other
workers’ average answers.

Moreover, [Dawid and Skene, 1979] and [Ipeirotis et al., 2010] have been using
the Expectation-Maximization (EM) algorithm to estimate the correct response for
each task in a first phase which uses labels assigned by the workers. Then, they eval-
uated the quality of the workers by comparing the responses to the correct inferred
answer.

[Smyth et al., 1995] and [Raykar et al., 2010] also used this approach for binary
classifications and categorical labeling. [Raykar and Yu, 2012] have generalized this
technique on ordinary rankings (associating scores from 1 to 5 depending on the
quality of an object or a service). These methods converge to calculate the “sensi-
tivity” (the true positives) and the “specificity” (the true negatives) for each label.
The worker is then labeled as a spammer when his score is closed to 0; A perfect
expert would be assigned a score of 1. The algorithms described previously pro-
vide efficient methods to determine the quality of the workers’ answers when the
truth is unknown whereas in our case the theoretical correct grades attributed to the
Ri reference signals are known. We therefore seek to identify the experts based on
correct baseline data and to define a level of expertise proportional to the similarity
between worker’s answers and known answers in advance. Thus, our work is based
on “golden data” that are used to estimate the quality of workers in a direct way, as
proposed by [Le et al., 2010].

When working with “golden data”, we have the advantage of explicitly mea-
suring the accuracy of workers. The data can be used to make decisions about the
workers to check if they are reliable. Can we exploit their results? Should we let

1 The terminology of such data can be called “golden record”, “gold data” or even “gold standard”,
“learning data” according to the use.
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them finish the task? Do they deserve a bonus? Additionally, we can also ensure that
workers understand completely the nuances and subtleties of the tasks they have to
perform. This might be defined as a fully transparent process.

In order to evaluate the impact of using “golden data”, [Ipeirotis et al., 2010]
examined the performance of a modified algorithm of [Dawid and Skene, 1979] that
integrates such type of data. They tried to measure the classification error obtained
when varying the percentage of “golden data” (0%, 25%, 50% and 75%). On the
one hand the classification error is linked to what extent the algorithm determines
the correct class of the examples. On the other hand, the quality estimation error
highlights the quality of workers. They found that there is no significant difference
between this kind of data and the unsupervised model. Furthermore, they concluded
that it is necessary to use “golden data” in specific cases as on very imbalanced data
sets to evaluate all classes. According to [Ipeirotis et al., 2010], the most important
reasons are the confidence gain of non-technical people (by proposing a quality
control approach) and the calibration of results when the emotion-level of the users
have an influence on their responses.

4 Expertise measure proposed

In this study, to measure the expertise degree we propose a method based on a com-
parison of graphs. To evaluate the relevance of this method, we make a comparison
with the Fagin distance [Fagin et al., 2004], a generalization of the Kendall metric
[Kendall, 1945], used to count discordant pairs between two ranking lists.

For both of these methods, we consider two types of information:

1. The expected theoretical notes which are the correct quality scores, from 1 to 5,
associated to the Ri reference signals presented in Table 1.

Ri reference signals R1 R2 R3 R4 R5
ScGD “golden data” known scores 1 2 3 4 5

Table 1 “golden data”: Ri reference signals associated to their known scores.

2. The scores attributed by a worker w to the Ri reference signals. An example is
presented in Table 2.

Ri reference signals R1 R2 R3 R4 R5
Scw worker related scores 2 1 2 4 5

Table 2 Example of worker scores on the Ri reference signals.
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4.1 Belief graph distance-based expertise measure

In the proposed method, the answers of the workers on the platform are represented
by using oriented and weighted graphs. Then, they are compared to the reference
graph constructed on the base of “golden data”.

4.1.1 Graph construction method

Graphs are designed as follows:

• First a virtual starting point D is inserted with an associated score of 5 (such as
the highest score of the R5 reference signal).

• Then, at each iteration k, we look for the Ri reference signals with the kth highest
scores. These Ri, form the new nodes added to the graph at the same kth depth.
The arc ponderation value is equal to the difference between the score associated
to the previous nodes and the score of the new nodes added.

By going through this process, the Fig. 1 represents the reference graph GR which
corresponds to the Ri reference signals associated to their known scores given in
Table 1.

Fig. 1 Reference graph constructed with the “golden data” known scores.

In Fig. 2, is then presented the graph Gw built on the basis of the worker scores
on the Ri reference signals given in Table 2.

Fig. 2 Graph constructed with the worker scores on the Ri reference signals.

We note NR
i , NW

i with i= 1, . . .5 respectively the nodes of the reference graph GR
and the nodes of the worker graph Gw. We can notice that the nodes NR

i and NW
i have

the same attribute Ri corresponding to the referenced signal. The graph orientation
represents the preference order of the Ri reference signals. NW

j → NW
k means that
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the score on R j is higher than the score on Rk. From this order we can define the set
of successor nodes SuccG(N) and the set of predecessor nodes PredG(N) N in the
graph G. For example, we have: PredG(NW

4 ) = {NW
5 } and SuccG(NW

4 ) = {NW
3 ,NW

1 }.

4.1.2 Expertise degree computation

In order to calculate the expertise degrees, the graphs corresponding to the work-
ers’ answers are compared with the reference graph and a mass function is thus
calculated for each response of the workers.

The objective is to extract a set of heterogeneous factors which enables us to
identify the differences between two nodes. This concept is close to the notion of
“signature of the nodes” introduced by [Jouili, 2011], even if the factors considered
are not the same.

This model is specific in a way that all the graphs have the same number of nodes
with the same labels and the same attributes (i.e. Ri). According to this method, we
need to compare all couples (NR

i ,N
W
i ) where NR

i is the node with the attribute Ri in
the reference graph and NW

i is the node of the same attribute which belongs to the
worker graph to be compared.

To do so, we have characterized each node of the graph by using four factors
that represent the different possible errors we have identified. These factos are rep-
resented and then merged using the mass functions. The discernment frame used
is:

Ω = {E,NE} (5)

where E stands for the Expert’s assertion and NE the Non Expert’s. We want to
measure the belief in the fact that a worker is an expert according to the scores
he/she has assigned on the Ri reference signals that should be in the correct order.

We describe below the four factors.

1. Accuracy degree of associated scores: This factor is characterized by the dif-
ference of position of a node between the reference graph GR and the worker’s
answer graph Gw. Dissimilarity is calculated using the Euclidean distance in:

d1(NR
i ,N

W
i ) = |dGR(D,NR

i )−dGW (D,NW
i )| (6)

where dG(D,Ni) is the node Ni’s depth with respect to the node D.
For example, consider the nodes corresponding to the reference signal R1 on
Fig. 1 and Fig. 2, we have dGR(D,NR

1 )= 5 and dGW (D,NW
1 )= 3, so d1(NR

1 ,N
W
1 )=

2.
The mass function corresponding to this factor is given by:

m1(NR
i ,N

W
i )(E) = 1−

d1(NR
i ,N

W
i )

dmax

m1(NR
i ,N

W
i )(NE) =

d1(NR
i ,N

W
i )

dmax

(7)
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where dmax is the maximum distance between two nodes. Given the fact that the
graphs considered represent only 5 scores, dmax = 4.
Thus we obtain on the previous example:{

m1(NR
1 ,N

W
1 )(E) = 1− 2

4
m1(NR

1 ,N
W
1 )(NE) = 2

4
(8)

2. Degree of confusion between Ri reference signals: This factor measures the
proportion of nodes having the same distance to the starting point D as the con-
cerned node. Jaccard’s dissimilarity will thus be used for the comparison of the
set’s contents:

d2(NR
i ,N

W
i ) =

|INR
i

⋂
INW

i
|

|INR
i

⋃
INW

i
|

(9)

where INi = {R j;N j ∈ V,dG(D,N j) = dG(D,Ni)}, with V being the set of nodes
of the graph.
If we still consider the nodes corresponding to the reference signal R1 on Fig. 1
and Fig. 2, we have INR

1
= {R1} and INW

1
= {R1,R3}. So we obtain:

d2(NR
1 ,N

W
1 ) = 1

2 .
The associated mass function is given by:{

m2(NR
i ,N

W
i )(E) = d2(NR

i ,N
W
i )

m2(NR
i ,N

W
i )(NE) = 1−d2(NR

i ,N
W
i )

(10)

The minimum of this mass value is 0.2.
3-4 Degree of previous bad order (on the set of predecessors) and degree of fol-

lowing bad order (on the set of successors). Contrary to what is expected (unex-
pectedly in this precise situation), the worker might consider that a sequence is
better than another. Thus, these factors measure these inversion errors according
to the previous or the following ones. In order to precise these degrees, we intro-
duce the definition of the following sets, respectively for the set of predecessors
(Correct PC

Ni
and Non Correct PNC

Ni
) and the set of successors (Correct SC

Ni
and

Non Correct SNC
Ni

):

{
PC

NW
i
= {R j;R j ∈ PNW

i
,R j ∈ PNR

i
}

PNC
NW

i
= {R j;R j ∈ PNW

i
,R j ∈ SNR

i
} (11)

and {
SC

NW
i
= {R j;R j ∈ SNW

i
,R j ∈ SNR

i
}

SNC
NW

i
= {R j;R j ∈ SNW

i
,R j ∈ PNR

i
} (12)



Measuring the expertise of workers for crowdsourcing applications 9

where PNi = {R j;N j ∈ PredG(Ni)}, SNi = {R j;N j ∈ SuccG(Ni)}, with SuccG(N)
and PredG(N) are respectively the set of successors and the set of predecessors
of the node N in the graph G.
If we consider the nodes corresponding to the reference signals R2, R4 on Fig. 1
and Fig. 2, we have: {

PC
NW

2
= {R3}

PNC
NW

2
= {R1}

{
SC

NW
2
= /0

SNC
NW

2
= /0

and {
PC

NW
4
= {R5}

PNC
NW

4
= /0

{
SC

NW
4
= {R3}

SNC
NW

4
= /0

From these definitions, the distances d3 and d4 are given by the following equa-
tions: 

d3,1(NR
i ,N

W
i ) =

|PC
NW

i

⋂
PNR

i
|

|PNR
i

⋃
PNW

i
|
= m3(NR

i ,N
W
i )(E)

d3,2(NR
i ,N

W
i ) =

|PNC
NW

i
|

|PNW
i
|
= m3(NR

i ,N
W
i )(NE)

(13)


d4,1(NR

i ,N
W
i ) =

|SC
NW

i

⋂
SNR

i
|

|SNR
i

⋃
SNW

i
|
= m4(NR

i ,N
W
i )(E)

d4,2(NR
i ,N

W
i ) =

|SNC
NW

i
|

|SNW
i
|
= m4(NR

i ,N
W
i )(NE)

(14)

The rest of the mass will be used to weigh ignorance. The mass associated with
ignorance can also be derived from extreme nodes that are without predecessors
(all nodes except node (5)) or successors (all nodes except node (1)).
Thus we obtain on the example:{

d3,1(NR
2 ,N

W
2 ) = 1/2

d3,2(NR
2 ,N

W
2 ) = 1/2

{
d4,1(NR

2 ,N
W
2 ) = 0

d4,2(NR
2 ,N

W
2 ) = 0 (15)

Here, we consider that 0/0 is 0.{
d3,1(NR

4 ,N
W
4 ) = 1

d3,2(NR
4 ,N

W
4 ) = 0

{
d4,1(NR

4 ,N
W
4 ) = 1/2

d4,2(NR
4 ,N

W
4 ) = 0 (16)

Equations (6), (7), (9), (10), (13) and (14) provide a way to calculate the mass
functions by using a set of factors for each pair of nodes (NR

i ,N
W
i ) according
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to the reference graph GR and the graph Gw which corresponds to the worker
answers with attribute i. The next step defines a mass function on the entire graph
by averaging the mass functions on all the nodes, calculated for each factor:


mk(GR,GW )(E) =

O(G)

∑
i=1

mk(NR
i ,N

W
i )(E)

O(G)

mk(GR,GW )(NE) =

O(G)

∑
i=1

mk(NR
i ,N

W
i )(NE)

O(G)

(17)

where O(G) is the graph’s order (i.e. the number of vertices, here 6).
In order to obtain a mass function for the considered response, we combine the
mass functions of the four factors. Finally, the degree of expertise is given by
calculating the distance from [Jousselme et al., 2001] between the mass function
and the categorical mass function on the expert element such as
[Essaid et al., 2014].

4.2 Expertise degree based on the Fagin distance

To compare two ranking lists, a well-known way is to use the metric defined
by [Kendall, 1945] that applies a penalty when different orders are encountered in
the two rankings. A generalization of this distance has been proposed by
[Fagin et al., 2004] in case of partial rankings. A first step is based on the Kendall
metric with the definition of the p penalty in the [0,1] interval, and a second step
based on the Hausdorff distance. We detail both steps bellow.

Both lists considered here are given by the corresponding scores of the reference
signals Ri:

• ScGD containing the “golden data” known scores according to the reference sig-
nals Ri (cf. Table 1, e.g. ScGD(R3) = 3)

• Scw containing the scores proposed by the worker w on one HIT according to the
reference signals Ri (cf. Table 2, e.g. Scw(R3) = 2)

The Kendall distance K(p)(ScGD,Scw) between these two lists is defined by:

K(p)(ScGD,Scw) = ∑
{i, j}∈P

K̄(p)
i, j (ScGD,Scw) (18)

where P is the set of unordered pairs of distinct elements in ScGD and Scw, and i < j.
Therefore we have: Scw(Ri)< Scw(R j).

Two cases are taken into account to determine the value of p:
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• case 1: in both lists, ScGD and Scw, i and j are in different buckets2:

– if the order is the same for i and j in the two lists, then K̄(p)
i, j (ScGD,Scw) = 0.

Scw(Ri) < Scw(R j) as ScGD(Ri) < ScGD(R j) induces that there is no penalty
for {i, j}. That is the case on the previous example given by Table 2 for {4,5},
K̄(p)

4,5 (ScGD,Scw) = 0.

– if the order is different for i and j in the two lists, then K̄(p)
i, j (ScGD,Scw) = 1.

Scw(Ri) > Scw(R j) unlike ScGD(Ri) < ScGD(R j) induces that the penalty for
{i, j} is equal to 1. That is the case on the previous example given by Table 2
for {1,2}, K̄(p)

1,2 (ScGD,Scw) = 1.

• case 2: in the Scw list, i and j are in the same bucket, whereas they are in different
buckets in the ScGD list, then K̄(p)

i, j (ScGD,Scw) = p. The value p must be between
0.5 and 1 in order to obtain a distance. In the rest of the paper we choose p = 0.5,
but the results do not change a lot for higher values. That is the case on the
previous example given by Table 2 for {1,3}, K̄(p)

1,3 (ScGD,Scw) = 0.5.

We can notice that a third case (where i and j would be in the same buckets in
both lists) can not occur here because “golden data” are all different.

In a second step, we consider the answers of a worker for more than one
HIT. We consider the two sets of list scores of corresponding HIT given by Hw,
HR. [Fagin et al., 2004] propose to consider the Hausdorff metrics between two ob-
jects Hw, HR given by:

dHaus(Hw,HR) = max
(

max
Scw∈Hw

min
ScGD∈HR

d(Scw,ScGD), max
ScGD∈HR

min
Scw∈Hw

d(Scw,ScGD)

)
The distance d(Scw,ScGD) is given by the equation (18). This distance can be used
as an expertise measure with values into [0,1].

4.3 Comparison on a simple example

Even if it has been adapted to integrate ties, the Fagin-based expertise measure prin-
ciple gives importance to the order concordance between the two considered lists.
In the proposed belief-based measure, the focus is more on the difference between
the two list scores. Taking into account these characteristics, the expertise degree
obtained for specific types of responses may be unsatisfactory. For example, on ta-
ble 3 we show an answer for a worker that does not make the difference between the
musical sequences or does not want to answer with honesty. In that case the belief
based expertise measure gives a low value of 0.196, leading to the non selection

2 A bucket is a set of musical sequences with the same score. In the ScGD list all the five musical
sequences are in different buckets.
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of the worker. However, the Fagin-based expertise measure gives a value of 0.65
suggesting the worker is an expert.

HIT 1 HIT 2 HIT 3 HIT 4
Ri reference signals 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Scw worker related non-pertinent scores 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Table 3 Example of some answers of a worker on four HITs.

Of course, the definition of expert from such measures must be made according
to a threshold. This threshold can be defined according to the experimental values
as presented in the next section.

5 Evaluation of methods in real situation

Historically, Orange Labs has been performing subjective testing of audio coders in
the laboratory. These tests consist in recruiting listeners deemed to be naive which
means they are not directly involved in work related to quality evaluation or audio
coding. Short speech or music sequences processed according to different coders are
presented to these workers to allow them to evaluate the audio quality on suitable
scales.

The tests take place in acoustically treated rooms and more generally in a per-
fectly controlled environment. These laboratory methods are effective but still costly
and might lead to results with a low representativity (relative to the use of in situ ser-
vices) or limited stimuli (limited number, for example).

In order to add the crowdsourcing approach to the test methods, two campaigns
were implemented on a crowdsourcing platform and the results were compared to
those obtained in the laboratory. Each campaign was a replica of the same test ini-
tially performed in the laboratory for the G729EV coder’s standardization.

In this laboratory test, 7 test conditions ( i.e. coding solutions) were tested, to
which were added the 5 Ri reference conditions (MNRUs). In total, 12 conditions
have been tested through 12 musical sequences presented in random order. These
sequences constituted a HIT (Human Intelligence Task). 32 people participated to
the test which falls into 4 groups. Each group listened to 4 HITs and evaluated each
of them. After each audio sequence, listeners were asked to rate the quality on a
scale of 1 (= Bad) to 5 (= Excellent).

As in the laboratory experimentation, workers in the crowdsourcing campaigns,
were divided into 4 distinct panels (each worker can only belongs to one panel).
According to the laboratory experimental test design, each panel was given 4 HITs
of 12 audio sequences to be evaluated on the same quality scale. Each HIT was
related to 1 micro-job on the crowdsourcing platform. As a result, each worker could
provide a contribution from 1 to 4 micro-jobs (the 4 HITs of his panel are different
from those of the other panels). Each participation was taken into account if the
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worker had completed at least one HIT. Unlike what is practiced in the laboratory
environment, the worker could stop listening before the end of the HIT. Instructions
were presented in English writing to the workers before the test. A training session
with 8 audio sequences was also performed before the test, as in the laboratory.

Two campaigns were carried out on two different geographical areas. All the En-
glish speaking workers were allowed to participate in the first campaign, regardless
of their country. Workers who took part in this campaign were mostly located in
Asia. The second campaign was limited to the USA. Both campaigns were carried
out using the same conditions (workers belonging to the same Paneli and listening
to the same sequences for the two campaigns).

5.1 Analysis of belief graph distance-based expertise measure

The expertise degrees based on belief functions were calculated using the laboratory
data (Fig. 3) on the one hand, and using the scores from the crowdsourcing platforms
(Fig. 4) on the other hand.

Fig. 3 Expertise degree of laboratory workers with the belief-based measure.

31 people out of 32 obtained an expertise degree greater than 0.4 (this threshold
chosen in comparison with data from the platform). These results highlight the reli-
ability of the answers collected in the laboratory. The interval [0.4,0.5] contains the
largest number of workers.

Firstly, the expertise degree distributions calculated on the 4 panels of crowd-
sourcing platforms are illustrated on Fig. 4. When looking at the distributions in
question, one can notice a small gap on the interval [0.4,0.5]. This allows us to
determine the most discriminating threshold of expertise (i.e. the threshold which
allows to split the workers into 2 distinct groups).



14 Jean-Christophe Dubois et al.

Fig. 4 Expertise degree of crowdsourcing workers with the belief-based measure.

We observe that the computed expertise degrees vary in a wider range than in the
laboratory experimentation (from 0.1 to 0.7). The explanation to this phenomenon
can be articulated in two directions:

• The first factor could be the lack of seriousness of a larger number of workers on
the crowdsourcing platform;

• The listening conditions (e.g. sound environment, headphones or loudspeaker (s),
PC used) vary from one worker to another, from one HIT to another, unlike the
laboratory situation, and might have influenced the quality of workers’ answers.

Our objective in this work is not to impose strict experimentation conditions but to
put workers in a familiar context. Moreover, by comparing the two distributions,
we notice a small difference between the two campaigns. For example, the interval
of expertise [0.1,0.2] is almost absent for the US campaign data (2 people on all
panels, see gray curve), whereas the same interval contains 19 workers in the Asian
campaign (see black curve). Furthermore, for Asia, the interval [0.2,0.3] contains
most of the workers, whereas for the USA, the interval [0.4,0.5] is preponderant.
The differences observed between the two campaigns can be explained by the cul-
tural differences between the two regions. In particular, the American workers are
culturally closer to selected musical sequences (occidental music).

In a first analysis, we select 0.4 as the threshold because it is closer to the gaps
in the distributions (Fig. 4). We select the workers with an expertise degree over
this threshold: thus we keep 51 workers out of 129 for the first campaign and 50
workers out of 80 for the second one. Hence we suppress more workers for the first
campaign.
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The average of their answers will be taken into account for the evaluation of
audio quality. We compare the data from the two campaigns on the crowdsourcing
platforms with those obtained in the laboratory according to this threshold.

5.2 Analysis of Fagin distance-based expertise measure

As in the previous method we have already mentioned, the expertise degrees based
on Fagin distance were calculated using the laboratory data (Fig. 5) on the one hand,
and using the scores from the crowdsourcing platforms (Fig. 6) on the other hand.

Fig. 5 Expertise degree of laboratory workers with the Fagin distance.

We can first notice a higher range of value compared to the belief-based measure.
Considering the two curves, we select 0.6 as the threshold which corresponds to a
gap in the distributions, especially in the Asian one.

Here again for the laboratory experimentation, we obtain 31 people out of 32
over this expertise degree (Fig. 5). As a matter of fact, the worker with the low-
est expertise degree is the same as the non-selected worker with the belief-based
measure.

According to Fig. 6 which presents the results for the crowdsourcing campaigns,
we can notice that the Fagin-based measure cannot discriminate some workers. In-
deed, the Kendall distance definition, in the case of a comparison of 5 values, gives
expertise degrees with a precision of only 0.05.

Considering the 0.6 threshold, with this measure we keep 67 workers out of 129
workers for the first campaign and 64 workers out of 80 workers for the second one.
Hence we discard more workers for the first campaign.
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Fig. 6 Expertise degree of crowdsourcing workers with the Fagin distance.

5.3 Fusion of belief-based and Fagin distance-based expertise
measures

As we show in section 4.3, when we compare the belief-based measure and the Fa-
gin distance, one can consider a worker such as an expert and the other not. Conse-
quently, a fusion of these two methods is interesting, especially in the crowdsourcing
approach in order to select workers both qualified as experts with the two measures.

Therefore, we only take into account the workers whose expertise degree is
greater than 0.4 with the belief approach and greater than 0.6 with the Fagin dis-
tance. Hence, the objective of the fusion of belief-based measure and Fagin distance
is to reduce errors and to ensure the results when we detect experts. Thus, we ob-
tain 47 workers considered as experts in the first campaign and 49 workers in the
second one. The number of selected workers for laboratory data is still 31. Even if
the number of workers on the first campaign (129) is greater than on the second one
(80), the number of selected experts on the second campaign is greater.

In order to compare the results given by the selected workers in laboratory and
the selected workers on the crowdsourcing platform, we calculate the average of
the scores for each of the 12 musical sequences. The first 5 musical sequences are
the Ri reference signals. Hence, the expected scores are 1, 2, 3, 4 and 5. We notice
that the laboratory and the crowdsourcing curves for both campaigns (see figures 7
and 8) are very close. In an optimal situation, the curves linked to the first five
sequences would be a straight line as they correspond to the Ri reference signals.
However, these results are explained by the usual behaviors that we observe here
on laboratory and platform data where workers are reluctant to give the maximum
score of 5.
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Fig. 7 Comparison of the laboratory / crowdsourcing average of the notes given on the 12 musical
sequences for the first campaign (Asia).

Fig. 8 Comparison of the laboratory / crowdsourcing average of the notes given on the 12 musical
sequences for the second campaign (USA).

Finally, the proximity between the two curves emphasizes the benefit of carrying
out this type of evaluation on crowdsourcing platforms once the workers with the
highest degrees of expertise have been selected. In view of these positive achieve-
ments, we can conclude that the experts have been selected efficiently.

6 Conclusion and discussion

In this work we propose an innovative approach to compute the expertise of workers
in a subjective evaluation of audio quality through listening tests. This approach is
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based on the modeling of the workers’ scores through an oriented graph. Taking into
account the data whose expected order of preference is known, we have developed
a measure of comparison of two graphs. Thus, the approach is based on four fac-
tors from which four mass functions have been defined in order to account for the
possible imperfections of workers’ answers. From these mass functions, a level of
expertise is computed for each worker so that only workers with a sufficient level of
expertise can be considered.

Moreover, to evaluate the relevance of this method, we make a comparison with
the Fagin distance. Some differences on the characterization of experts lead us to
propose a fusion of the two measures.

The comparison of data providing from crowdsourcing and laboratory campaigns
prove the benefit of conducting such evaluations from crowdsourcing platforms.
However, it is necessary to accurately evaluate the workers’ degree of expertise in
order to exclude irrelevant answers coming from crowdsourcing platforms. Thanks
to the approach developed in this work for the evaluation of the expertise degrees,
we are now in position to exclude the workers with no relevant answers in the task
of audio quality evaluation.
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[Jousselme et al., 2001] Jousselme, A.-L., Grenier, D., and Bossé, É. (2001). A new distance
between two bodies of evidence. Information fusion, 2(2):91–101.

[Kendall, 1945] Kendall, M. (1945). The treatment of ties in ranking problems. Biometrika, pages
239–251.

[Le et al., 2010] Le, J., Edmonds, A., Hester, V., and Biewald, L. (2010). Ensuring quality in
crowdsourced search relevance evaluation: The effects of training question distribution. In Work-
shop on Crowdsourcing for Search Evaluation, pages 17–20.



Measuring the expertise of workers for crowdsourcing applications 19

[Raykar and Yu, 2012] Raykar, V. C. and Yu, S. (2012). Eliminating spammers and ranking an-
notators for crowdsourced labeling tasks. Journal of Machine Learning Research, 13:491–518.

[Raykar et al., 2010] Raykar, V. C., Yu, S., Zhao, L. H., Hermosillo Valadez, G., Florin, C., Bo-
goni, L., and Moy, L. (2010). Learning from crowds. Journal of Machine Learning Research,
11:1297–1322.

[Shafer, 1976] Shafer, G. (1976). A mathematical theory of evidence, volume 1. Princeton uni-
versity press Princeton.

[Smets, 1990] Smets, P. (1990). The combination of evidence in the transferable belief model.
12:447 – 458.

[Smyth et al., 1995] Smyth, P., Fayyad, U., Burl, M., Perona, P., and Baldi, P. (1995). Inferring
ground truth from subjective labelling of venus images. Advances in Neural Information Pro-
cessing Systems, 7:1085–1092.


