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ABSTRACT

Expositions of Sonata Forms are structured towards two
cadential goals, one being the Medial Caesura (MC). The
MC is a gap in the musical texture between the Transition
zone (TR) and the Secondary thematic zone (S). It appears
as a climax of energy accumulation initiated by the TR,
dividing the Exposition in two parts. We introduce high-
level features relevant to formalize this energy gain and
to identify MCs. These features concern rhythmic, har-
monic and textural aspects of the music and characterize
either the MC, its preparation or the texture contrast be-
tween TR and S. They are used to train a LSTM neural
network on a corpus of 27 movements of string quartets
written by Mozart. The model correctly locates the MCs
on 14 movements within a leave-one-piece-out validation
strategy. We discuss these results and how the network
manages to model such structural breaks.

1. INTRODUCTION

1.1 Sonata Form

The classical sonata form shaped many musical works in
the classical and the romantic period. It began to appear
in the second half of the 18th century but was not formal-
ized until the early 19th century. Recent theories on sonata
forms emerged in the last decades, with various points
of view [5, 7, 13], but nevertheless agree on its high-level
structure, involving Exposition, Development and Recapit-
ulation sections, and optional Introduction or Coda sec-
tions.

According to Hepokoski and Darcy, an Exposition may
be either a two-part exposition, featuring two contrasting
thematic zones, or a continuous exposition, with only one
thematic zone [13]. The two-part exposition is character-
ized by two strong punctuation breaks (Figure 1). The
first one is the Medial Caesura (MC) which closes the first
part of the exposition. The second one is the Essential
Expositional Closure (EEC), which is a Perfect Authen-
tic Cadence (PAC) that concludes the Secondary thematic
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Figure 1. Structure of the two-part exposition in a sonata
form, from Hepokoski and Darcy [13].

zone (S). The lack of a clearly articulated MC is the main
difference between the two-part exposition and the contin-
uous exposition [12]. Figure 1 shows the two-part exposi-
tion of a sonata form with its two punctuation points.

1.2 Formalizing Medial Caesuras

The MC is a “break in texture” [21] or a “textural
change” [12] built around a cadence (most of the time, a
half cadence (HC)), that acts as a boundary between TR
and S. According to Hepokoski and Darcy, the MC has
two fonctions [12, 13]: It closes the first part of the Expo-
sition, concluding a process of energy gain initiated during
the TR. It makes the second part available, opening a space
for S thanks to that energy accumulated in TR. 1 Whether
or not TR is modulatory, the MC is the point when the mu-
sic reaches a structural dominant. 2 This dominant may be
prolonged by neighbor motion, a repeated dominant pedal
and a strong forte, and may be emphasized by hammer
strokes (or hammer blows), that are repetitions of the fi-
nal dominant chord. The whole process is concluded by
the actual articulation of the MC. There can be a general
pause on all voices, but there can also be a caesura-fill, that
is a small melodic pattern or a sustained note or chord that
“bridges the gap” to the S zone.Two examples of MCs are
presented on Figures 2 and 3.

1 Hepokoski and Darcy suggest that the MC “may be thought of as
metaphorically analogous to the moment of the opening of elevator doors
onto a higher floor.” [13]

2 This structural dominant is the arrival point of the associated HC [6],
what follows being considered as post-cadential.



Figure 2. Mozart, Piano sonata in A minor, K310, 1st movement, mm15–24. The arrival point of the half cadence is
on the downbeat of m16 (circled in orange). The measures 16 to 21 have a prolongational function. They are built on
a dominant pedal (in blue) and a speeding-up harmonic oscillation between dominant and minor tonic of C minor. The
dominant tension is reinforced by the forte/piano/forte contrast at m16, m18, and m20. This leads to a triple hammer blow
(THB) at m22 (green) and the actual articulation of the MC on the fourth beat of m22 (red). Then caesura-fill at the right
hand (lighter blue) leads to S and its new thematic unit.

Hepokoski and Darcy classify MCs according to the ca-
dence occuring before the break and their position inside
the Exposition [12]. A first-level default MC is associated
with a HC in the secondary key 3 and can be denoted by
V:HC MC (III:HC MC or v:HC MC in minor mode). This
MC generally occurs between 25 and 50% of the length
of the exposition, and sometimes at 60%. A second-level
default MC considers a HC in the primary key (I:HC MC,
between 15 and 45% of the length). A third-level default
MC is caracterized by a PAC in the secondary key (V:PAC
MC, III:PAC MC, or v:PAC MC), and occurs between 50
and 70%, sometimes at 75% of the length. The least en-
countered option, fourth-level default, is a PAC or an im-
perfect authentic cadence (IAC) in the primary key (I:PAC
MC or IAC MC), generally at the end of P. In this case, S
follows P without TR.

Another point of view on MCs is given by
Richards [20], who identifies in 2013 seven signals,
underlying the beginning of the secondary theme (S):
tonic harmony of the new key, beginning function,
preparation by a phrase-ending chord, textural gap of a
medial caesura, change in texture, change in dynamics
and characteristic melodic material. Each signal can be
encountered in a strong or weak form. For example, the
“Tonic harmony of new key” signal is strong when the
chord encountered on the first downbeat is a tonic chord

3 The secondary key is often the dominant major (V) for major mode
primary key and the relative major (III) or the dominant minor (v) for
minor mode primary key.

in the secondary key. It is weak when that chord is not the
tonic of the secondary key, or when the chord is the tonic
of another key due to a temporary modulation.

Somehow, a “textbook” MC – like the one displayed on
Figure 2 – is heard when all these signals, either on MC or
on start of S, are strong. Of course, MCs in the classical
repertoire do not strictly follow these rules and are rather
heard with many deformations, like the one presented on
Figure 3.

1.3 Medial Caesura, Sonata Form and MIR

Working on high-level music structures is a challenge for
Music Information Retrival (MIR) research [19]. To our
knowledge, no previous study in MIR specifically tar-
geted MC. However, several authors worked on sonata
forms and designed algorithms to model or retrieve parts
of its structure, on audio signals [15, 26] and on symbolic
data [2, 22]. Sears and colleagues worked on cadences, by
demonstrating that terminal events from cadential context
are the most predictable thanks to a finite-context model
(IDyOM) [23]. We previously worked on sonata form
structure identification, modeling the MC as one state in
Hidden Markov Models with 14 or 18 states and using a
Viterbi algorithm to find back the sections from symbolic
features [1, 4]. We also worked on PAC and HC detection
thanks to features extraction and a SVM model. While
PAC detection seems satisfying, HC detection was more
challenging due to the lack of characteristic feature for this
cadence type [3].



Figure 3. Mozart, String Quartet in D minor,
K421, 1st movement, mm22-24. This MC is
weak: No dominant arrival, no lock on degree V,
nor hammer strokes, and energy depletion rather
than a gain. This MC weakness can be due to
a I:HC MC denial on the third beat of m14 not
shown on this figure (dominant arrival at m12).
The composer delays the arrival of S and contin-
ues into TR, maybe to create surprise.

Modeling MCs is a challenging subject even amongst
music theorists. As the MC is a striking event, playing a
role in the high-level structure, one may wonder whether it
is possible to model and predict MCs with computational
musicology methods. This study tries thus to model fea-
tures relevant to identify structural breaks such as the MC.
We propose such features that may be specific to MCs,
based on music theorist works [13, 20] (Section 2) and
present a neural network model that we train on a corpus
of expositions in Mozart string quartets (Section 3). We fi-
nally discuss the occurences of the features, detail how the
network manages to model the MC, and propose perspec-
tives (Sections 4 and 5).

2. FEATURES INDICATING
THE MEDIAL CAESURA

We mostly here introduce features to model high-level sig-
nals leading to the Medial Caesura, taking inspiration from
Hepokoski and Darcy as well as from Richards [13,20]. To
find the MC, we want to model the MC, but also its prepa-
ration and the textural contrast with the beginning of S.
We also use low-level features inspired by dedicated ex-
traction software as jSymbolic [18]. This section details
13 features that are estimated on each beat of the music
piece. The features are then used in the next section to
train a neural network to model the MC. In contrast to fre-
quent uses of neural networks that consist in automatically
identify most relevant features, this research aims to vali-
date the efficiency of a set of pre-determined theory driven
features to model breaks such as the medial caesura.

In the following, given a onset b, the [b, b + 1[ inter-
val means that we consider each note actually sounding in
that interval, including notes whose onset is b, or before,
but still sounding on b, but excluding notes whose onset
is b+ 1.

2.1 Rhythm, energy and textural features

Preparations of MCs are expected to be passages of high
rhythmic intensity as a consequence of the repetition of
the pedal and the forte. It might even be the most obvious
way of gaining musical energy. We also expect a change
of rythmic density between TR and S and a beat filled with
silence on the articulation of the MC.

Modeling textural changes with precision is a challeng-
ing topic in computational musicology [11]. To try to cap-
ture these “breaks in texture” between the end of TR and

the beginning of S, we implement the following low-level
features, for each beat b:

• f-rhythm-density counts the number of notes in
[b, b+ 1[,

• f-rest counts the number of voices not sounding on b.

We add these features, as the textural/energy change can
be seen on the range of voices:

• f-mean-pitch is the mean of the MIDI values of
pitches in [b, b+ 1[,

• f-range-pitch is the difference between the maxi-
mum and minimum MIDI values of pitches in [b, b+
1[.

We also keep track of the position in the piece:

• f-time is the current beat number divided by the total
number of beat in the score.

We propose one high-level feature specific to MCs:

• f-hammer-blow tracks double, triple or more ham-
mer strokes (see THB on Figure 2). To estimate this
feature, the set of pitches on b are compared to sets
of pitches on previous beats. This feature reaches its
maximum when the set of pitches is the same for b
and for at least 2 previous beats.

2.2 Harmonic Features

We expect a (functional) dominant lock during the few
beats before the articulation of the MC (whether it is a
dominant on the primary key or on the secondary key).

Moreover, whether a TR is modulatory or not, we ex-
pect to encounter accidentals during TR or at least during
the beginning of S. This is due to neighbor motion during
the phase of prolongation of dominant and use of the dom-
inant of the secondary key.

Algorithms for detecting local tonalities work well [17,
24] but tend to average variations over a window (often
a few beats or measures). We propose rather two sets of
features adapted to the detection of the MC.

Functional harmony compatibility. Functional harmonic
analysis is a challenging problem in itself [9,25]. The idea
here is to assert how compatible is a current harmony to



Figure 4. Estimation of the current diatonic scale on
mm27-29 of Mozart’s 1st movement of String Quartet
No. 13 in D minor (K173). The D minor harmonic scale
is given on the left. f-cs-rel stands for f-current-scale-
relative.

a harmonic function, but without actually classifying the
harmonies.

For a given functional harmony (as for example f-
predominant, that may be either a ii or a IV/iv), we de-
fine a compatibility profile h : P → [−1, 1] that asserts
how compatible a pitch p ∈ P is to the given harmony.
The pitch is given relative to the tonic of the primary key.
Given a set of notes c = {p1, p2, ...} from a given offset,
the feature computes

∑
p∈c h(p). The actual computation

weights notes by their length in the given beat.
The compatibility profiles h could be learned as profiles

used in tonality detection [17]. We took here a simpler ap-
proach and encoded two pitches lists coming for musical
knowledge, one with relevant pitches, the other with irrel-
evant pitches. We define five such features, each one with
a particular list of relevant and irrelevant pitches:

relevant irrelevant
h(p) = 1 h(p) = −1

f-maj-tonic 1, 3, 5 ]4, 7
f-min-tonic 1, [3, 5 ]4, 7
f-predominant 2, 4, ]4, [6, 6, 1, [2 3, 5, 7
f-dominant-of-dominant 2, ]4, [6, 6, 1, [3 3, 4, 5, ]5, 7
f-dominant 5, 7, 2, 4, 6, [6 1, ]5

These pitch lists suppose that we have a pitch space with
the pitch spelling information. Pitches p that are not listed
count for h(p) = 0.

Harmony landscape and current scale. To better capture
the occurrence of new accidentals, we model the current
scale. It is a diatonic scale containing the seven pitches
with, for each of them, the last accidental encountered
(Figure 4). We expect it to be different of its initial state at
the beginning of the piece and to vary a lot just before the
MC. We estimate two features on this scale :

• f-current-scale-diff counts the number of pitches
differences in the current scale in ]b − 1, b] related
to the initial current scale.

Tonality Cadence MC Tempo
K80.1 G Major V:HC 1 Adagio
K80.2 G Major V:HC 1 Allegro
K156.1 G Major I:HC 2 Presto
K156.2 E minor III:HC 1 Adagio
K157.1 C Major I:HC 2 N.A.
K157.2 C minor III:IAC 4 Andante
K158.1 F Major V:HC 1 Allegro
K159.1 B[ Major V:HC 1 Andante
K159.2 G minor III:PAC 3 Allegro
K168.1 F Major I:HC 2 Allegro
K168.2 F minor V:HC 1 Andante
K169.1 A Major I:PAC 4 Molto Allegro
K171.3 C minor v:HC 1 Andante
K171.4 E[ Major V:HC 1 Allegro assai
K172.1 B[ Major V:HC 1 Allegro spiritoso
K172.2 E[ Major V:HC 1 Adagio
K172.4 B[ Major V:PAC 3 Allegro assai
K173.1 D minor v:HC 1 Allegro moderato
K387.1 G Major V:HC 1 Allegro vivace assai
K421.1 D minor III:PAC 3 Allegro
K428.1 E[ Major V:PAC 3 Allegro non troppo
K428.2 A[ Major I:HC 2 Andante con moto
K465.1 C Major V:HC 1 Adagio + Allegro
K465.4 C Major V:HC 1 Allegro
K499.3 G Major V:HC 1 Adagio
K589.1 B[ Major V:PAC 3 Allegro
K590.1 F Major V:HC 1 Allegro moderato

Table 1. The corpus contains 27 expositions (21 in major,
6 in minor) in Mozart String Quartets. "MC" denotes the
MC type as designed by [12].

• f-current-scale-relative further weights this count by
+1 when the scale “gains” a sharp (or “loses” a flat)
and by −1 in the other case.

For example, on the Figure 4, the current scales are
compared with the D minor harmonic scale (primary key,
with B[ and C]). On the downbeat of measure 28, three
pitches are changed (A[, E[, B\), so f-current-scale-diff
is 3 and f-current-scale-relative is 1− 2 = −1.

3. LEARNING STRATEGY

3.1 Network Layout

A Long Short-Term Memory neural network (LSTM) is
built to predict the position of the Medial Caesura in the
pieces of the corpus (Figure 5).

The network takes vectors of values describing the beats
of the pieces as input. The identification of a Medial
Caesura at a particular beat requires also to look at several
past beats and possibly future beats. This is partly taken
into account by the LSTM, but we further directly provide
to the network the feature values over a time window. A

features
9 × 13

LSTM(10)
300

output
1

Figure 5. Network layout



vector describing a beat includes thus the 13 feature values
corresponding to this beat but also those corresponding to
the p previous beats and the n next beats. In this exper-
iment, we set p = 4 and n = 4 which results in input
vectors of size 9× 13 = 117.

The input layer is fully connected to a recurrent hidden
layer with 300 units. The time step of the LSTM is set to
10, meaning that 10 consecutive vectors are used to com-
pute the probability of a MC occuring at one beat. Finally,
the hidden layer is fully connected to the output layer that
is a single unit. A sigmoid function scales the output value
as an estimated probability in the interval [0, 1].

3.2 Model Training

To avoid overfitting, the position of the Medial Caesura in
a piece of the corpus is predicted with a model that has
been trained on the whole corpus minus the piece itself.
This is referred as leave-one-piece-out validation process.

The 13 features are computed at every beat of every
piece in the training set. Each piece is represented as a
sequence of feature vectors of size 117, each vector being
associated with a specific beat.

Every feature vector of the training set is associated
with a label having a value 1 (presence of an annoted MC
in the next 5 beats) or 0 (otherwise). During the training,
pairs (feature vector, label) are presented to the network by
batches of size 200. An Adam optimization algorithm up-
dates the unit weights to minimize a binary cross-entropy
loss function over 60 epochs.

Given the small number of MCs in the corpus, there
was no preliminary selection of a separated test set. This
research primarily focuses on the validation of the musical
features rather than on the classifier itself. For these rea-
sons, the number and sizes of hidden layers, the batch size
and the number of epochs as the optimization algorithm
were selected among the most common values given the
dimension and the quantity of input data. We did not try
the optimize the hyper-parameters to avoid over-fitting.

4. EVALUATION

4.1 Two-part expositions in Mozart’s String Quartets

Mozart wrote 23 string quartets totaling 86 movements, in-
cluding 42 in sonata form [16]. Many of these quartets are
encoded as .krn Humdrum files [14] that we downloaded
from the humdrum-mozart-quartets repository at
github.com/musedata/. Some of these movements
were left out because of unavailable clean encodings or
of other technical inconsistencies including the absence of
Medial Caesura. The corpus finally contains 27 two-part
expositions totaling 4179 beats. Medial Caesura annota-
tions were taken from the sonata form annotation dataset
we proposed in [1] and available at www.algomus.fr/
data. These annotations include P, TR, MC, S, and C
sections. Table 1 lists these 27 movements with their MC
type. We denote by K171.4 the 4th movement of K171.

P TR MC S C
f-rhythm-density 0.442 0.517 0.524 0.557 0.577
f-hammer-blow 0.080 0.087 0.143 0.070 0.059
f-rest 0.223 0.194 0.099 0.229 0.181
f-mean-pitch 0.770 0.768 0.786 0.782 0.766
f-range-pitch 0.373 0.434 0.508 0.420 0.441
f-time 0.053 0.150 0.189 0.270 0.350
f-maj-tonic 0.679 0.621 0.593 0.575 0.595
f-min-tonic 0.650 0.598 0.581 0.561 0.588
f-predominant 0.568 0.553 0.576 0.545 0.521
f-dominant-of-dominant 0.493 0.537 0.594 0.561 0.525
f-dominant 0.629 0.670 0.737 0.699 0.719
f-current-scale-diff 0.065 0.182 0.262 0.228 0.237
f-current-scale-relative 0.008 0.069 0.094 0.146 0.134

Table 2. Average value of the features according to the
section on the whole corpus.

0.000 0.200 0.400 0.600 0.800 1.000

f-dominant-of-dominant

-3 -2 -1 0 +1 +2 +3 +4

f-current-scale-relative

Figure 6. Distribution of two features relevant for MC
identification. From bottom to top, P (brown), TR (blue),
MC (red), S (green), and C (purple).

4.2 Implementation

We encoded feature extraction within the Python music21
framework [10]. The pitch space is Base40, modeling full
pitch spelling information. Features described in Section 2
are computed at each beat of each piece and have their val-
ues scaled between 0 and 1 through min-max normaliza-
tion. The values of the features are available as open data
at www.algomus.fr/data. The neural network has
been implemented with the Python framework Keras [8].

4.3 Features distribution

Table 2 shows the average values of each feature depending
on the sections, and Figure 6 details the distribution of two
relevant features. Several features have larger values on the
MC, notably f-dominant-of-dominant and f-dominant. As
expected, the features on tonic harmonies have higher val-
ues on P and TR, while features on dominant harmonies
have higher values on the MC, S, and C sections. The
current-scale features are very low on P (initial tonal sta-
bility), but are then mostly activated on the other sections
as the music moves to another key, and preferably one with
more sharps. The f-current-scale-diff is maximal around
the MC, reflecting the harmonic oscillations and tonal in-
stability at this place. This behaviour is less visible on f-
current-scale-relative. Indeed, we observe sometimes here
a modal instability (as in Figure 2) that means more flats
before the MC in major mode. Other relevant features
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Figure 7. MC in the reference annotation (red marks on
bold segments, representing ±4 beats) and predicted by
the model (blue marks).

Figure 8. Probability curves for each beat to be an MC
along four pieces of the corpus, two with correct MC pre-
dictions (top) and two with wrong MC predictions (bot-
tom). Below each curve is the structure of the exposition
in the reference annotation (P/TR/MC/S/C), and the red
dashed lines emphasize the position of the MCs.

for the MC are, as expected, f-hammer-blow, and f-range-
pitch, emphasizing the octave leap down often found on
hammer blows.

4.4 MC prediction

In order to predict the position of the MC in an unseen
piece, the sequence of vectors representing all beats are

presented to the network. The position of the MC is iden-
tified at the offset where the network estimates the maxi-
mum probability. We consider that a prediction is correct
when the predicted MC is less than 4 beats before or after
the annotated MC which seems reasonable given the pro-
gressive aspect of the MC phenomena.

Figure 7 displays the location at which the MC is iden-
tified as the MC original annotations for each piece of the
corpus. The network correctly locates the MC of 14 of the
27 pieces of the corpus. This is a improvement from our
previous work [1] where the model found only 8 MCs out
of the same 27 pieces. Due to the small size of the corpus,
we did not find any significant correlation between the ac-
curacy of the prediction and the piece mode, tempo, or MC
type. For example, MCs are correctly estimated in 11 out
of 21 pieces in major mode and in 3 out of 6 pieces in mi-
nor mode.

Figure 8 displays the estimation of the probability of
having a MC at each beat of four pieces of the corpus.
These probabilities are computed by different models that
have been trained on the whole corpus, except on the piece
on which the prediction is performed. The model works
well on some pieces. In K157.1, the highest peak predicts
well the MC. The second highest peak, on beat 76, is also
noteworthy as it is an HC ending the P section. Other peaks
are not well explained. In K168.1, there is a unique peak
at the correct position of the MC. The model fails to pre-
dict the MC in other pieces. In K421.1 (see also Figure 3),
a MC is wrongly predicted with high confidence about 40
beats too early, at measure 14. This false prediction is ac-
tually a denied MC. In K589.1, there are more candidates
for the MC location, but with low estimated probabilities,
under 0.2. Another peak triggers the detection around beat
60, where there are two beats with only rests.

5. CONCLUSION AND PERSPECTIVES

We proposed theory driven features modeling structural
breaks such as the Medial Caesura. Trained with only these
features and without any other note information, the net-
work succeeds in identifying about half of the MCs of the
corpus. This is notable given the diversity of the realisa-
tions of MCs in such a small corpus. The success of the
predictions does not seem to be correlated with the tempo,
mode or the MC type.

The model might probably be improved both by en-
larging the corpus and by taking into account additional
elements that can not be retrieved from the files used in
these experiments, such as dynamics. Features were se-
lected based on music theory. It could be worth learning
also more lower-level elements used in their computations,
such as note pitches and durations. Furthermore, the per-
formance of the model might be improved by consider-
ing additional musical features that have been proposed for
other MIR tasks such as cadence detection or sonata form
retrieval.
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