
HAL Id: hal-02162935
https://hal.science/hal-02162935v1

Submitted on 11 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Realtime collaborative annotation of music scores with
Dezrann

Ling Ma, Mathieu Giraud, Emmanuel Leguy

To cite this version:
Ling Ma, Mathieu Giraud, Emmanuel Leguy. Realtime collaborative annotation of music scores with
Dezrann. International Symposium on Computer Music Modeling and Retrieval (CMMR 2019), 2019,
Marseille, France. �hal-02162935�

https://hal.science/hal-02162935v1
https://hal.archives-ouvertes.fr


Realtime collaborative annotation
of music scores with Dezrann

Ling Ma, Mathieu Giraud, and Emmanuel Leguy

Univ. Lille, CNRS, Centrale Lille, UMR 9189 – CRIStAL
Centre de Recherche en Informatique Signal et Automatique de Lille

F-59000 Lille, France
dezrann@algomus.fr

Abstract. Music annotation is an important step in several activities
on music transcribed in common music notation. We propose a protocol
to annotate collaboratively such scores in real time. Based on a paradigm
with commutative operations, this protocol guarantees consistency be-
ween distributed editions while providing a fluid user experience, even
behind possible network lags. It is being implemented into Dezrann, a
web platform for sharing music analysis. We report efficiency and scala-
bility tests on the current implementation, including usage by up to 100
simulated clients.

Keywords: Score annotation, music analysis, collaborative editing, dis-
tributed algorithms, operational transformation, operation commutation

1 Introduction

Music annotation is an important step in several activities on music transcribed
in common music notation – music analysis, teaching, performance preparation
or even composing. As we noted in [5], annotation can be modeled as putting
labels on the score at various positions, possibly with a duration, and sometimes
drawing relations between these labels. Researchers in musicology or in computer
musicology often engage with scores through reading, annotating, and analyzing,
and they discuss other people’s analyses. In talks or lectures on music analysis,
history or composition, one frequently needs to get back to the score, jumping to
different sections, sometimes comparing them, in different places, commenting
some elements of a score or of several scores. Most of the time, paper scores are
very efficient for that. In such lectures, it is now common to see students or
people with laptops or tablets. But they often are not as efficient as when they
work with annotated paper scores laid on the desk. More generally, many people
like to talk about music and to describe what they hear, as demonstrated by
presence of music on social networks.

Software for music annotation. Can software help people from different back-
grounds efficiently annotate or discuss music? Several software enable to render,
and sometimes to annotate, scores on the web1 [7, 13, 14], or to analyze music [3,

1 jellynote.com, notezilla.io



2 Ling Ma et al.

Fig. 1. Annotation with Dezrann (www.dezrann.net) on a fugue in C minor by J.-
S. Bach, showing both on-stave (subjects, counter-subjects, patterns) and off-stave
(harmonic sequence, degrees, cadence, pedal) labels. The music/label synchronization
is kept across both a generated score (left) and a waveform from a recording (right).

8, 10]. We introduced the open-source platform Dezrann [6] favoring simplicity
over the number of features, focusing on easy usage for people with limited pro-
gramming background as well as efficiency for people needing to encode music
annotations on large corpora. Music is presented either on continuous staves or
on waveforms. The user may create, edit and move labels on the score – either
on a staff or on spaces above or under the score (Figure 1).

Realtime collaborative annotation. Collaborative editing is made possible by
fast and ubiquituous network connexions. Initially proposed to edit texts, it
is also used in graphics or other domains. Collaborative music applications on
the web began to emerge a few years ago, with for example collaborative score
edition2, collaborative patching [12], or collaborative performance [1, 11].

Behind the scene, the challenge of any collaborative editor is to maintain con-
sistency between multiple editors separated by the network, and to handle con-
flicts possibly arising from simultaneous editions. Lock mechanisms are reliable,
but they limit real-time interaction. More recent models enable actual simul-
taneous editions by several clients. Operational Transformation (OT) is based
on transforming the operations to keep a converging state for each client [4],
keeping casual links between operations – one operation possibly being emit-
ted after another one. Decentralized protocols using conflict-free replicated data
types (CRDT) guarantee that the user intention is preserved by using only op-
erations that are associative, commutative and idempotent (applying them once
or several times yield the same result) [15].

Aims and Contents. Considering the needs of collaborative music annotation,
and taking ideas from existing techniques, we propose a distributed protocol to
handle simultaneous editions on a set of labels on traditional scores. The next
Section details our motivations and use cases, Section 3 describes the proposed
protocol, Section 4 presents the implementation and the evaluation, and Sec-
tion 5 concludes on the availibility and the perspectives.

2 flat.io



Realtime collaborative annotation of music scores with Dezrann 3

Fig. 2. Children using Dezrann in a pub-
lic secondary school in Amiens (France) to
annotate sections in music. The school cur-
riculum in music education in France in-
cludes a part of “music analysis”, without
assuming that the children are music read-
ers. Having a way that children annotate
themselves music make them active. It im-
proves their learning, and more generally
their autonomy.

2 Annotation Model and Use Cases

Annotating music can take different ways, even when one considers only scores
in common music notation. We use here the simple notion on labels on the score
as defined in [2]. Each label has several fields. It has a start onset, it may have
a duration, or not, and it may concern the whole system, or, more precisely,
one or several staves. Common labels to analyze tonal music are patterns, ca-
dences, harmonic markers, or structural elements. This simple modeling does
not cover all aspects: Most notably, people analyzing music on paper frequently
draw connexions between labels. Here relations between labels are not modeled,
but nevertheless labels can have tags or comments. Within this simple modeling,
collaborative edition could be worth both in colocated and remote situations:

– Event-based interactive collaboration. People, usually in the same place, dis-
cuss music while annotating it on their computers, tablets or other mobile
devices. They see how the other people interact and annotate the score, for
example in the following situations:

• specialized music teaching (general music teaching, or more specialized
lectures such as composition, analysis, or history): Students can learn
notions such as the sonata form by annotating scores collaboratively;

• music education: Without detailed analysis on the score, music culture
and theory can be shared and experimented, for example by identifying
sections and other striking events on a waveform (Figure 2);

• conference or public concert: Audience feedback could be organized by
letting people annotate the music.

– Remote collaboration. People in different places may, over the network, dis-
cuss on a score or a waveform. This could be a few collaborating people –
artists preparing a concert, or scholars working on scores – or many more
people, in a social network to annotate music. Like on platforms like sound-
cloud, people may want to share what they hear and comment music.

These use cases are not exclusive: Collaborative edition makes it possible to
host distributed events on the network. Moreover, one could also combine “real-
time” and “offline” parts: A collaborative annotation done during a lecture or



4 Ling Ma et al.

another event could be later available for remote viewing or editing. Conversely,
artists or students could prepare their own annotation of a score, and thereafter
share and edit collaboratively this annotation with others, either to a group of
identified users or towards everyone.

Note also that the collaborative edition could be unrestricted, where every
user may annotate various places in the music. However, one could also have
mechanisms to highlight the edition or the interaction of one particular user, as
a teacher or a presenter. This could include the ability to follow the session of
such an user, in particular by browsing the music at the same position of her.

3 Operations Modeling and Network Protocol

The following paragraphs describe how we model the collaborative edition be-
tween several user clients and a server. OT and CRDT bring some interesting
ideas as the preservation of casual links and the user intention, the fact that
the operation should be applied in any order or the idempotency operations.
However, transforming operation in OT is a complex task, and OT modeling
is sometimes error-prone [9]. Moreover, in our scenarios, it makes no sense to
merge some conflicting operations such as when two users try to move the same
label both to the left and to the right. One of these users should know as soon as
possible that he is conflicting and then rejoin the shared state. We thus propose a
simpler, centralized model based on a centralized linear history but with “Oper-
ation Commutations”. Compared with OT, we use only trivial transformations
on commutative operations, allowing them to be delayed. The consequence is
that not all operations are accepted by the server, leading to limited conflicts
that may be easily handled by the concerned clients.

State and operations. On a given score, the state of the annotation is the result of
the application of an operation history onto the State 0 – without any labels. We
consider three operations: label-create(id, dict) creates a label, label-remove(id)
removes a label, and label-set(id, dict) sets some fields of an existing label.

Label ids are computed by hashing and are supposed to be unique. The dict
arguments are dictionnaries containing one or several (field, value) pairs. For
example, a label may be created by label-create(5x8, {start: 10, duration: 4})
and another label can be updated by label-set(d9t, {start: 36}) or label-set(d9t,
{type: ‘Cadence’}).

Operation commutativity. We consider that two operations performed by differ-
ent users on different labels do commute, because labels are independent objects,
without casual links. We also consider that, on a same label, two operations
on different fields do commute. This allows to be very flexible while keeping
the server simple. The label-set(d9t, {start: 36}) and label-set(d9t, {type: ‘Ca-
dence’}) operations do thus commute, enabling to simultanously edit the same
label d9t, as on Figure 3. In fact, the server is not aware of the actual semantics
of the operation: To check whether two operations on a same label commute, it
just checks whether they concern different fields or not.



Realtime collaborative annotation of music scores with Dezrann 5

Fig. 3. Andreas is taking a few seconds to
enter the comment of a label, here Counter

Subject 1. One operation is sent by his client
at each character stroke. While this, Beatrix
is slighlty updating the end of that pattern,
resulting again in several operations while she
uses her mouse. Her operations do commute
with Andreas’ operations. Both of them can
thus simultanously edit the label.

Client-server handshaking. The server remembers a state number s0 and an
history [ ] array of size s0 with all accepted operations. User clients may request at
any time this full history, in particular when they join the collaborative channel.
Each client i, with i ≥ 1, keeps his own state si reflecting the last acknowledge-
ment (OK) he received from the server, and a list of his pending operations that
were sent to the server since this si. A client wanting to do an operation opk
sends (si, opk) to the server (Figure 4). When the server receives such a pair:

– If si = s0, the client i was aware of the last accepted operation. The server
accepts the operation opk, meaning that he increments s0 ← s0 + 1, then
stores history [s0] = opk, and broadcasts to each client OK(s0, opk);

– If si < s0, the client i was not aware of the accepted operations since
history [si]. The server checks whether opk commutes with all history [si +
1] . . . history [s0] operations that were not from the same client:

• If the operation commutes (or if there were no operations from other
clients), then opk is accepted at a new position, that is s0 ← s0 + 1,
history [s0] = opk, and broadcast OK(s0, opk);

• In the other cases, the server sends DENY(opk) only to the client i.

When a client receives OK(s0, opk) from the server, he updates his si. When
opk was his own operation, he removes it from his list of pending operations. Oth-
erwise, when opk is commuting with his pending operations, he applies it (? on
Figure 4). When this is not the case (• on Figure 4), or when he receives a
DENY(opk), the client detects a conflict and rollbacks some operations, possibly
asking some of the history [ ] to the server. Thus when two or more users are in
conflict, some of them will be blocked, but it can be acceptable.

The protocol allows to detect lost messages: Whenever a client receives
OK(s0, ...) with s0 > si + 1, he can ask again some of the history [ ] to the
server. As the history is linear and as the only transformation is to switch com-
mutative operations, the protocol tries to preserve some form of casual links and
user intention. Note that all the update operations are idempotent, and could
thus applied several times in case of re-emission following network failures.



6 Ling Ma et al.

server (s0)Andreas (sA) Beatrix (sB)

OK(1, a1)

a1

?OK(2, a2)

a2

•
OK(3, b1)

b1

?

0, label-create(x5, start:8)

0, label-set(x5, start:9)
0,

lab
el-

cre
ate

(k8
, s

tar
t:1

4)

OK(4, a3)

a3

DENY(b2)

b2
1, label-set(x5, start:10)

1,
lab

el-
set

(x5
, s

tar
t:7

)

[a1]

[a1, a2]

[a2]

[ ]

[b1]

[b1, b2]

rollback

Fig. 4. Example of protocol based on Operation Commutations for collaborative music
annotation. Andreas emits operations a1 and a2. The server accepts these operations,
stores them in history[ ], and broadcasts the acknowledgements. Each time Andreas
receives the acknowledgements, he update his sA with s0 and, when the concerned
operation was from him, he deletes it from his list of pending operations. Beatrix emits
the operation b1 = label-create(k8, start:14), without being aware of operations a1

and a2. However, b1 commutes with a1 and a2, and thus is accepted, and a3 is also
accepted because it commutes with b1. Contrarily, the further operation b2 = label-
set(x5, start:7), where Beatrix want to move the label x5 in a conflicting way, does not
commute with a2 nor a3. The server sends thus a DENY back to Beatrix. However,
Beatrix could have detected the conflict before, when she received OK(2, a2) at (•).

4 Implementation and Evaluation

4.1 Implementation

The Dezrann codebase includes several user interface parts, using the Web com-
ponents model (Polymer.js), that will be not discussed here [6]. The server
part, written in node.js, handle user authentication through JWT (json web
tokens) and storage of corpora and annotation files, together with their meta-
data. The collaborative annotation protocol was implemented above socket.IO.
The payload of each operation message is (si, opk), as explained above, together
with other data such as hashes to uniquely identify operations.

The conflict handling is now not optimized on the client side: The clients do
not detect by themselves the conflicts, but rather wait for DENY messages from
the server. Moreover they request the full state after each conflict, and do not
check for lost messages. The protocol still works with such unoptimized clients,
except when messages are lost. To benchmark the server part, we both tested
the actual client, but also simulated fake clients running regular requests.



Realtime collaborative annotation of music scores with Dezrann 7

 0

 0,5

 1

 1,5

 2

 2,5

 0  20  40  60  80  100

Av
er

ag
e 

tim
e 

pe
r c

lie
nt

 a
nd

 p
er

 a
cc

ep
te

d 
op

er
at

io
n 

(s
)

Clients

all conflicts
10% conflicts
1% conflicts
no conflicts

100

1k

10k

 0  20  40  60  80  100

Av
er

ag
e 

op
er

at
io

ns
 e

m
itt

ed
 p

er
 c

lie
nt

Clients

all conflicts
10% conflicts
1% conflicts
no conflicts

Fig. 5. Time (left) and operations (right, logscale on y-axis) for handshaking 100 op-
erations per client under several scenarios. Parallel clients and server are simulated on
a same laptop computer (8 cores, 2.60 GHz, 16GB RAM).

4.2 Evaluation

We simulated a server and many clients performing either commuting or con-
flicting operations. In the no conflicts scenario, all clients move each a different
label. In the all conflicts scenario, all clients perform conflicting operations on
a same label. Indermediate scenarios are when clients update one out of 100 or
10 random attributes of a label (1% and 10% conflicts). Parallel clients attempt
operations every 0.01 second. When a client receives a DENY, he tries another
operation, until 100 of his operations have been accepted. Such a stress test is
not realistic but enable to see how robust the protocol is.

Figure 5 shows that the best-case scenarios behave well with up to 100 si-
multaneous clients. The clients can update labels even without having received
previous operations: Starting from 3 clients, more than 99% of the (commuta-
tive) operations are here delayed. The worst-case scenario handles until about
20 clients simultanously emitting conflicting operations. Above this number, the
server slows down but is stil not stalled.

Finally, we performed client-side evaluation, with until 10 people working on
the actual Dezrann clients and annotating collaboratively a score. No server stall
was recorded, even when one sometimes feel that an operation was denied.

5 Conclusion, Availibility and Perspectives

We proposed a protocol based on Operation Commutations to handle simul-
taneous collaborative editions on labels on a music score. This simple proto-
col is between OT and lock mechanisms. Conflicts do occur but may be ef-



8 Ling Ma et al.

ficiently handled. Simulations show that it enables a scalable use by multiple
clients, in scenarios both without and with conflict, and human evaluation con-
firms that the platform works for a few simultaneous people, answering the
needs for the envisaged use cases. Prototype implementation is available in the
dez-{server,client}/dez-collab directories on gitlab.dezrann.net.

Perspectives on the protocol includes improving client (re)joining a collab-
orative channel, notably by better handling and compressing history to avoid
spurious transfers of the full history [ ] table and also by using the local storage
of the web application. The protocol could also use more OT techniques for
text edition in tags and comments. On the development part, perspectives in-
clude improving the user interfaces to make the fully useable by everyone, using
authentification mechanisms to grant collaborative edition accesses, and finally
conducting more user tests both with adults and children groups.

References

1. J. T. Allison et al., NEXUS: Collaborative performance for the masses, handling
instrument interface distribution through the web. In New Interfaces for Musical
Expression (NIME 2013), 2013.

2. G. Bagan et al., Modélisation et visualisation de schémas d’analyse musicale avec
music21. In Journées d’Informatique Musicale (JIM 2015), 2015.

3. P. Couprie. iAnalyse : un logiciel d’aide à l’analyse musicale. In Journées
d’Informatique Musicale (JIM 2008), 2008.

4. C. A. Ellis and C. Sun. Operational transformation in real-time group editors:
issues, algorithms, and achievements. In ACM Computer supported cooperative
work, 1998.

5. M. Giraud. Using Dezrann in musicology and MIR research. In Digital Libraries
for Musicology (DLfM 2018), 2018.

6. M. Giraud et al., Dezrann, a web framework to share music analysis. In Int. Conf.
on Techn. for Music Notation and Representation (TENOR 2018), 2018.

7. H. H. Hoos et al., The GUIDO music notation format. In Int. Computer Music
Conf. (ICMC 1998), 1998.

8. D. Huron. Music information processing using the Humdrum toolkit: Concepts,
examples, and lessons. Computer Music Journal, 26(2):11–26, 2002.

9. A. Imine et al., Proving correctness of transformation. In Eur. Conf. on Computer-
Supported Cooperative Work, 2003.

10. G. Lepetit-Aimon et al., INScore expressions to compose symbolic scores. In Int.
Conf. on Techn. for Music Notation and Representation (TENOR 2016), 2016.

11. J. Malloch et al., A network-based framework for collaborative development and
performance of digital musical instruments. In Int. Symp. on Computer Music
Modeling and Retrieval (CMMR 2007), 2007.

12. E. Paris et al., KIWI : Vers un environnement de création musicale temps réel
collaboratif. In Journées d’Informatique Musicale 2017 (JIM 2017), 2017.

13. L. Pugin et al., Verovio: A library for engraving MEI music notation into svg. In
Int. Society for Music Information Retrieval Conf. (ISMIR 2014), 2014.

14. C. S. Sapp. Verovio Humdrum Viewer. In Music Encoding Conf. (MEC 2017),
2017.

15. M. Shapiro et al., Conflict-free replicated data types. In Symp. on Self-Stabilizing
Systems, 2011.


