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Abstract. Boolean matrix factorization is a generally accepted approach
used in data analysis to explain data. It is commonly used under unsu-
pervised setting or for data preprocessing under supervised settings. In
this paper we study factors under supervised settings. We provide an
experimental proof that factors are able to explain not only data as a
whole but also classes in the data.

Keywords: Boolean matrix factorization - Supervised settings - Classi-
fication- Quality of factors.

1 Introduction

Boolean matrix factorization (BMF) is a powerful tool that is widely used in
data mining to describe data. It allows for data explanation by means of factors,
i.e. hidden variables that rely on a solid algebraic foundation.

In general, BMF is used in the unsupervised settings, i.e. where the input
data are not labeled, classified or categorized. However, evaluation of quality of
generating factors did not received appropriate attention in the scientific litera-
ture on BMF. An exception is pioneer work [4] that provides basic ideas of how
the quality of BMF algorithms can be assessed under unsupervised settings. To
the best of our knowledge, the quality of factors under supervised settings has not
been studied yet. In this paper we evaluate BMF algorithms under supervised
settings.

It was shown that BMF algorithms used as a preprocessing stage [2, 3, 18]
or as neurons in a simple (one layer) artificial neural network [13] can improve
classification quality. Other relevant works come from the Formal Concept Anal-
ysis [11] (FCA), since factors are often formal concepts [6]. In [12,14, 1] closed
sets of attributes, i.e. intents of formal concepts, were studied as basic classifiers
(hypothesis) in different voting and inference schemes. In the mentioned studies
the whole set of (frequent) factors was used to build classifiers. One may con-
sider factors as a result of selection only relevant concepts (hypotheses) w.r.t. to
coverage or MDL-principle, e.g., in [17] MDL principle is used to select concepts
that then were evaluated under supervised settings. From the FCA perspective,
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our study can be considered as evaluation of BMF-optimal concepts (intents or
their generators) under supervised settings. Under BMF-optimal concepts we
mean those that are generated by a BMF algorithm.

Our contribution is twofold. First, we evaluate the ability of factors to explain
classes of objects rather than the data as a whole. Second, we propose factor-
based classifiers and compare their quality with state-of-the-art classifiers.

The paper is organized as follows. Section 2 introduces the used notation
and the basic notions of BMF. In Section 3 we discuss how factors can be used
and evaluated under supervised settings. Section 4 provides the results of a
comparative study of factor sets generated by different BMF algorithms as well as
evaluation of different models of factor-based ensembles of classifiers. In Section 5
we conclude and discuss directions of future work.

2 Preliminaries

In this section we recall the main notions used in this paper. Matrices are denoted
by upper-case bold letters. I;; denotes the entry of matrix I corresponding to the
row ¢ and the column j. I;_and I_; denotes the 7th row and jth column of matrix
I, respectively. The set of all m x n Boolean matrices is denoted by {0,1}™*".
The number of 1s in Boolean matrix I is denoted by [|I|, i.e [[I]| =3, ; L.

For matrices A € {0,1}™*™ and B € {0,1}"*" we define the following
element-wise operations: (i) Boolean sum A @ B, i.e. the normal matrix sum
where 1+1 = 1. (ii) Boolean subtraction ASB, i.e. the normal matrix subtraction
where 0 — 1 = 0.

The objective of BMF is the following: for a given Boolean matrix I €
{0, 1}™*" to find matrices A € {0,1}™** and B € {0,1}**" such that

I~ AoB, (1)

where o is Boolean matrix multiplication, i.e. (A oB);; = max}_, min(A;;, By;),
and = represents an approximate equality assessed by || - ||. For details see [5].
The matrices I, A, and B describe the object-attribute, object-factor, and factor-
attribute relations, correspondingly.

Under this model, the decomposition of I into A o B may be interpreted as
a discovery of k factors that exactly or approximately explain the data, i.e. the
object ¢ has the attribute j, i.e. I;; = 1, if and only if there exists factor [ such
that [ applied to ¢ and j is one of the particular manifestations of [.

3 Factors Under Supervised Settings

Quality of factors is most often understood as their ability to explain data [4].
However, a lot of problems is needed to be solved under supervised settings,
where class labels of objects are available.

In supervised settings, Boolean matrix I € {0,1 corresponds to m ob-
jects described by n attributes. A special target attribute refers to an object

}mXTL
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class. More formally, we define a function class that maps row I,_ to its class
label ¢ = class(1;.) € Y, the size of set Y is equal to the number of classes.

3.1 Key Components of Classifiers

Representation and labeling For the Boolean matrix factorization I = AoB
we consider factor-classifier as a tuple (f;, ¢, sim), where f; is the i-th Boolean
factor (represented by the ith column and ith row of matrices A and B, re-
spectively), ¢ is a class label given by class function, and sim is a classification
strategy (see details below). In our study we assign to ¢ a class label of the
majority of objects from column A ;. If the majority is not unique, we do not
consider the factor as a classifier.

Strategy of classification We focus on two common classification strategies,
namely rule-based and similarity-based.

According to the first strategy, object g = I,;_(given by n-dimensional vector)
is classified by factor-classifier (f;, ¢, sim) if B;_ - g = B;_, i.e. the object g has
all attributes of factor f;, “-” denotes the element-wise multiplication.

With the second strategy, the object g is classified by factor-classifier ( f;, ¢, sim)
if similarity(B;_, g) > ¢, i.e. the attributes of factor f; are quite similar to the
attributes of object g. The similarity can be defined by means of either a distance
measure or an asymmetrical operator.

It should be noted that the rule-based classification strategy is a particu-
lar case of the similarity-based one, where for g = I;_ similarity(B; ,I;)) =
Yo By = I) = > (Bi|I;) = n. Operations — and | represent logical
implication and logical OR, respectively.

For the sake of simplicity, we will use (f;, ¢) to denote a classifier, because in
our experiments we use only the similarity function.

Responses of classifiers We say that object g is classified by (fi, ¢, sim) if
sim(B;_, g) > €. To assign a class label to g, the responses of classifiers (f;, ¢, sim)
can be accounted with weights w‘g Fi e 5im) (e.g. precision, accuracy of f; or sim-
ilarity between B;_ and g). We assume that f; does not contribute to the final
decision on a class of g (the response is 0) if g is not classified by (f;, ¢, sim).
Again, for the sake of simplicity, we will use w*g t..¢) instead of w(g i eosim)-

To compute a class label of an object, the responses of classifiers (weights)
are aggregated. We discuss aggregation strateges in Section 4.2.

4 Experimental evaluation

To evaluate factors under supervised settings, we use 11 different real-world
datasets from UCI repository [8] binarized with tools from [7]. The characteristics
of the datasets are shown in Table 1. In our experiments we use 10-fold cross-
validation.
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Table 1. Datasets and their characteristics.

dataset size density I class distribution
anneal 898 X 66 0.20  0.76/0.04/0.11/0.07/0.01
breast 699 x 14 0.64 0.34/0.66

hepatitis 155 X 50 0.36  0.79/0.21

horse colic 368 X 81 0.21  0.63/0.37

iris 150 x 16 0.25  0.33/0.33/0.33

led7 3200 x 14 0.50  0.11/0.09/0.10 (x8 classes)
mushroom 8124 x 88 0.25 0.52/0.48

nursery 1000 x 27  0.30 0.32/0.34/0.34

page block 5473 x 39 0.26  0.90/0.02/0.01/0.05/0.02
pima 768 x 36 0.22  0.650/0.35

wine 178 x 65 0.20  0.33/0.40/0.27

We compare most common BMF algorithms, namely 8M [9], GRECOND [6],
GREESs [5], HYPER [19], MDLGRECOND [16], NAIVECOL [10] and PANDA™ [15].

4.1 Factor As Classification Rule

In this section we examine factors as single classifiers. We study (i) the connection
between factor ranks given by unsupervised and supervised quality measures,
and which factors are the best w.r.t. supervised quality measures, (ii) how well
the factors summarize classes.

Connection between Supervised and Unsupervised Quality Measures
The mentioned BMF algorithms are based on a greedy strategy. The generated
factors are ordered w.r.t. their importance. The importance of factors is esti-
mated by a particular objective of an algorithm. Put it differently, the factors
generated first might best explain data. Since some factor sets are very small, we
cannot use correlation analysis to examine the dependence between the impor-
tance of factors (unsupervised quality measure) and their precision (supervised
quality measure). To assess the connection between these measures we count how
many factors we need to compute to get the best k factors w.r.t. precision. The
less the number of factors we need to compute, the stronger connection between
unsupervised and supervised quality measures.

The average number of factors is given on Figure 1. We note that the PANDA™T
factor sets are small, but it does not mean that most important factors pro-
vide best precision. These small values are caused by the small sizes of the
PANDA'-generated factor sets. The extremely small size of factor sets produced
by PANDA™ affects also the factor quality in unsupervised settings [4, 5].

Figure 1 shows that the lowest values correspond to the MDLGRECOND
factors. It means that we need to compute only few factors to get the most precise
classifiers. The most important factors w.r.t. the MDLGRECOND objective have
relatively higher precision than the most important factors generated by other
BMF algorithms.

In the next section we discuss the ability of factors to explain classes rather
than data as a whole, i.e. their ability to distinguish a single class from others.



A Study of Boolean Matrix Factorization Under Supervised Settings 5

4'_,_._’4—-—< 4| & o
GreConD

E2

& W= GreEss
& 50 ¥ v —} Hyper
3 —— MDLGreConD
S a - - —& | —— NaiveCol
(o
£ r"’,‘/‘.— PaMDa
1%
£ 3
=]
:
£ 20 -
2 A
“
10
' 3 6 B 10

top k-factors (by precision)

Fig. 1. The no. of factors required to be computed in order to get k best factors w.r.t.
precision.

Summary of Classes For every factor-classifier (f;, ¢) that corresponds to row
A ; and column B;_ we compute precision, recall and accuracy as follows:
tp+tn

7]), accuracy(f;,c) = ,
tp+ fn m

o ffp’ recall(fi,c) =
where tp = |[{Aj; | Aji = 1,class(I;)) = ¢
rate, fp = |[{Aj; | Aﬂ = 1,class(I;) # ¢
rate, fn = |{A;; | Aj; =0, class(I] )=c¢
rate.

Precision and accuracy characterize how well f; describes class c¢. The factors
with high values of these measures summarize better the given class c¢. The
only difference between accuracy and precision is the following one: precision is
the “local” class specificity (it shows how well objects from ¢ are distinguished
among the classified objects), while accuracy is the “global” class specificity (it
shows how well objects from ¢ are distinguished among all objects). Precision
and accuracy give preference to classifiers with low values of fp and fp + fn,
respectively.

The results of the experiments given in Table 2 show that the highest aver-
age precision is achieved for factors computed by PANDA™ (0.78, on average),
the MDLGRECOND factors also have quite high values of precision (0.74, on
average). The MDLGRECOND factors have the most stable quality measures
(the precision on test sets is smaller by 0.07 than on training sets).

More than that, Table 2 provides the precision of factor-classifiers on training
and test data. The precision on training data for all algorithms is quite simi-
lar (the best algorithm is PaNDa), while MDLGreConD demonstrates the best
precision on test sets. It should be noticed that MDLGreConD has the smallest
difference in precision for training and test data. That might indicate its ability

prec(fi,c) =

1,...,m}| is the true positive
1,...,m}| is the false positive
1,...,m}| is the false negative

0J
=
J

)
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Table 2. The average values of precision on training/test sets. The best values are
highlighted in bold.

A
Z
S
7] : / <
o) e g 3 £ a
- =) = & a 2 Z.
= s = > = < <
0 O O = = Z. [am
anneal 0.86/0.67 0.85/0.66 0.86/0.64 0.84/0.62 0.85/0.75 0.84/0.63 0.87/0.87
breast 0.88/0.73 0.88/0.85 0.84/0.84 0.93/0.64 0.87/0.87 0.80/0.80 0.85/0.81

hepatitis  0.80/0.64 0.81/0.61 0.81/0.60 0.81/0.68 0.83/0.75 0.79/0.59 0.83/0.55
horse colic 0.70/0.48 0.69/0.60 0.69/0.60 0.72/0.61 0.70/0.63 0.69/0.59 0.80/0.56

iris 0.80/0.75 0.80/0.61 0.80/0.61 0.79/0.67 0.92/0.86 0.79/0.67 0.96/0.53
led? 0.40/0.44 0.33/0.32 0.33/0.32 0.50/0.19 0.37/0.36 0.23/0.22 0.43/0.42
mushroom  0.82/0.76 0.82/0.79 0.83/0.79 0.85/0.70 0.87/0.84 0.78/0.75 0.81/0.00
nursery 0.45/0.44 0.45/0.44 0.45/0.44 0.45/0.44 0.42/0.41 0.45/0.44 0.58/0.53
page blocks 0.82/0.35 0.82/0.46 0.84/0.43 0.78/0.33 0.80/0.51 0.83/0.51 0.80/0.74
pima 0.70/0.43 0.68/0.49 0.68/0.48 0.69/0.44 0.68/0.61 0.67/0.45 0.77/0.73
wine 0.66/0.40 0.69/0.57 0.68/0.56 0.67/0.49 0.84/0.77 0.64/0.50 0.88/0.66
average 0.72/0.563 0.71/0.58 0.71/0.57 0.73/0.53 0.74/0.67 0.68/0.56 0.78/0.65

to generalize well (i.e. it is less likely to overfit). Almost the same quality of
factors, but under unsupervised settings, were observed in[4].

4.2 Factors As Ensemble of Classifiers

The modern state-of-the-art classifiers, e.g., Random Forests, Multilayer Net-
works, Nearest Neighbour classifiers, are comprised of a set single classifiers,
i.e. single classifiers make ensembles. In this section we examine a set of factor-
classifiers as an ensemble and evaluate its accuracy.

It should be noticed that some factor sets are incomplete, in other words, they
do not contain factors for several classes. It is caused by unbalanced training sets,
where some classes contain only few objects. Here we examine the datasets where
there are enough factors for every class, namely iris, mushroom, pima and wine
datasets. We study both rule-based and similarity-based ensembles.

Rule-based Ensemble As it was mentioned in Section 3.1 the responses of
classifiers can be taken into account in several ways. We focus on two strategies,
where the responses of all voted classifiers or the best one are considered, we
call them “all-votes” and “best-vote”, respectively. For a rule-based ensemble of
factor-classifiers C = {(f;,c) | 7 = 1,...,k}, where k is the number of factors,
the class label is assigned to object g as follows:

_ g
all-votes-class(g,C) = arg max Z wip o

cey
(fi,e)eC
Bi_-g=B,_

best-vote-cl ,C) = g5
est-vote-class(g,C) argmax (f?,lg}éc Wi, o
B;_-g=B,_
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Table 3. The average accuracy of classifier ensembles computed on iris, mushroom,
pima and wine datasets. The best values are highlighted in bold.

all-votes best-vote
precision accuracy precision accuracy
iris 0.84/0.82 0.84/0.82 0.84/0.82 0.84/0.82
mushroom 0.93/0.93 0.89/0.89 0.99/0.99 0.88/0.88
pima 0.66/0.66 0.67/0.66 0.72/0.70 0.73/0.73
wine 0.77/0.75 0.76/0.75 0.79/0.75 0.76/0.75

average 0.80/0.79 0.79/0.78 0.83/0.81 0.80/0.79

The results of the experiments, given in Table 3, show that the best accuracy
is achieved for precision-weighed votes. According to the examined datasets,
the “best-vote” scheme (where the response of the best classifier is considered)
provides the best results.

5 Conclusion

In this paper we examine the factors computed on unlabeled data under super-
vised settings. We provided an experimental justification that in case of factors
the data explanation problem is closely related to the class explanation prob-
lem, i.e. a factor is able to explain specificity of a particular (sub)class. Based
on the results of the supervised factor evaluation we propose several models of
factor-based ensembles of classifiers. We show that factor-based classifiers can
achieve accuracy comparable to the state-of-the-art ensembles of classifiers.

An important direction of further work is to study factors computed under
supervised settings for each class separately rather than for the whole dataset.
Incorporating precision or accuracy to a BMF objective might improve accuracy
of the model as well as provide a deeper insight on a class structure.
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