
HAL Id: hal-02162928
https://hal.science/hal-02162928

Submitted on 23 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Coupling FCA and MDL in Pattern Mining
Tatiana Makhalova, Sergei O. Kuznetsov, Amedeo Napoli

To cite this version:
Tatiana Makhalova, Sergei O. Kuznetsov, Amedeo Napoli. On Coupling FCA and MDL in Pat-
tern Mining. ICFCA 2019 - 15th International Conference on Formal Concept Analysis, Jun 2019,
Frankfurt, Germany. pp.332-340. �hal-02162928�

https://hal.science/hal-02162928
https://hal.archives-ouvertes.fr

On Coupling FCA and MDL in Pattern Mining

Tatiana Makhalova1,2, Sergei O. Kuznetsov1, and Amedeo Napoli2

1 National Research University Higher School of Economics, Moscow, Russia
2 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
tpmakhalova@hse.ru, skuznetsov@hse.ru, amedeo.napoli@loria.fr

Abstract. Pattern Mining is a well-studied field in Data Mining and
Machine Learning. The modern methods are based on dynamically up-
dating models, among which MDL-based ones ensure high-quality pat-
tern sets. Formal concepts also characterize patterns in a condensed form.
In this paper we study MDL-based algorithm called Krimp in FCA set-
tings and propose a modified version that benefits from FCA and relies
on probabilistic assumptions that underlie MDL. We provide an exper-
imental proof that the proposed approach improves quality of pattern
sets generated by Krimp.

1 Introduction

Pattern Mining (PM) has an important place in Data Mining (DM) and Knowl-
edge Discovery (KD). One main concern of PM is to discover something interest-
ing in a pattern space that is exponentially large w.r.t. the size of the dataset.
“Interestingness” can be defined as generalities or specificities underlying the
data, (dis)accordance to user hypotheses, etc. One distinguishes static and dy-
namic approaches for PM [1].

The static approaches envelop a large number of interestingness measures [9].
The patterns are mined under non-changeable assumptions about interesting-
ness. For example, in frequent PM, one assumes that all the patterns having
support greater than a user-specified threshold are interesting. Other popular
measures work under independence [2], randomization models [8] or other con-
straints [4, 13]. The main drawbacks of the static approaches are (i) pattern
redundancy, i.e., the discovered pattern set contains a lot of similar patterns,
and (ii) subjectiveness, i.e., it is often not easy to provide explanation or justi-
fication about using one measure rather than some others.

Mining with interestingness measures addresses a traditional question of PM,
i.e., finding all the patterns that satisfy some given constraints. By contrast, in [1]
(Chapter 8), it is argued that one should ask for a small (easily interpretable) and
non-redundant (with high diversity) set of interesting patterns. This is precisely
what dynamic approaches to PM are aimed at.

A dynamic approach implies taking into account initial assumptions, e.g.,
background knowledge, and building progressively a suitable “model”, i.e., a
pattern set. Following this way, the mining protocol starts with a general model,

possibly very simple, which is then iteratively enriched with new extracted in-
formation. A lot of existing dynamic approaches are based on Minimum De-
scription Length (MDL) principle which allows one to select patterns compress-
ing the dataset at the most [11, 12, 14]. MDL has important properties: (i) it
ensures lossless compression, i.e., the encoded and decoded data are guaran-
teed to be the same; (ii) it does not concern itself with materialized codes, the
compression is means for model selection rather than compressors for reduc-
ing the amount of bits. In PM, a model is a set of patterns. The best pattern
set H among sets of patterns H is one that minimizes the description length
L(H,D) = L(H) + L(D|H), where L(H) is the length, in bits, of the model
H ∈ H and L(D|H) is the description length, in bits, of the data D encoded
by the model. This version is called two-part MDL and is most appropriate for
model selection [6].

In this paper we consider transactional (binary) datasets and propose an
MDL-based approach for mining a small set of closed itemsets. This approach
relies on Krimp [14], where both the pattern candidate set and code length
function are revised to allow for a more natural reasoning on the description
length from a probabilistic perspective. By contrast to the existing MDL-based
approaches to PM [10, 11, 15], our method does not involve any sampling tech-
niques and iterative adjustments of probability estimates. It relies on “likeliness”
of co-occurrence of attributes under the independence model. We give an exper-
imental proof that the proposed method returns a small set of non-redundant
patterns that describe a big portion of data.

The paper is organized as follows. Section 2 introduces Krimp, the seminal
algorithm for PM. In Section 3 we discuss Krimp from a probabilistic perspective
and propose its modified version where patterns are formal concepts. Section 4
provides an experimental justification that the proposed approach improves qual-
ity of pattern sets. In Section 5 we conclude and give directions of future work.

2 Krimp: An Example of Pattern Mining with MDL

In Krimp [14], model H is a two-column code table CT , itemsets and their asso-
ciated prefix codes are arranged in the left- and right-hand columns, respectively.
The order of itemsets is important. The initial code table contains only singleton
patterns and is called standard code table.

A cover function cover(CT, Ig) encodes a set of items Ig of object g and
returns a set of mutually disjoint itemsets S ⊆ CT , such that ∪I∈SI = Ig. In
Krimp cover implemented under a greedy strategy. Items Ig are initialized as
uncovered and denoted by Iu. Starting from the top-itemset Ii of CT the cover
function tries to cover uncovered items Iu. If Ii ⊆ Iu then Ii is appended to S
and Iu = Iu \ Ii. Once Iu is empty, cover returns S. The probability distribution
for I ∈ CT is given by

P (I) =
usage(I)∑

J∈CT usage(J)
, (1)

where usage(I) = |{g ∈ G | I ∈ cover(CT, Ig)} |. We call the probability esti-
mates given in Formula 1 usage-based estimates. The length of I ∈ CT is com-
puted with the Shannon codes, i.e., length(I) = − logP (I).

The patterns being added to CT are chosen from a candidate set. The can-
didate set is a subset of frequent (closed) itemsets that are ordered w.r.t. their
frequencies, lengths and lexicographically (this order is called standard). At each
iteration a non-singleton itemset is considered as a candidate to CT . It is added
to CT if it allows for a smaller encoding length, otherwise it is removed from
the code table and candidate set.

The two-part description length of dataset D encoded with CT is given by

L(D,CT) = L(CT |D) + L(D|CT), (2)

where L(CT |D) is the length of the code table CT computed on dataset D and
L(D | CT) is the length of D encoded with CT . These values are given by

L(D|CT) =
∑
g∈D

∑
I∈cover(CT,Ig)

length(I) = −
∑

I∈CT

usage(I) logP (I) (3)

L(CT |D) =
∑

I∈CT

length(I) = −
∑

I∈CT

logP (I).

L(D|CT) is the negative log-likelihood of data and L(CT |D) is the negative
log-likelihood of a model CT . The code table is filled up in a greedy manner.
Initially, all items in D are set as uncovered.

Example. An example of Krimp-based PM is given in Figure 1. The candidate
set (CS) is closed itemsets with frequency threshold 0.25 in the standard order.
At Step 1 top-ranked pattern ac is used to cover objects g1, g4 and g5, the
usage of single attributes a and c decreases by 3 (to 0 and 1, respectively). ac is
accepted for CT , since adding it to CT allows for a shorter description length
(Formula 2). At Step 2 de is also added to CT . At Step 3 the last candidate
bc is examined. It can cover only object g2, that does not minimize L(D,CT),
thus, bc is discarded. The subset of MDL-optimal patterns is {ac, de}.

Dataset

g1 abc
g2 bcde
g3 de
g4 acde
g5 ac

CS

ac
de
bc

CT P(X)

c 4/15
a 3/15
d 3/15
e 3/15
b 2/15

Covering

(a)(b)(c)
(b)(c)(d)(e)
(d)(e)
(a)(c)(d)(e)
(a)(c)

Initial state.

CT P(X)

ac 3/12
d, e 3/12
b 2/12
c 1/12
a 0

Covering

(ac)(b)
(b)(c)(d)(e)
(d)(e)
(ac)(d)(e)
(ac)

Step 1. ac is added.

CT P(X)

ac 3/9
de 3/9
b 2/9
c 1/9

a, d, e 0

Covering

(ac)(b)
(b)(c)(de)
(de)
(ac)(de)
(ac)

Step 3. bc is discarded.

Fig. 1. Some stages of the Krimp algorithm. “Covering” tables show the dataset with
covering by itemsets from the corresponding code table. For CT s we show left-hand
columns. Probability P (X) is used to compute code lengths.

3 Krimp in FCA

3.1 Motivation

In [14], it was noticed that “for datasets with little noise the closed frequent
pattern set can be much smaller and faster to mine and process”, i.e., closed
itemsets in Krimp provide better compression than arbitrary ones. However in
practice, datasets are usually noisy and the number of formal concepts increases
exponentially with the size of the dataset and noise rate. In this study propose to
use Krimp in FCA settings to benefit better compression by concepts (see basic
notions of FCA in [5]). We consider Krimp from a probabilistic perspective to
make it more suitable for compression with concepts even for real-world noisy
data. We illustrate weaknesses of the original Krimp in FCA settings by means
of a small example.

Example. The best pattern set covers a big portion of data by a small number of
patterns having a small overlapping area. A dataset composed of two patterns
is given in Figure 2. Top-ranked frequent itemsets with the threshold 0.4 in
the standard order are cd, acd, cdf, ac, ad, cf , df , abcd, abc, abd, ab, bc,
bd, cdef, cde, etc. The Kripm-based covering with the given list of candidates
contains an extra pattern cd, see Figure 2, (b). The set of closed candidates
(they are highlighted in bold) is much smaller, but since only disjoint patterns
are permitted the major portion of data remains uncovered, see Figure 2, (c).
For closed itemsets with frequency in range [0.2, 0.4] we get “true” patterns, see
Figure 2, (d). However, according to the model, pattern abcd is more important
(interesting) than cdef , since it has higher usage. It is a side effect of the greedy
strategy rather than capture of the regularity underlying the data.

The example shows that closed itemsets provide more condensed data repre-
sentation, however, PM with Krimp is affected by heuristics. The latter hampers
revealing true patterns underlying the data. In this section we address the fol-
lowing questions: (i) Can we make Krimp less affected by heuristics? (ii) Can we
further reduce the number of closed patterns and what is the most suitable way
to do that? We study these questions in Sections 3.2 and 3.3, respectively.

3.2 Probability Estimates

Replacing frequency by usage in Formula 1 allows for cutting the sum in the
denominator and increases the probability of the top-ranked patterns in CT .
Put it differently, usage-based estimates favor the frequent patterns that bring
“new information” to CT . However, the estimates are affected by the greedy
cover strategy and do not always capture true data structure, e.g., an “artifi-
cial” splitting of an itemset into smaller patterns is given in Figure 2, (b) and
assignment of different lengths to itemsets caused by heuristics and the lexico-
graphical order is given in Figure 2, (d).

Replacing the usage in Formula 1 by frequency allows us to get rid of the bias
introduced by the greedy strategy, but at the same time that increases the total

a b c d e f

g1 ××××
g2 ×××× ×
g3 ××××
g4 ××××××
g5 ××××
g6 × ××××
g7 ××××
g8 × ×
g9 ×
g10× ×

(a)

a b c d e f

g1 ××××
g2 ×××× ×
g3 ××××
g4 ××××××
g5 ××××
g6 × ××××
g7 ××××
g8 × ×
g9 ×
g10× ×

(b)

a b c d e f

g1 ××××
g2 ×××× ×
g3 ××××
g4 ××××××
g5 ××××
g6 × ××××
g7 ××××
g8 × ×
g9 ×
g10× ×

(c)

a b c d e f

g1 ××××
g2 ×××× ×
g3 ××××
g4 ××××××
g5 ××××
g6 × ××××
g7 ××××
g8 × ×
g9 ×
g10× ×

(d)

a b c d e f

g1 ××××
g2 ×××× ×
g3 ××××
g4 ××××××
g5 ××××
g6 × ××××
g7 ××××
g8 × ×
g9 ×
g10× ×

(e)

Fig. 2. Formal context and its coverings. The best data covering w.r.t. the number
of patterns and covering rate is given in (a). The Krimp-based coverings are shown
in (b)-(d): covering by frequent itemsets, fr ≥ 0.4 (b), by closed frequent itemsets
fr ≥ 0.4 (c), by closed frequent itemsets, fr ∈ [0.4, 0.6] (d). Subfigure (e) shows the
covering by frequent itemsets that overlap.

length of the model and makes frequent patterns less probable. Nevertheless, this
estimates more intuitive and resistant to side effects caused by heuristics. We call
these estimates frequency-based estimates. Using these estimates is equivalent to
covering with overlaps. Permitting patterns to overlap has a positive impact
since it does not entail an artificial splitting of patterns.

Example. Let us demonstrate the benefits of frequency-based estimates by means
of the running example. We use the same approach as before, but now we permit
patterns to overlap and replace usage with frequency in Formula 1. Covering
with closed itemsets of frequency between [0.3, 0.6] gives us a pattern set shown
in Figure 2 (a) with correct lengths (compare with (d)). Covering by frequent
closed itemsets with frequency threshold fr ≥ 0.4 is given in Figure 2, (e). Being
overlapped with cd, “true” itemsets abcd and cdef are in the code table, but the
pattern set is redundant (it contains an extra pattern cd). Thus, the proposed
estimates are less affected by heuristics and are able to identify “true” patterns.

3.3 New Approach for Computing Candidates to Code Table

In this section we propose a new approach for candidate computing that complies
with the independent pattern model (analogously to the independent attribute
model).

The cover function cover(CT, Ig) returns a set of patterns Ii1 ∪ . . .∪Iik = Ig.
The length of the object g is given by length(g) =

∑
j=i1,...,ik

length(Ij) =
−
∑

j=i1,...,ik
logP (Ij). It means that under the given model object g is observed

with probability 2−length(g) =
∏

j=i1,...,ik
P (Ij). The probability is computed

under the independent pattern model. We call an itemset I likely-occurring (LO)
if ∃Ir ⊂ I, such that P (I \ Ir)P (Ir) < P (I), i.e., itemsets Ir and I \ Ir are
more likely occur together in I than separately. Consistent with this reasoning
we introduce a tree-based depth-first algorithm that sequentially grows closed

itemsets (concepts). It is closely related to FP-trees [7], however it grows trees
in an attribute-wise manner (while in the FP-Growth algorithm transactions are
added sequentially to grow a tree). Another important difference is an additional
“likely-occurring” constraint on adding / updating nodes instead of a frequency
threshold.

The basic idea is the following. Input of the algorithm is a dataset, output
is a subset of closed likely-occurring itemsets. At the beginning, the attributes
are ordered in the frequency-descending order. At each iteration an attribute
is added to a tree. An attribute may extend the label of the current node, be
added as a new node to the tree, or be ignored. An attribute m extends label
I of node n, if each object that shares attributes of the node n has attribute
m. Otherwise we check if itemset I and m are likely to appear together, i.e.,
P (I)P ({m}) < P (I ∪ {m}), and we add a node labeled by I ∪ {m} if it is the
case. The computed tree consists of likely-occurring closed itemsets.

Example. Let us consider how a tree is growing using the dataset from Figure 2.
Attributes are ordered in the frequency-descending order and lexicographically,
i.e., c, d, a, f , b, e. The iteration when a is added to the tree is given in Figure 3.
We start from the root and add a new child node labeled by I ∪ {m} to the
node labeled by I, if the new node satisfies the LO-condition. We stop traversal
towards to leafs if the parent node labeled I and attribute m does not satisfy
the LO-condition.

c

cd

cda

cdaf

cdf

f

The sequence of the tree updates:

adding attribute a
P (cd)P (a) = 0.42 < 0.50 = P (cda)→ create node cda

adding attribute f
P (cda)P (f) = 0.35 < 0.40 = P (cdaf)→ create node cdaf
P (cd)P (f) = 0.47 < 0.50 = P (cdf)→ create node cdf
create node f

Fig. 3. An intermediate step of tree building. Attributes a and f are added to a tree
built on attributes c and d.

4 Experiments

We use the discretized datasets from LUCS-KDD repository [3], their parame-
ters are given in Table 1. We compare pattern sets computed by Krimp, where
candidate sets are frequent closed patterns with usage-based estimates, and the
proposed approach, where the candidate set is likely-occurring concepts with
frequency-based estimates (LOF). Pattern sets are compared following the over-
lapping strategy, i.e., we take the patterns and cover objects enabling the pat-
terns to overlap. For pattern sets we study the following characteristics.

The size of a candidate set, i.e., the number of closed (#FC) and LO (#LO)
closed itemsets for Krimp and the proposed approach, respectively. The candi-
date set size for the proposed approach is much smaller. More than that it does
not require any thresholds.

The code table size, i.e., the number of non-singleton/singleton patterns.
Small code tables are preferable. Non-singleton patterns (NS) are added from the
candidate set, singleton patterns (S) are used to cover data fragments uncovered
by NS-patterns. A small number of S-patterns refers to good “descriptiveness” of
NS-patterns. The code tables computed using the proposed approach are smaller,
79 vs 51 for NS-patterns and 35 vs 30 for S-patterns, on average.

Pattern shape. Under shape of a pattern we mean its length, i.e., the number
of attributes, and its average frequency. LOF patterns are shorter on average
(5,16 vs 7,09) and more frequent (0,15 vs 0,10) than Krimp-selected ones.

Overlapping rate and rate of uncovered cells. Overlapping rate is the average
number of NS-patterns that cover an item (cell) in a dataset. Non-redundant
pattern sets have overlapping rate close to 1. The rate of uncovered cells, i.e.,
the rate of cells that are not covered by NS-patterns characterizes how well
patterns describe the dataset, the uncovered cell rate close to 0 is preferable. It
is important to check these values in a pair, since overlapping rate about 1 does
not justify high quality of a pattern set. Krimp- and LOF-generated pattern sets
on average have almost the same rate of uncovered cells, however, the overlapping
rate of LOF is smaller, that allows us to conclude that LOF-pattern sets have
better quality in terms of “descriptiveness”. More than that, LOF pattern sets
cover the same portion of data with a smaller number of patterns (see #NS).

Table 1. The average values of characteristics of pattern sets following the overlapping
covering strategy.

dataset size den. #FC #LO
CT size. #NS/#S Overlapping Uncovered Avg NS freq. Avg pat.len.
Krimp LOF Krimp LOF Krimp LOF Krimp LOF Krimp LOF

anneal 898×71 0.20 9 611 1 204 83/58 52/38 2.39 2.90 0.12 0.05 0.03 0.14 11.83 6.67
breast 699×16 0.64 641 74 24/10 7/9 1.56 2.14 0.03 0.10 0.07 0.48 9.04 5.71
carEv 1728×25 0.29 12 638 1 030 94/5 36/4 1.47 1.04 0.01 0.04 0.04 0.08 3.47 2.00
ecoli 327×29 0.29 694 77 25/24 16/15 2.88 1.66 0.10 0.09 0.14 0.19 6.08 3.75
heartDis 303×50 0.29 36 738 1 683 54/45 48/37 3.27 2.29 0.13 0.11 0.2 0.13 5.09 5.38
hepat. 155×52 0.36 199 981 7 716 44/48 71/35 2.40 3.43 0.13 0.10 0.20 0.12 5.59 8.03
horseCol 368×83 0.21 228 477 30 626 101/78 140/72 2.58 2.41 0.19 0.12 0.11 0.07 3.92 5.46
iris 150×19 0.25 162 43 13/9 11/15 1.39 1.10 0.17 0.26 0.11 0.11 3.92 2.82
led7 3200×24 0.50 7 037 150 152/16 11/14 2.33 1.48 0.01 0.17 0.03 0.32 6.80 2.55
mush 8124×90 0.25 186 331 8 046 211/47 103/55 1.00 3.89 0.14 0.05 0.00 0.10 19.53 10.84
pageBl 5473×44 0.26 994 68 45/30 28/15 2.49 1.38 0.00 0.11 0.10 0.06 10.27 6.79
pima 768×38 0.22 3 203 202 50/34 32/26 5.53 1.76 0.04 0.13 0.20 0.08 5.86 4.28
ticTacToe 958×29 0.33 59 503 1 298 160/21 47/27 2.89 1.43 0.05 0.13 0.07 0.11 4.02 2.55
wine 178×68 0.20 14 554 4 757 52/65 115/55 1.91 2.21 0.29 0.12 0.10 0.05 3.90 5.43
avg 1 666×46 0.31 54 326 4 070 79/35 51/30 2.43 2.08 0.10 0.11 0.10 0.15 7.09 5.16

5 Conclusion

In this paper we consider how MDL principle can be applied in FCA settings. We
consider Krimp algorithm, that is an MDL-based approach for Pattern Mining,

and study it from the probabilistic point of view. Relying on the probabilistic
interpretation of MDL we propose an algorithm for generating a subset of closed
itemsets (that compose a pattern search space) and new probability estimates
for patterns that are used to compute pattern code length. The experiments
show that the proposed approach allows for a smaller set of patterns that are
less redundant than Krimp-based generated ones. The modified estimates of
probability permit patterns to overlap and are less affected by the greedy cover
strategy used to build a pattern set. The encoding function can be further im-
proved by introducing an error code function for singleton patterns with low
usage and more complex constraints on generating candidates.

Acknowledgment

The work was supported by the Russian Science Foundation under grant 17-
11-01294 and performed at National Research University Higher School of Eco-
nomics, Moscow, Russia.

References

1. Aggarwal, C.C., Han, J.: Frequent pattern mining. Springer (2014)
2. Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: Generalizing asso-

ciation rules to correlations. In: ACM Sigmod Record. vol. 26, pp. 265–276 (1997)
3. Coenen, F.: The lucs-kdd discretised/normalised arm and carm data library.

Department of Computer Science, The University of Liverpool, UK (2003),
http://www.csc.liv.ac.uk/ frans/KDD/Software/LUCS KDD DN

4. Gallo, A., De Bie, T., Cristianini, N.: Mini: Mining informative non-redundant
itemsets. In: PKDD. pp. 438–445. Springer (2007)

5. Ganter, B., Wille, R.: In: Formal Concept Analysis: Logical Foundations. Springer
Verlag Berlin, RFA (1999)

6. Grünwald, P.D.: The minimum description length principle. MIT press (2007)
7. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.

In: ACM sigmod record. vol. 29, pp. 1–12. ACM (2000)
8. Hanhijärvi, S., Ojala, M., Vuokko, N., Puolamäki, K., Tatti, N., Mannila, H.: Tell

me something i don’t know: randomization strategies for iterative data mining. In:
Proceedings of the 15th ACM SIGKDD. pp. 379–388. ACM (2009)

9. Kuznetsov, S.O., Makhalova, T.: On interestingness measures of formal concepts.
Information Sciences 442-443, 202 – 219 (2018)

10. Mampaey, M., Vreeken, J., Tatti, N.: Summarizing data succinctly with the most
informative itemsets. TKDD 6(4), 16 (2012)

11. Siebes, A., Kersten, R.: A structure function for transaction data. In: Proceedings
of SDM. pp. 558–569. SIAM (2011)

12. Smets, K., Vreeken, J.: Slim: Directly mining descriptive patterns. In: Proceedings
of SDM. pp. 236–247. SIAM (2012)

13. Tatti, N.: Maximum entropy based significance of itemsets. Knowledge and Infor-
mation Systems 17(1), 57–77 (2008)

14. Vreeken, J., Van Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress.
Data Mining and Knowledge Discovery 23(1), 169–214 (2011)

15. Wang, C., Parthasarathy, S.: Summarizing itemset patterns using probabilistic
models. In: Proceedings of the 12th ACM SIGKDD. pp. 730–735. ACM (2006)

