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Abstract

Pattern Mining (PM) has a prominent place in Data Science and finds its application in
a wide range of domains. To avoid the exponential explosion of patterns different methods
have been proposed. They are based on assumptions on interestingness and usually return
very different pattern sets. In this paper we propose to use a compression-based objective
as a well-justified and robust interestingness measure. We define the description lengths
for datasets and use the Minimum Description Length principle (MDL) to find patterns
that ensure the best compression. Our experiments show that the application of MDL to
numerical data provides a small and characteristic subsets of patterns describing data in a
compact way.

1 Introduction

Pattern Mining (PM) is an essential field in Knowledge Discovery, and a lot of Machine
Learning and Data Mining problems can be considered as its particular cases: from
clustering and classification to association rule mining and feature selection. The
presence of patterns in data makes compression valuable, since it allows for a more
compact data representation. Data Mining, in turn, aims to “compress data by
finding some structure in it” [1]. To date, apart from different indices for interesting
assessment [2], many approaches to the compression-based mining have been proposed
3, 4, 5].

Mining through compression is related to the Minimum Description Length princi-
ple (MDL), where compression is the minimization of a description length. Recently,
it was proposed to apply MDL to PM for binary and nominal data [6] and its appli-
cation to closed itemset (formal concept) mining has been studied in [7, 8]. In the
existing approaches, MDL is applied to nominal or binary data, while real-world data
are usually more complex and very often numerical for example. In this paper we
propose to apply MDL principle to numerical pattern mining.

We present a two-stage compression approach to compute numerical patterns. At
the first stage we use compression techniques to generate pre-patterns, i.e., dense
groups of similar objects in the complete attribute space. At the second stage we
compress the pre-pattern descriptions to get patterns. To do that, we minimize an
entropy-based description length defined on the intervals of attribute values.

The proposed approach is linear w.r.t. the input and output size. We offer an
experimental proof that MDL can be used to find a set of diverse, non-redundant and
interesting numerical patterns with short (lossless) descriptions.



The paper is organized as follows. Section 2 provides the basic notions used
in this paper and gives the general view on the studied problem. We use Pattern
Structures to handle the compressing data, the basics are given in Section 2.1. In
Section 2.2 we discuss why the problem of numerical PM is harder than clustering
and nominal or binary PM. We briefly recall the main notions of MDL in Section 2.3.
In Section 3 we describe the proposed approach: Sections 3.1 and 3.2 present the
pre-pattern and numerical pattern mining principles, respectively. In Section 4 we
give the evaluation of the proposed approach. We focus on pattern characteristics
rather than the compression rate to prove that the generated patterns not only ensure
a good compression but also ease interpretation of the results and provide meaningful
patterns. In Section 5 we conclude and give the directions of future work.

2 Pattern Mining: Basics

In this section we introduce the formalism used to handle pre- and patterns and
discuss why the problem of numerical PM is more difficult than clustering and
boolean/nominal PM. We also give an outline of MDL.

2.1 Interval Pattern Structures

When dealing with numerical patterns, we should chose how patterns will be repre-
sented, e.g., prototypes (mean and standard deviation), conjunctions of restrictions
over the numerical attributes (intervals), etc. In our study we choose an interval-based
pattern representation called Interval Pattern Structures (IPS).

Pattern Structures [9] is the generalization of Formal Concept Analysis (FCA) [10].
FCA is an applied lattice theory that relies on smart technique for enumerating the
pattern search space and, generally, focus on compressed collections of closed patterns
to avoid redundancy. It deals with binary data. Pattern Structures handle more
complex data, e.g., numerical one, graphs, sequences, etc. Below, we briefly list the
basic notion of TIPS, the particular type of PS that deals with numerical data [11].

A pattern structure is defined as a triple (G, (D, M), 0), where G is a set of objects,
(D,M) is a complete meet-semilattice of descriptions given in an |M|-dimensional at-
tribute space and mapping 6 : G — D associates each object with its description.
In the IPS settings an object g € G is described by a vector of intervals d € D,
d = ([li;ri)ieqrayye With L7 € Rand I; <7y In (D, 1) the similarity operator I
is applied to object descriptions d; = <[ll-1,ri1]>i€{1w|M‘} and dy = ([l?,r?])ie{ly'..7‘M|},

dy,dy € D and returns the convex hull given by diMdy = ([min(l}, (?), max(r}, r2)]),
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The Galois connection between (P(G), C) and (D, M) is defined as follows:
A = Myead (g) for ACG; d”:={g€G|dCd(g)} ford e D,

where P(G) is a power set of objects G. A" returns the description common for all
objects from A and d" returns the set of objects whose description subsumes d. The
patterns are partially ordered w.r.t. the subsumption order C, i.e., Ve, d € D, c E d
S celd=c.
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Figure 1: Numerical context and pattern concepts computed on it.

A pair (A, d) for which A = d and d© = A is called pattern concept, where
description d is a pattern intent and is common for all objects in A, A is a pattern
extent and is a maximal set of objects that fit to description d.

In this study we differentiate pattern intents from patterns. A pattern intent
contains intervals of all attributes (i.e., defined in the complete attribute set), while
a pattern is not necessary to be defined in a complete attribute space. For the sake
of convenience, we indicate explicitly to which attribute an interval belongs to when
it is not clear.

Example. Let us consider a toy numeric context and the corresponding pattern
structure given on Figure 1, (a) and (b), respectively. The most general concepts
are on the top of the pattern structure, they are described by the largest intervals.
The pattern intents are vectors of the minimal intervals that include all objects from
the pattern extent. For example, a subset of objects {gs3, 94, g5} is described by
the following tuple of intervals: ([3,5],[5,6],[1,5]). A single interval [1,2] is the
descriptor of 2 objects {g1, g2}, the pattern intent for {g1,¢2} is ([1,2],[5,7],[1, 1]).
As it can been seen from the example, even for a tiny dataset the number of pattern
concepts is quite large. The number of patterns, i.e., fragments of pattern intents, is

even much higher. Further we consider this problem from the PM perspective.

2.2 Search Space for Pattern Mining

Clustering is aimed to search subsets of similar objects, thus the search space for the
problem is of the size 2/¢l. In binary pattern mining the number of closed itemsets
(formal concepts) is at most min(2M! 2I¢1) [12], it grows exponentially w.r.t. the
size of a formal context, i.e., the number of objects in G and attributes in M. For
numerical PM, the search space even larger, it is at most 2/¢*IMI since to compute
borders of intervals we need to find subsets of objects A C G (the search space is of
the size 2/°!) and a pattern is a subset of intervals of A” (the search space is of the size



21M1y " Hence, the numerical PM implies the growth of the already exponential-sized
search space by an order of magnitude w.r.t. clustering and boolean PM.

2.3 MDL principle

Minimum Description Length principle (MDL) reflects the widely accepted idea that
the best data models provide the best data compression [13]. This belief is related
to “Occam’s razor” and has given rise to several theories and approaches in Com-
puter Science, e.g., Kolmogorov complexity [14], Minimum Message Length [15], Kol-
mogorov’s minimal sufficient statistic [16], etc.

In this study we propose to use a two-stage compression for numerical PM. At the
first stage (Section 3.1) we compute pre-patterns, we use a description length that
favors dense groups of similar objects. At the second stage (Section 3.2) we compute
specific descriptions of the pre-patterns based on the entropy of intervals and take
into account the description length of the pre-patterns (from the previous stage).

3 Numerical Pattern Mining: Two-stage Compression

In our approach we mine patterns in two stages: we compress data in the complete
attribute space and then we compress the obtained description to get patterns. Let
us consider in details these stages.

3.1 Pre-pattern Computing: Compression of Groups of Similar Objects

The goal of the first stage is to reduce search space for further pattern mining. Here,
we compress a dataset by replacing dense groups of similar objects by their shared
description, i.e., we compute those pattern concepts that ensure the best compression.
The description length to be minimized is

n= 3 a0l "

. | Al2
9i»95 €AIF£]

where || - ||2 is the Euclidean distance, |A] is the size of the pattern extent (A, d).

We use a greedy strategy to compress dataset, starting from the smallest pattern
concepts, we use 2~ and " to find closed descriptions. At each step we compute
more general pattern concepts by merging those of them that provide the minimal
description length. If the computed pattern concept meets the requirements on the
extent size, it is accepted to be a pre-pattern.

3.2 Pattern Mining: Compression of Pre-pattern Descriptions

The computed pre-patterns, i.e., pattern concepts, are compressed to find patterns.
Each pattern concept is a pair (A,d), where A is a set of objects (pattern extent)
and d is a vector of [M| intervals of attributes, i.e., d = ([li,7i]);cryypy (Pattern
intent). A pattern is a subvector of d, i.e., ([l;,;7i]);c5. B € M, we denote it by dp.
The support of dg is a number of objects it describes, i.e., sup(d) = |d”] = |A],



({9295}, ([2,3].[6, 7], [1,1])), L1({g2, g3}) = 0.35
({91, 92,93}, ([1, 3], [5, 7], [1,1])), L1({91, g2, g3}) = 1.31,
loss ({94, 95}, ([3,5],[5,6],5,5])), L1({g4, g5}) = 0.56.

@ ¢ o ¢ (b) The chosen pre-patterns (pattern concepts) that meet
(a) The sequential the requirement ¢nin < |A| < @mas and their length by
compression Formula 1

Ly

Figure 2: The first-stage compression: the compression sequence and the results.

sup(dg) > sup(d) = |A|. At the second stage we search for the patterns (subvectors)
that minimize an entropy-based description length.

For each attribute m € M we minimize the Shannon entropy of the probability
distribution of the intervals that are used to describe objects G:

e

== Z pilog, pi, (2)
i=1

where p; = sup([l;,r:])/ Z‘JI’”1| sup([l;,r;]) is the probability of interval [l;,7;] and
1, is a set of intervals of attribute m.

Let us consider the principles of the pre-pattern compression. The pseudocode
is given in Algorithm 1. At the beginning, the set of initial attributes I;,;;(m) is
comprised of the shortest intervals [v,v] that describe single objects (line 2) and
the set of optimal intervals I,,,(m) for each attribute m € M is empty (line 3), pre-
patterns are ordered w.r.t. their lengths computed at the previous stage by Formula 1
(line 5).

The optimal intervals I,,:(m) are computed in a greedy manner, at each iteration a
new interval d,,, (that is shared description by attribute m for objects A) is examined.
In case where the replacement of initial intervals I € I, (m) such that I° C A
minimizes the description length given in Formula 2, the initial intervals are removed
and a new d,, is added to the set of optimal intervals I,,(m). We note that the
condition in line 10 is true for the initial intervals I = [I;, 7] included in the interval
Ay = [la,7a), 1€, [lr,71] C [lg,7a). This compression is performed for each attribute
separately (lines 6 - 21).

When all the intervals of pre-patterns are examined, the optimal intervals I,,:(m),
m € M are combined together, if they describe the same objects (line 22-34).

Example. Let us consider the principle of compression-based PM on an example
given in Figure 1. At the first stage we merge the objects to get pre-patterns (pattern
concepts) that minimize description length given in Formula 1. The dendrogram of
the sequential merging is given in Figure 2, (a). We set the thresholds g,,;, = 1 and
(maz = D, the pre-patterns that meet these requirements are listed in Figure 2 (b).
The second stage, i.e., the pre-pattern compression is sketched in Figure 3. The
pre-patterns (A, d) are examined in the ascending order of their lengths L;(A). At
each iteration we try to compress a pre-pattern (A,d) by minimizing the entropy-



Input: Set of pre-patterns clusters = {((A,d)) | A C G, @min < |A] < @maz} and their lengths Lq(-) (see Formula 1)
Output: Set of patterns patterns

1 foreach m € M do

2 | Lalm) « {({g})m | g € G}

5 | Lou(m) < {0)

4 end

5 rankedClusters < sort({((A,d), L1(A)) | (A,d) € clusters})
¢ foreach (A,d) € rankedClusters do

7 foreach d,, € d,m € M do

8 Ty < {0}

9 foreach I € I;,;(m) do

10 if I C A then

11 ‘ [del = Idel U I

12 end

13 end

14 Loig = Lo(Lope(m) U Lipi(m))

15 Lyew = La(Iopt(m) U (Linie(m) \ Iget) U{dm})
16 if Lpew < Log then

17 Linit(m) < Iine(m) \ Iger

18 ‘ Lope(m) <= Ly (m) U A7

19 end
20 end
21 end

22 patterns < {0}
23 foreach m € M do
24 foreach I,, € I;;i:(m) do

25 ‘ patterns < I,

26 end

27 end

28 foreach p, € patterns do

29 foreach p, € patterns do

30 if p; # py and pf = p5 then

31 ‘ patterns = (p1, pa) U patterns \ {p1,p2}
32 end

33 end

34 end

35 return patterns

Algorithm 1: MDL-based pattern computing

based description length separately for each attribute m;, i € {1,2,3}. The optimal
intervals (column “Intervals”) and the object values covered by the optimal intervals
(column “Covering”) are highlighted in red. As it can be seen, at the first iteration
initial intervals [2, 2], [3, 3] of attribute m; and [6, 6], [7, 7] of attribute my are replaced
by the optimal ones by [2,3],, and [6,7], . respectively.

When all the pre-pattern descriptions are examined, we get the following set of
optimal intervals: [2, 3], [6, T]my, [1, 1]ms and [5, 5], We only need to combine them
to get patterns. We consider the set of objects they describe and if the sets coincide we
combine these intervals in one pattern. In our case all the intervals describe different
object sets, i.e., (2,35 = {g2,93. 94}, 6,75, = {92.93.95}, [L. 1], = {91, 92,93}
and [5, 5], = {94, g5}, thus the final set of patterns is comprised of the four single-
attribute intervals.

The proposed approach can be also considered as compression-based scaling for
numerical attributes, where instead of quantiles or intervals of equal lengths we use
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Figure 3: The second stage (pre-pattern compression) of PM for dataset from Figure 1.
At each iteration intervals of a candidate (the line in “Pre-pattern descriptions” column
highlighted in bold) are examined. The optimal intervals are highlighted in red as well as
fragment of dataset described by them (columns “Intervals” and “Covering”, respectively).

an entropy- and similarity-based criterion.

4 Experiments

We use real world datasets from UCI repository [17] to evaluate pattern set quality.
All datasets have class labels, i.e., they are appropriate for supervised learning. The
labels are used to evaluate the ability of the proposed approach to reveal “true”
classes of objects. The size of datasets and the number of classes are given in Table 1,
column “Parameters of datasets”.

In our study we evaluate the results from the Pattern Mining perspective rather
than the compression quality. We examine object covering, interpretability, diversity
and interestingness of pattern sets, other measures can be found in [18].

Interpretability of patterns is a subjective measure and it cannot be evaluated
formally. In this study, under interpretability we mean the ease of getting some
knowledge from patterns. We characterize the interpretability by
— the number of patterns |patterns|, a small set is easy to examine;

— the length of patterns (number of intervals), the shortest description is easy to
“explain” in words;

— the number of compressed pre-patterns, i.e., pre-patterns with a non-empty com-
pressed description, the number close to the number of classes testifies to the mean-
ingfulness of the compressed pre-patterns.

Covering rate shows how well a pattern set retains information from the original
dataset:

— object covering rate, |{p” | p € patterns}| /|G|, the value close to 1 shows that the
pattern set is able to describe most of objects, i.e., we have information about every
object;

— cell covering rate, | {(g,m) | g € p”,p € patterns,m € pn} |/(|G| - |M]), the value
close to 1 shows that the pattern set is able to describe most of cells in dataset.

Diversity shows how varied patterns are:




— overlapping rate, the average number of patterns that characterize a cell in a dataset,
for diverse patterns the value is close to 1.

Interestingess of patterns is a difficult characteristic to evaluate. Under inter-
estingness we mean the ability of patterns to distinguish hidden classes, i.e., when
all patterns have been computed, we examine the rate of classes of the objects that
correspond to a pattern :

— contrastness, mazicy, |{g | class(g) =1,g € p”}|/|[{g| g € p7}|, the rate of the
major class label in a pattern; we study average, minimal and maximal values among
pattern set patterns.

Parameters .
Dataset name of datasets Parameters of mined patterns
o2}
0 E Q 20 e 199}
;@ ij %} E g é 8 - =] % ] 75
2 = 4 = § 5 £ £ 2 £ & =z
o 2 = 2 by b . = oY 7] 7 %
Wt s g E g 2 g £ £ £ £ £
L 2 o+ £ 0B 2 2 B B G
= . — <
o] = [} = =
- T8 ¢ 8 £ 7 E
9] ) =
B0 S >
= 2 =
g
8
B
blood 748 4 2| 3,83 23 6 098 098 1,33 0,72 0,78 0,85
breast 699 9 2| 4,60 23 5 091 091 1,35 095 0,99 1,00
connectionist 208 60 2 | 43,00 129 3 1,00 086 1,00 0,554 0,57 0,61
glass 214 9 6| 5,30 53 10 092 08 1,71 043 0,67 1,00
iris 150 4 3| 2,57 18 7 1,00 094 1,54 0,77 094 1,00
mam. mass 961 5 2| 3,00 24 8 1,00 091 1,99 068 0,81 0,90
user knowledge 403 5 5| 4,33 13 3 099 091 1,00 057 0,72 098
vertebral, 2¢ 310 6 2| 4,00 24 6 097 097 1,38 051 0,72 095
wholesale, channel 440 6 21 4,11 37 9 089 0,78 164 080 0,92 0,99
wine 178 13 3| 7,00 49 7 095 083 1,42 090 0,97 1,00
average 415,15 10,77 3,31 | 7,17 37,00 6,69 0,95 0,89 1,46 0,66 0,79 0,93

Table 1: Quality of patterns for datasets.

As it can be seen from the table, the approach provides the fruitful results. The set
of patterns is usually much smaller than the size of dataset — 37 patterns for datasets
with the number of objects 415 on average. That illustrates a good compression
and ensures that patterns will be easily examined by experts. More than that, the
patterns contain quite enough attributes to ensure reasoning on them. When the
number of attributes in a dataset is more than 7, the generated patterns keep about
a half of attributes, when the attribute number is small, the patterns contain more
than a half of them, the variable rate of retained attributes ensures the patterns will
have enough attributes to find well-interpretable attribute collocations.

It should be noted, that the number of compressed pre-patterns (the pre-patterns
that include at least one pattern) is a bit bigger than to the number of “true” classes.
This (with the high values of contrastness) is indicative of the ability to identify true
classes (and subclasses) of objects.

Being quite small, the pattern set is able to describe 95% of objects on average



and cover 89% of cells. The high coverage by a small number of patterns testifies to
the high-quality compression.

The generated patterns are diverse, i.e., they describe different “data fragments”,
the average overlapping rate is 1.46. It means that every cell in dataset, that is
covered by at least one pattern, is covered only by one pattern in more than a half
of the cases.

We also emphasize that the contrastness of the pattern is high — around 0.79, the
last value shows that being computed without any information about classes, patterns
reconstruct them.

The experiments show that the proposed approach provides a good compression
and generates high-quality pattern sets with characteristics ensuring fruitful interpre-
tation by humans.

5 Conclusion

In this paper we presented a new approach to numerical Pattern Mining that returns
a small subset of patterns with short description, thus providing a compression tech-
nique. The obtained pattern sets are non-redundant, well-interpretable (i.e., small
and short) and can be used to identify in an unsupervised manner true classes of
objects.

The proposed approach can be adapted to handle more complex data, such as
sequences, trees, graphs, etc. by changing Pattern Structure descriptions and respec-
tive -operators. This extension, as well as the relationship of the proposed approach
to R-trees [19], will be the subject of further research.
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