N

N

Root systems and quotients of deformations of simple
singularities

Antoine Caradot

» To cite this version:

Antoine Caradot. Root systems and quotients of deformations of simple singularities. Journal of
Algebra, 2019, 526, pp.382-422. 10.1016/j.jalgebra.2019.02.020 . hal-02162828

HAL Id: hal-02162828
https://hal.science/hal-02162828
Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License


https://hal.science/hal-02162828
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Version of Record: https://www.sciencedirect.com/science/article/pii/S0021869319301097
Manuscript_1ab9804a6f079ec8aa787850af271e4f

Root Systems and Quotients of Deformations of Simple Singularities

Antoine Caradot

Institut Camille Jordan, Université Claude Bernard Lyon 1,
43 boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France

Abstract

In this article we study quotients of deformations of simple singularities, and attempt to characterise them using
subsystems of simple root systems. The quotient of a semiuniversal deformation of a simple singularity of inhomoge-
neous type B, (r > 2), C, (r > 3), F4 or G, by the natural symmetry of the associated Dynkin diagram is a deformation
of a simple singularity of homogeneous type X = Dy, E¢ or E7, but not semiuniversal anymore. Therefore not all
subdiagrams of X appear as singular configurations of the fibers of the deformation. We propose a conjecture for
the types of singular configurations in terms of sub-root systems of a root system of type X and prove it for types
Bz, B3, C3, F4 and G2.
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Introduction

Simple singularities have first been studied by F. Klein in [9], where he classified them as quotients of the complex
plane by the action of a finite subgroup I" of SU,. It was then showed by P. Du Val ([6]) that the exceptional divisors
of the minimal resolution of the isolated singularity of such a quotient form an arrangement of projective lines whose
dual graph is a simply-laced Dynkin diagram A(T"), and so the quotient C2/T is called a simple singularity of type
A(T). P. Slodowy extended in 1978 (and subsequently in [15] Section 6.2) the definition of a simple singularity to
the non simply-laced types by adding a second finite subgroup I'" of SU, containing I' as normal subgroup. Then
Q =T"/T acts on C?/T and this action can be lifted to the minimal resolution of the singularity and induces an action
on the exceptional divisors which corresponds to a group of automorphisms of the Dynkin diagram of C2/T".

Let @ : Xr — b/ W be the semiuniversal deformation of a simple singularity of type A(T') = Ay, (r >2), D, (r > 4)
or E¢ obtained by the construction of H. Cassens and P. Slodowy in [5], with h and W being the Cartan subalgebra and
the associated Weyl group of the simple Lie algebra g of the same type. It was shown in [4] that the automorphism
group Q of the Dynkin diagram of g acts on Xr and h/W such that « is Q-equivariant. A result of P. Slodowy then
implies that taking the restriction &® of a over the Q-fixed points of h/W leads to a semiuniversal deformation of a
simple singularity which is inhomogeneous and of the same type as the folding of the root lattice of g by Q. As a is
Q-equivariant, there is an action of Q on every fiber of @, and the quotient leads to a new morphism o, which was
shown to be a non-semiuniversal deformation of a simple singularity of homogeneous type A(T") (cf. [4]).

The aim of this article is to propose a characterisation of the types of singularities which appear in the fibers of
o2 in terms of sub-root systems of a root system of type A(I"). The special fiber ()~ (0) is a simple singularity of
type A(T"). But as a2 is not semiuniversal, all subdiagrams of the Dynkin diagram of type A(I'") cannot be found as
singular configurations of the fibers of 2. We conjecture that there exists a subset ® of simple roots of the root system
of type A(T") such that the Dynkin diagram associated to the singular configuration of any fiber of o?isa subdiagram
of the Dynkin diagram of type A(T") containing the vertices associated to ®. Furthermore, all such subdiagrams are
realised as singular configurations of some fibers of 2.

In the first section we will present the construction of semiuniversal deformations of the simple homogeneous ([5])
and inhomogeneous ([4]) singularities. In the second section we study the regularity of the fibers of @ and prove that
they are always all singular. The third and fourth sections are devoted to the main conjecture as well as its proof for
types Ba, B3, C3, Fy and G»,.

Throughout this article the base field is the complex number field C. Furthermore, a Dynkin diagram and its type
will often be designated by the same symbol A.

1. Deformations of simple singularities

1.1. Simple singularities
1.1.1. Simple singularities of type A,, D,, E¢, E7 and Eg

Let I be a finite subgroup of SU,. F. Klein showed in [9] that I" is isomorphic to either the cyclic group C, of order
n, the binary dihedral group D,, of order 4n, the binary tetrahedral group 7 of order 24, the binary octahedral group O
of order 48, or the binary icosahedral group Z of order 120, and that the quotient C2/T is a surface which injects into
C? as the zero set of a polynomial Ry € C[X, Y, Z]. Furthermore this surface presents a unique isolated singularity and
is called a simple singularity. P. Du Val then proved ([6]) that if s € C2/T is the singular point and 7 : § - C?/T is
the minimal resolution of C? /T, then the preimage of s is a union of projective lines whose intersection matrix is the
additive inverse of a Cartan matrix of type A(T') = A,, D, or E,.



r Rr Type of A(T)
C, X"+YZ Ay

D, | X(Y?-X") +7* Dyi2

T X+ Y+ 72 Es

0| X+xv’+2° E;

T X+Y3+272 Eg

Table 1: Equations and types of homogeneous simple singularities

1.1.2. Simple singularities of type B,, C,, F4 and G,
The definition of the simple singularities of inhomogeneous types is due to P. Slodowy (cf. [15] Section 6.2).

Definition 1.1. A simple singularity of type B, (r > 2), C, (r > 3), F4 or Gy is a pair (Xo,Q) with Xy a simple
singularity (in the sense of Section 1.1.1) and Q a group of automorphisms of Xy according to the following list:

Type of (Xo,Q) | Type of Xo r r’ Q
B, (r>2) Ao ¢, | D, |z)z
C,(r=3) D,y Doy | Dyory | Z[2Z

F, Eq T 0 |z)z
G, Dy D, o S3

Table 2: Definition of inhomogeneous simple singularities

In each row of this table, I" and I are finite subgroups of SU, such that Xj is a simple singularity of type A(T) (i.e.
Xo = C?/T) and T <« T”. Furthermore there is a natural action of Q = I”/T" on the singularity X,. This action lifts in a
unique way to the minimal resolution X, of Xo. As Q fixes the singular point of Xy, it will stabilise the exceptional
locus in Xy. Hence we obtain an action of Q on the dual diagram A(T") of the exceptional divisors. It turns out that
this action agrees with the automorphism group of the Dynkin diagram.

The inhomogeneous type associated to the simple singularity (Xp, Q) will be referred as A(T,T").

A simple singularity of inhomogeneous type is then a simple homogeneous singularity with a symmetry of the
Dynkin diagram. One can notice that the type of (X, Q) is the same as the type of the folding by Q of a root lattice
of the same type as X (cf. [4] Section 1.2 for details).

Remark 1.2. The type (Az,,Z[27) is the only case that appears in Table 1 but not in Table 2. This is because the
action of the symmetry group of the Dynkin diagram of type A,, fails to lift to the exceptional locus of the minimal
resolution of the associated simple singularity (cf. [4] Section 1.4.2.2).

The notion of symmetry has been added to the simple singularities, therefore it is necessary to include this sym-
metry in the definition of the deformations of singularities of type B,, C,, F4 and G, ([15] Section 2.6):



Definition 1.3. A deformation of a simple singularity (Xo, Q) is an Q-equivariant deformation of the singularity X
with a trivial action of Q on the base space.

Set 1 : X = Y a deformation of Xy. A deformation  : X' - Y’ of Xy is said to be induced from nt by a morphism
¢ :Y' > Y if there exists a morphism ® : X' — Y’ such that the following diagram is Cartesian:

X —X

v T
Y ——— Y

and

N

X —X

commutes. The condition of the first diagram being Cartesian means that X' is isomorphic to the fiber product X xyY’.
A semiuniversal deformation my : X — Y of a simple singularity (Xo,Q) is a deformation of (Xo,Q) such that any
other deformation y : X' — Y’ of (Xo, Q) is induced from ny by an Q-equivariant morphism ¢ : Y’ — Y with a uniquely
determined differential dy¢ : TyY' — T,Y.

Semiuniversal deformations of simple homogeneous and inhomogeneous singularities are unique up to isomor-
phism, which makes them ideal objects for the study of their associated singularities.

1.2. Deformations of homogeneous simple singularities

In this section we present a construction due to H. Cassens and P. Slodowy of the pullback of a semiuniversal de-
formation of a simple singularity of homogeneous type. For further details on proofs and references of the statements,
we invite the reader to look at [5].

Let T be a finite subgroup of SU,, R its regular representation, N its natural representation as a subgroup of
SU,, A(T) the associated Dynkin diagram (cf. Section 1.1.1 ), and define M(T') = (End(R) ® N)'. Then M(T) is
the representation space of a McKay quiver Q, i.e. a quiver whose vertices are the vertices of the extended Dynkin
diagram A(T"), with two arrows (one in each direction) for any edge in A(T").

The group G(I') = ([1;-o GL4 (C))/C*, with (dy, ...,d,) the dimension vector of M(T"), acts on M(I") by simul-
taneous conjugation.

Using a formula due to G. Lusztig, one can define a non-degenerate G(I")-invariant symplectic form (., .) on M(T")
that induces a moment map

Hes : M(T) — (Lie G(T'))* € @ My,(C).
i=0
We identify Lie G(T') and its dual (Lie G(T'))*.

Let Z be the dual of the center of Lie G(I"). Because the moment map is G(I')-equivariant, G(I") acts on any fiber
Ut (z) when z € Z. Hence for any z € Z, the quotient ug} (z)//G(T) is well defined. It is then proved in [5] that the
morphism

Hes (D) /G(T) — Z

is the pullback of a semiuniversal deformation of the simple singularity C?/T" by the natural morphism b — /W, with
b a Cartan subalgebra of a Lie algebra of type A(I") and W the associated Weyl group.
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1.3. Deformations of inhomogeneous simple singularities

This section is devoted to the extension conducted in [4] of the construction of Section 1.2 to the inhomogeneous
simple singularities of type B, (r >2), C, (r > 3), F4 and G,.

Let A(T") be a Dynkin diagram of type A,y (r > 2), D, (r > 4) or Eg, with I being the associated finite subgroup
of SU, (cf. Section 1.1.1). Using the previous section, one obtains the following diagram:

U @))IGT) = Xrxwd —Y s xr
a O o
VAN b/w

with @ a semiuniversal deformation of the simple singularity C2/T of type A(T'), b a Cartan subalgebra of type A(T)
and W the associated Weyl group.

Let I” be the finite subgroup of SU, such that there exists a simple singularity of inhomogeneous type A(T,T")
(cf. Definition 1.1). Then Q = I"//T" acts on the singularity Xro = @~'(0). Let us define Xrq = a~' (()/W)*) and
o = XX Our aim is to define natural actions of Q on Xr and h/W such that a becomes Q-equivariant, because if

50, using results of P. Slodowy, one can show that the restriction o : Xr.q — (5/W)® is a semiuniversal deformation
of an inhomogeneous simple singularity of type A(T,I") (cf. [4] Section 4.3.1).

In [4] it is shown that if the action of Q on M(T") is symplectic, then @ can be made into an Q-equivariant map,
and so is @. We then have the following result:

Theorem 1.4. Let M(T') be the representation space of a McKay quiver built on a Dynkin diagram of type Ay _1,
D, or Eg as explained in Section 1.2. Then there exists an action of Q = T"|T" on M(T') that is both symplectic and
induces the natural action on the singularity C?|T. This action then turns « into an Q-equivariant morphism.

The previous theorem enables us to explicitly compute semiuniversal deformations for the inhomogeneous types.
For details on these computations, see [4] Sections 4.3 and 4.4.

2. Quotients of semiuniversal deformations of inhomogeneous simples singularities

In the previous section we have seen that the morphism a® : Xro — (h/W)® is Q-invariant. Thus Q acts on each
fiber of @ and the fibers can be quotiented. Furthermore it is known that (a**)~!(0) = Xr = C?/T'. Hence the quotient
fiber is (a)~1(0)/Q = Xro/Q = (C?/T")/(I"/T) = C?/T". It is a simple singularity because I" is a finite subgroup of
SU,. Therefore the family given by the quotient map a® : Xr.o/Q — (h/W)® is a deformation of the simple singularity
C?/T" of type A(I"). We will say that the deformation a® is obtained through A(I") — A(T',T”) — A(T")-procedure.

The results obtained in [4] Sections 4.3 and 4.4 lead to the following table:

Type of &* | Type of ? | Rank of o?
B, (r>2) D, r
C, (r=3) Dy, r

Fy E; 4

G, E;

Table 3: Type and rank of o2
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Here we slightly abuse notations by saying that a deformation is of type A if it is a deformation of a simple singularity
of type A. Furthermore the rank of a deformation is the dimension of its base space.

Remark 2.1. In the case A(T,T") = Gy, one can replace the symmetry group S3 by Z[3Z. The rank of 2 remains 2,
but the type of a® becomes Eg.

Examples 2.2. o For A(T',T") = B,, the map a** is given by the projection
2
Xro = {((x,3,2), (2,0,12)) € C* x )/ W | 2* + 2% + 14 + % = xy}

a,Q

(0/W)2 = {(2,0,14) € b/ W}

with the action of Q = Z]27 =< o > on a fiber (a/Q)_l(tzi,O, ty) being o.(x,y,z) = (y,x,—z). Here t; denotes the flat
coordinate of degree i (cf. [13]). Therefore the quotient a** is given by

Xra/Q={((X,Z,W),(t2,0,13)) € C*> x b/W | Z(X> — 4Z%) + W? - 41,7% — 4(14 + %)Z =0}

p¥s
(b/W)® = {(12.0,14) € b/ W}
The map ?isa deformation of a D4-singularity and is of rank 2.
e For A(T,T") = C3, the map o is given by the projection
Xra = {((%,3,2), (2, 14,16,0)) € C3 x b/ W | 2 = xy(x +y) - By — B+ (1 + 25 4+ 12))

O’Q

(0/W)? = {(12,14,15,0) € H/ W}

with the action of Q = 7J27 =< o > on a fiber (a®)™'(t2,14,15,0) being o.(x,y,2) = (x,~x -y + %,—z). The

coordinates on h/W are once again the flat coordinates. Therefore the quotient a? is given by

Xro/Q={((X, Y, W), (12.14.15,0)) € C* x o/W | - L X5 + X¥* - W?
+Au Xt + Ap X3 + Ap X2 + AxX + AyY + Ag = 0}

a®

(b/W)® = {(12,14,16,0) € b/ W}

where the A; are polynomials in t,,t4,ts without constant terms. So the map 2 is indeed a deformation of a Dg-
singularity and is of rank 3.

For details on the computations, see [4] Section 4.4.



E. Brieskorn showed ([3]) that a semiuniversal deformation of a simple singularity of type A, (A = A, D or E) can
be constructed such that the base space is the quotient /W with [ a Cartan subalgebra of a simple Lie algebra of type
A, and W the associated Weyl group. Hence the rank of a semiuniversal deformation of a simple singularity of type
A, is r. However one notices in Table 3 that it is not true for a®. Therefore o is not a semiuniversal deformation in
any case.

We will now prove the following theorem regarding the regularity of the fibers of 2

Theorem 2.3. Let a® : Xrq — (5/W) be the semiuniversal deformation obtained in Section 1.3 of a simple singu-
larity of inhomogeneous type B, (r > 2), C, (r 2 3), F4 or G,. Then every fiber of the quotient a® : Xro/Q — (h/W)%
is singular.

Proof. In the following computations, the #;’s will always be the flat coordinates on h/W (cf. [13]), with i being the
degree. For F, and G,, we will look at the explicit equation obtained in [4] Section 4.4 and see that each fiber of a©
is indeed singular. For the general types B, and C,, another approach is needed. We will show that each fiber of a**
has at least one isolated fixed point p. If a fiber has such a point p, then there are two possibilities:

- p is singular, so a neighbourhood of p is isomorphic to C*/Z with Z a finite subgroup of SU,, because p is a
singular point in a semiuniversal deformation of a simple singularity. Thus we have dim T,(C?/Z) > dim C?/E.
Furthermore T, ((C*/Z)/Q) = T,(C*/Z)/T,(Q.p) with x the quotient map. As p is a fixed point, we ob-
tain dim T, ((C*/2)/Q) = dim T,(C*/Z) > dim C*/Z = dim (C*/Z)/Q because Q is a finite group. Hence
dim T,y ((C*/2)/Q) > dim (C*/Z)/Q, and n(p) is a singular point of (C*/Z)/Q.

- p is smooth, then the fiber has a tangent space at this point and it is isomorphic to C2. So locally around p, the
action of Q = 7Z/27 is the same as its action on C? around the origin. Hence the quotient will be isomorphic to C2/Q,
which is an A;-singularity. The quotient will then be singular.

e Type B, (r > 2). The fiber of a® above a point (1,,0,1,0, ...,15,) € (§/W)* is given by the points (x,y,z) € C3
such that 22" + Y1, fi(t2, .. 12,) 220 = xy (cf. [4] Section 4.3.6) where, for all 1 < i < 2r, f; is a polynomial such
that f;(#2(&), ...,12,(£)) = €(&) , € being the elementary symmetric polynomial of degree i and £ being a coordinate
vector on the Cartan subalgebra § of type A,,—;. The action of Q = Z/27Z =< o~ > on the fiber is given by

o.(x,y,2) = ((-1)"y, (=1)"x,~-2).

Hence a fixed point is a point p = (x, (=1)"x,0) such that x> = (=1)" (2, ....12,). As fa(ta,....t2,) = t2, we define
x=(-1)2 \/f,. Then p = (x,(~1)"x,0) is a fixed point of the fiber. It is isolated because there are at most two possible
values for x.

e Type C, (r > 3). Based on results from A. Kas and M. Schlessinger ([8]), as well as computations from [4],
the fiber of the restriction a®* of the semiuniversal deformation @ of a singularity of type D,,, above a fixed point
(t2, 14, ..., 12,,0) € (/W) has the following equation:

X"+ xy2 24 a0+ rax +By+ap=0,
with 8 and the @;’s being complex polynomials in variables 1,4, ..., f,. Here the system of flat coordinates on §h/W
is given by (12,14, ..., 12, &), Q fixes each #; and sends ¥ on —. The preceding equation is a quasi-homogeneous
polynomial with
x of degree 2,
y of degree r — 1,
z of degree r,

t; of degree i, i = 2,4,...,2r.
7



From the study of the special fiber (a*)~!(0) and the fact that the action of Q = Z/27 =< o > preserves the degree,
one can see that

o.x=x+ p(x,¥,2,t2, ..., I, ), of degree 2,

oy=-y+q(x,y,2,0,.... 1o, ), of degree r-1,

o.z=-z2+5(x,9,2,t,...,12,), of degree r,

ot =t,i=2,4,..,2r,

where p,q and s are homogeneous polynomials with respect to the degrees of x,y,z and the f;’s, and such that
(x,9,2,0,...,0) = ¢(x,9,2,0, ...,0) = 5(x,y,2,0,...,0) = 0 for any (x,y,z) € C>.

Let us fix (2, ..., £2,,0) € (5/W)* and study the fiber (a®)~! (13, ..., 12,,0) given by the equation given above.

Because x is of smallest possible degree and o> = Id, the only possibility is o.x = x. For the other variables, the
action might depend on the parity of r.

m Assume that r is even. y is of degree r — 1 which is odd, and all the others terms are of even degree. The
only possibility is thus oy = —y.
B is a polynomial of degree 2r — deg y = r + 1, which is odd. However § is a polynomial in the variables 15, ..., f5,, all
of even degree. Hence 3 = 0.

z is of degree r which is even, so 0.z = —z + Z?:o A;x' with the A;’s being polynomials in f,, ..., .. One can check that
=1
We are then looking for the fixed points of the action

o.X = X,
ag.y=-y,
gz=-2+%%, ;X
If (x,y,2) € (@®)7'(t2, ... 12, 0), then o.(x,y,2) = (x, -y, —z + Z?:o Aix') e (@)1, ..., 12, 0). Therefore the follow-
ing equation has to be verified:

r .
Xyt + (—z+ g Aix) o X T+ Lt aix+ g =0,
o X +x+Z+a X+ raix+rap+ (T ix')(~2z+ X7, ix') =0,
< (T4 Aix' ) (=27 + Yo Ax) =0

because (x,,z) € (a®) " (12, ..., 12,,0).
If ;=0 forallie{0,..., 5}, then the actionis | o.x=x,

g.y=-)Y,

oz=-1.
If there exists i € {0, ..., %} such that 4; # 0, then the equation Z;io A;x' = 0 is non-trivial in x and has therefore
at least one solution (and at most 5). Given that in (a®)"(ta, ..., 12,,0) the variable x is not constant, there exists
x such that Zf:o A;ix' # 0 and such that there exist y,z € C with (x,y,z) € (a®)7'(t2,....,t,,0). Hence we get that
z= % Zf:o Aix* # 0. So for such an x, the value of z is uniquely determined and is not zero. However, based on the

equation of (a®)~!(t,...,t2,,0), we see that if (x,y,z) is a point on the surface, then so is (x,y,~z). If a non-zero
value of z exists, a second value exists also. This contradicts the unicity of the value of z.

We have shown that the action of Q on (a®)~!(t,, ..., 12,,0) is given by



o.X =X,
oy = -y,
o=z
A fixed point is thus given by (x,0,0) with x verifying the non-trivial equation x" + a,_;x"!
fixed point exists, there are at most r of them, and they are all isolated.

+..+ax+ay=0.Soa

m Assume that r is odd. z is of degree r which is odd, and all the others terms are of even degree. The only
possibility is thus 0.z = —z.
[ is a polynomial of degree 2r — deg y = r + 1, which is even. So it is possible that 8 # 0.
y is of degree r — 1 which is even, so oy = =y + ZZ]) w;x" with the y;’s being polynomials in #,, ..., ,,. One can check
that o2y = y.
We are then looking for the fixed points of the action

o.X =X,
r=1

oy=-y+2.% X',
oz=-2.
PR
If (x,,2) € (@®) ' (t2, ..., 12, 0), then 0.(x,,2) = (x,—y + ¥, ix', —2) € (@®) 7 (ta, ..., t2,, 0). Therefore the follow-
ing equation has to be verified:

r=1 .
b rax+B(—y+ X2 wix') + g =0,

X+ x(-y+ Zz) pix')? + 22+ @y x
o Xixy+Z e+ rax+ Py +ag+ (Zi?(]) pix') (B = 2xy + xzf; uix') = 2By,
o (D) (B- 2w+ x T uix) = 2y
because (x,y,z) € (@?)7!(t2,....12,,0).

If y; = 0 for all i € {0, ..., 5 }, then 28y = 0 for all y such that (x,y,z) € (@)™ (2, ..., 12, 0). But there exists at least
one point in the surface for which y # 0. Hence 8 = 0, and the action is given by

g.X =X,
g.y=-y,
g7=—Z.

If there exists i € {0, ..., 5} such that i; # 0, we have to consider two cases: 8 =0 and 3 # 0.

IS =l =
A Assume that 8 = 0. Then x(.z 2o Mix")(=2y + Z} 2o y{x’) =0. The equation x(X,2, pix') = 0. is non-.trivial in x and
has therefore at least one solution (and at most “5-). Given that in (a®)" (12, ..., 12,,0) the variable x is not constant,

IS
there exists x such that x(3,%, px') # 0 and such that there exist y,z € C with (x,y,2) € (a®)™! (2, ..., 12,,0). Hence

we getthaty = % ZZ]) w;x* # 0. So for such an x, the value of y is uniquely determined and is not zero. However, based
on the equation of (a®)~!(t,, ..., 12,,0), we see that if (x,y,z) is a point on the surface, then so is (x,-y,z) (because
B =0). If a non-zero value of y exists, a second value exists also. This contradicts the unicity of the value of y.

A Assume that 8 # 0. We have

AR PR
(X2 Hix") (B = 2xy + x X2 pix') = 2By,
P P
< (BxXZymx)(-2y+ X2 uix') = 0.



As 3 # 0, for any x € C, there exist an infinity of (y,z) € C? such that (x,y,z) € (a®)"!(#2, ..., £2,,0). Set x € C such that

IS
x(B+xY,2, nix') # 0 (we get rid of a finite number of possible values). Set y € C such that 2xy + 8 + 0 (we get rid of
one possible value). Because of the equation of the surface, there exists z € C such that (x,y,z) € (@®)~!(ta, ..., 12,, 0).

One can then check that the point (x,y— b2y +2“ ,z) is well defined and belongs to the surface. But because of the choice

=l
of x, we know that y = % il Hix'. So for such an x, the value of y is uniquely determined. However, we have just
B+2xy

seen that (x,y,z) and (x,y— ,z) are two distinct points of the surface. This contradicts the unicity of the value of y.

We have shown that the action of Q on (a®)~!(1,, ...,15,,0) is given by

o.X = X,
oy =-y,
oz=-2.

A fixed point is thus given by (x,0,0) with x verifying the non-trivial equation x" + a,_ X' + ... + a1x + @ = 0.

Therefore a fixed point exists, there are at most r of them, and they are all isolated.
We have thus proved that, for any r > 3 and any (13, ..., £2,,0) € (b/W)*, the equation of (o)~ (ta, ..., 12,,0) is
Xrxy+ 2+ X+ L tax+ap=0,

the action of Q is given by

o.X = X,
oy =-y,
g.2=-%,

and there is at least one isolated fixed point.

e Type F,. The equation of the fiber of a® above a point (1,0, 1,13,0,712) € (h/W)® is given by the points
(x,y,7) € C? such that
.2

2
AP 2By (- D)+ (ot~ )y e (rn - SR - B+ 2 <0,

The action of Q = Z/27 =< o > on the fiber is then given by
o.(x,y,2) = (=x,5,~2).

We can compute the equation of the quotient of the fiber and obtain

3
1y3 3 2 hy2 1 5 2 tety 112 ZG tels
X+ XY+ 22 - 2XY + 5 (t6 - )X 48( 3+ 192)XY+576(t12——2—7+ 52)X =0.

One can check that for any (,,0, 16, 13,0, 112) € (h/ W), the surface just obtained is indeed singular.

e Type G, = (D4,7/37). The equation of the fiber of a® above a point (,,0,1,0) € (/W) is given by the
points (x,y,z) € C* such that
2= xy(x+y) - fxy-t- (t6 + 108 .
The action of Q = Z/37 =< p > on the fiber is thus given by
p-(x.y.2) = (. -x -y + %.2).
We can compute the equation of the quotient of the fiber and obtain

11664X* - Y3 - 7% - 3246, X7Y — (18953 + 58321) X + (81tats + 213)Y + Li§ + 801316+ 72912 = 0

10



One can easily check that for any (1,0, ,0) € (h/ W), the surface defined by the previous equation has at least one
singular point.

e Type G, = (D4, S3). The fixed point of Q = S5 =< p,o- > in )/ W are the same as the ones by the action of
Z/37: {(12,0,1,0) € h/W}. The equation of the fiber of @** above a fixed point in h/W is then the same as in the case
of (Dy,Z/37Z). The action of Q on such a fiber is given by

p-(x,y,2) = (y,—x-y+%,2) and 0.(x,y,2) = (x,~x -y + %,-2).
The quotient of the fiber has then the equation

X3Y - 11664Y° + Z% + 3245, XY? + (18913 + 583216) Y? — (1213 + 8165t6) XY — (115 + 28316 + 72972)Y = 0.

Like before, for any (1,0, ,0) € (h/W)<, the surface has at least one singular point.
O

3. Singular configurations and root systems

Let g be a simple Lie algebra of type A,, D, or E,, h a Cartan subalgebra of g, W the associated Weyl group, and
e € g anilpotent element. As e is nilpotent, it can be included in an sh-triple (e, f, k) by Jacobson-Morozov’s theorem.
Let us look at the restriction of the adjoint quotient y : g — h/W to the Slodowy slice S, = e + 3,(f). Consider the
diagram

Se

Xls,

T
h ———— /W

U

H, >
ag+ D

with 7 the natural projection, ®* the set of positive roots of g, the H,’s the reflection hyperplanes with respect to
the roots @ € ®*, and D the discriminant of y. E. Brieskorn proved in [3] that if e is a subregular (i.e. dim Zg(e) =
rank g+2, with G the simple Lie group associated to g) nilpotent element of g, then /s, is a semiuniversal deformation
of a simple singularity of the same type as g, and is surjective ([15] Section 7.4, Corollary 1). Furthermore, it is shown
in [15] (Section 6.5, Lemmas 1, 2, 3) that the type of the singular configuration which appears in S, above a point
n(h) € D is given by the sub-root system {a € ® | h € H,}.

Let g be a simple Lie algebra of type A(T") with root system @, y’ C g" a Cartan subalgebra and W’ the associated
Weyl group. Set ¢’ € g’ a subregular nilpotent element and S the associated Slodowy slice. Hence the restriction
X\’sp, :Se = b /W of the adjoint (ﬁ)tient x' of ¢’ to S/ is a semiuniversal deformation of a simple singularity of type
A(T"). We have seen before that a® : Xrq — (/W) is a non-semiuniversal deformation of a simple singularity X
of type A(T”). Therefore o is isomorphic to the pullback x/; of X|,Sp, by a base change f : (h/W)® - b'/W’ whose
differential at O is uniquely determined (cf. [14] Section 1.4). We thus have the following diagram:

11



Y (Xo0,0)

U - o
(Se.e) (Sen) Xy (0] W)2.0) = Xr.a/Q
s, o X o @
b _ _ _
b ————— (v'/W',0) 7 ((5/W)*,0) = ((b/W)*,0)

U

Uaed)’* Hoz > D,

Set 7 € (h/W)®. Through the isomorphism, the fiber (a?)~!(¢) is the space

(A €S x {1 (D) =D} = (], ) ().

Therefore the type of the singular configuration of (o?)~'(¢) is the same as the one of (X\Is )7'(f()), which is given
by the sub-root system ¢’ = {@ € @' | a(h) =0, with h €’ a representative of f(z)}.

The following conjecture describes the link between the singular configurations of the fibers of @2 and sub-root
systems of the root system @’ of type A(T"”):

Conjecture 3.1. Ler a®* be a deformation of a simple singularity of type A(T") obtained through A(T') — A(T,T") -
A(T")-procedure. With the notations of the previous commutative diagram, there exists a subset © of the set simple
roots of ®' such that the base change f is an isomorphism on its image f(b/W) = 7'(Neeo He ), and such that if
h' € Nyey Ho ©H with © C ¢' and ¢" maximal for h' (i.e. a(h") # 0 if & ¢ ¢'), then the singular configuration of the
fiber (&)~ (fY (' (")) is of the same type as the root system ¢'. Furthermore, all singular configurations of the
fibers of a® are obtained in this way.

Depending on the type of a®, the subset ®© is given in the following table (the numbering of the root systems is the one
of Bourbaki (cf. [2])):

A(T) - A(T,T) - A(T) e @in A(I")
r+l1
1 2 3 r
A2r—1 - Br - Dr+2 {ar+1’ a'r+2} O———O0——C0 e
r+2
2r-1
I 2 1 r 1 23 22
[ WG G O @ - vronrrennnn
rodd .
Dyy1 - C, =Dy, {@2ir1 Yocicr—1 ot
1 2 1 r -+l 23 22
[ NG G @ ———O————@ -
reven 2
1 3 4 5 6 7
O O @ O ®
E¢-Fy4-E; {a, 05,07}
2
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~
w
EN
[
S

D4—G2_E6 {01703»([5’([6}

®
o
([ J
O
[ BN

Dy-Gr, - E5 {041,012,&3,@5,@7}

Table 4: Description of ® for the different cases
The next statement validates the conjecture for small rank cases.

Theorem 3.2. The Conjecture 3.1 is true for the types:

e As—By—D,,
e As—Bs—Ds,
e Dy—C5-Dg,
e Dy-G, - Eg,
e Dy—-Gr - Ey,
o Fg—Fy—E5.

4. Proof of Theorem 3.2

In what follows, the set of coordinates on h/W and b/ /W’ will always be the flat coordinates (cf. [11] and [12] for
details).

4.1. Strategy of the proof
The strategy for the proof of each case is twofold:

e Part 1:

Compute the deformation o and its discriminant.

Decompose the discriminant depending on what singular configurations appear in the fibers of a**.

Compute the deformation 2.

Determine the types of singular configurations appearing in the fibers of 2 above the previously obtained
decomposition of (h/W)<.

e Part 2:

Compute all realisations of the sub-root systems of the root system of type A(I") containing @.

Compute the flat coordinates of the Cartan subalgebra )’ of type A(T"), and the restriction of the map
7’ :h = b’ /W’ to the subspace Nyee He» With Hy = {h € b’ | @(h) = 0}.
Construct the base change f : (h/W)% b /W'

Verify that f : (/W) - 7' (Naco Ha)-

Check that the morphism f realises a bijection between the singular configurations of the fibers of a? and
the sub-root systems of A(I'") containing @.

13



4.2. Case A3 - Bz - D4
In this section I = C4, IV = D, and Q = Z/27 =< o >. It is known from [4] that the map % is given by the
projection

Xra = {((23,2), (£2,0,14)) € C x /W | 24 + 122 415+ 2 = xy}
|~
(b/W)* = {(12,0,14) € b/ W}
Furthermore, the action of Q on a fiber is o-.(x,y,z) = (y, x, —z), and so the quotient a2 is given by

Xra/Q={((X,Z, W), (12,0,13)) € C x o)W | Z(X?> = 4Z>) + W? — 46,7° — 4(ty + %)Z =0}

l i
(b/W)? = {(12,0,14) € b/W}
Before quotient, the discriminant of a®is
{(t2,0,14) € H/W | (13 + 8t4) (15 — 8t4) = 0}.

After quotient, it is known from Theorem 2.3 that all of (5/W)® composes the discriminant. By studying explicitly
the singularities in the fibers (a®*)~!(1,,0,1;) and (a®)~(,,0,1,), we obtain the following types:

(12,0,14) Configuration of (a)~!(1,,0,1,) Configuration of (a?)~!(12,0,1,)
Generic point P+ A+ A
2
ty = —%2 +0 A1 A3

P+ P2+ A o+ A

2
=32 #0 2 A+ A+ A

Q

Hh=1t=0 Aj Dy

Table 5: Configurations of the fibers of @ and o for A(T) = As

with p; (i = 1,2) denoting a smooth point, and if the action of Q is not mentioned, the point (smooth or singular) is
Q-fixed.

Let IT' = {a1, a2, a3,a4} be a set of simple roots of the root system of type D4 (cf. Table 4 for the numbering).
All the sub-root systems of D, containing ® = {a3, a4} are either of type A; + A;, A + A| + Ay, A3 or Dy, and their
realisations ¢’ are given in the following table:

Type of ¢’ Realisations of ¢’

A1+A1 <@3,a4 >

A1+A1+A1 <ap,a3,Q4 >,<a/1+2a2+a3+a/4,ag,a/4>

Az <@2,@3,a4 >, <@y +a,a3,a4 >

D, <ap,a,q3, a4 >

Table 6: Realisations of the sub-root systems containing @ for A(T') = A3

EEEEEE)

where < ... > means the root system generated by ..
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Set (e, ez, e3,¢e4) an orthonormal basis of )’ of type D4, and define (€, &, €3, €) its dual basis. Following [2], the
simple roots of D, are

ay = € — 6,
@ = € €,
@3 = €~ 6&,
a4 = €t €.

Let i’ = (£1,&2,&3,&4) € I, with the coordinates being expressed in the basis (e, ez, e3,e4). Then i’ € Hy, (N Hg,
if and only if &3 = &4 = 0.

Using [13], one can compute the flat coordinates of Dy restricted to the subspace H,, N H,, C )’ and obtains

¥2(é1,6,,0,0) E+8.

Ya(€1,6,0,0) -1(&-8)

U6(61,62.0,0) = 4 (&1 +E)EE + 515 (61 + &)
¥(£1,62,0,0) 0.

One notices that yg = —ﬁlﬂ% - %lﬁzlﬁm
Define

[ W)~ b'/w’

15}
%) M—é
0 > 8
S 3 1y
t 32T g2
0

The morphism f is clearly injective, and if (¥, ¥4, ¥6,0) € ' (Ha, N Hy, ), then by setting , = ¢, and 4 = g + éw%,
it follows that f(#,,0,t4) = (¥2,¥4,%6,0). Hence

£1(0/W)® ——=——— ' (Hy, N Hay) C VW,

Let ¢’ be a sub-root system in Table 6, and set i’ € Ny Hy. With the formulas given before, one can compute
(t,0,4) = f~1(2'(")), and verify the following correspondence:

¢' of type A| + Ay — (#2,0,14) generic,

2
¢ of type A + A; + A, — (£2,0,14) verifies 74 = %2 %0,

2
¢’ of type A3 — (12,0, 14) verifies 14 = —% +0,

¢’ of type Dy >  (5,0,14) =(0,0,0).
With Table 5, we see that the singular configuration in the fiber of @ above f~' (' (h')) is of the same type as ¢'.

Therefore for the type A3 — By — D4, the map f realises a bijection between the singular configurations of the fibers of
a® and the sub-root systems of D, containing ® = {as, a4 }.

15



4.3. Case A5 - B3 - D5

In this part I’ = C¢, I” = D3 and Q = Z/27 =< o >. The map o is computed in [4] and is given by the projection

Xro = {((x,5,2), (t2,0,14,0,6)) € C* x )/ W | 2% + tr2* + (14 + 4)z g+ 24 108 —xy}

a,Q

(5/W)? = {(12,0,14,0,15) € h/W}

Furthermore, the action of Q on a fiber is o~.(x,y,z) = (=y, —x, —z). The quotient & is then given by

{((X,Z,W), (12,0, 14,0, t6)) € C3 x b/w | Z(X? +4Z3) + W? + 41, 7°

Xro/Q =
+4(1 +’“)ZZ+4(t6+ )Z =0}

108

a,Q
(b/W)® = {(£2,0,14,0,16) € o/ W}
c (p/W)© with

Before quotient, the discriminant of a** is given by H, U H,

= {16+ 28 + 2 =0}, Hy = {- 12 + % - ﬂ atste + 413 + 2712 = 0}.

After quotient, Theorem 2.3 says that the discriminant is all of (h/W)®. By studying explicitly the singularities in the

fibers (cxﬂ)’1 (£2,0,14,0, 1) and (079)’1 (2,0, 14,0, 1), we obtain the following types:

(12,0,14,0, 16) Configuration of (@®)~!(£,0,14,0,75) | (®)™'(12,0,14,0,1s)

Generic point p1+ D2 A+ A

H, ﬂ{t4 * 0} Aq Az

Ay + Ay + Ay
H]ﬂ{l420,[2¢0} Az + Ay
Q
2
HiN{ts = -2 0} A; Dy
)4 + D2 o+ A + A
A1 +A1 +A1

H\{0}

Hzﬂ{m:%#O} U Al+A+ A
Q

A5 DS

bh=t4=1t4=0

Table 7: Configurations of the fibers of @® and o2 for A(T') = As

with p; (i = 1,2) denoting a smooth point, and if the action of Q is not mentioned, the point (smooth or singular) is

fixed.
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LetIT' = {1, @, @3, a4, @s } be a set of simple roots of the root system of type Ds (cf. Table 4 for the numbering).
All the sub-root systems ¢’ of Ds containing ® = {4, @5}, as well as their realisations are given in the following table:

Type of ¢’ Realisations of ¢’
A1 +A1 < y,qs5 >
AvsArtA <ay,Q4,qs >, < Ay, A4,q5 >, < @] + Q2 + g, a5 >, < @ + 207 + 203 + @y + a5, a4, a5 >,
1+ AL+ A <ay+ap+2a3 +ag +as, 4,5 >, <@ +2a3 + g+ as, @y, s >
A3 <@3,04,05 >, <@ +Q3,04,05 >, <] + @ + Q@3,Q4,Qq5 >
A1 +A1 +A2 <a1,a2,4,a5 >, < A1,q7 +2£¥3 + a4 + as5,a4,as5 >,
<ap,a) +ap +20/3 + a4 +as5,a4,a5 >, <] + Q2,07 +2a3 + a4 +as5,a4,as5 >
A A <ap,as3,q4,5 >, < a) +a,q +a3,q4,Q5 >,<a'1+2a2+20z3+a4+a'5,a3,a4,a5 >,
3+t4 <ap+ay+2a3+astas, @+ @z, aa,as >, < @+ @+ @z, @0, g, @5 >,
<aypt+ay +a3,a) +20/3 + a4 + as5,a4,as5 >,
Dy <@2,03,04,0Q5 >, < @] +Q2,q3,04,5 >, <A1, Q2 + @3,4,05 >
Ds <ay,ar,q3,a4,as >

Table 8: Realisations of the sub-root systems containing @ for A(T') = As

Set (ey, e, e3,e4,e5) an orthonormal basis of )’ of type Ds, and define (¢, &, €3, &, € ) its dual basis. Following
[2], the simple roots of Ds are

ap = € — 6,
@ = €€,
a3 = €6 €&,
Q4 = €4 — €5.
@5 = €4+ E€E;5.

Let h' = (&1,&,63,64,&5) € I/, with the coordinates being expressed in the basis (ej,es,e3,e4,e5). Then ' €
Ha4 ﬂHgs if and Only if §4 = fS =0.

Using [13], one can compute the flat coordinates of Ds restricted to the subspace Hy,, N H,, C b’ and obtain

Ua(é1.6,83) = E+E+8,
Ua£1.6.6) = HE+88+88 - S(E+85+8)%
Ue(£1.62.63) = HBE-3(E+E+8)EE+E5+858) + 1x(E+8+8)°,
Us(é1.60.86) = (G +E+8)E8E - L(EE+ 58 + 8&)*
+ 5 (E8+ 88+ 88)(E+ 8+ 8) - 25 (E+ &+ &)

Y(é1,6,6) = 0.

141 12 L2
One can see that ¥y = — 55205 — g¥as — g ¥o0a — 16V

Define
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fo W)~ b'/w’

%) t

0 ty— 1513

ta > Io— bty + 5= 13

0 Tiess 3 — dhle + sl — 13
te 0

We see that f is an injective morphism, and if (2, 4, e, ¥s,0) € ' (Hy, N Has ), then by setting

b =Y,
_ 1,2
Iy =Ya+ 13,
5 5.3
t6 = Yo + Y24 + 75595,

it follows that f(t,,0,24,0,1) = (Y2, 4, s, ¥s,0). Hence

£ (b)W)® ——=—— x/(Hy, N Hay) C VW

Let ¢’ be a sub-root system in Table 8, and set i’ € Nyer H,. With the formulas just given, one can compute
(t2,0,14,0,15) = f~'(x'(h')), and check the following correspondence:

¢’ of type A| + A, > (12,0, 14) generic,

(ﬁ, of type A| + A + Ay D — 1,0,t4) verifies (5,0, 14,0,15) € H>\{0},
YP

¢’ of type Az >  (1,0,14) verifies (,0,14,0,1) € H N{t4 # 0},
@' of type Ay + Aj + A <« (12,0,14,0,85) e HoN{ty = % 0},

¢’ of type A3 + A, «——  (£,0,14,0,16) € H N{t4 = 0,1, # 0},

¢’ of type D4 > (1,0,144,0,86) € H N {ts = —% #0},

¢' of type Ds > (1,0,1,0,%) = (0,0,0,0,0).

With Table 7, we see that the singular configuration in the fiber of @@ above f~' (' (%)) is of the same type as ¢'.
Therefore for the type As — B3 — Ds, the map f realises a bijection between the singular configurations of the fibers of
a@® and the sub-root systems of Ds containing © = {a4, a5 }.

4.4. Case D4 - C3 - D6
Here I' = D,, " = Dy and Q = Z/27 =< o >. It is known from [4] that the map o is the projection

3
Xra = {((x.5.2), (2. 14.16,0)) € C* x o/ W | 2% = xy(x +y) = Bxy — S+ (16 + 22 + 13)}

QQ

(b/W)? = {(12,1,15,0) € H/ W}

Furthermore, the action of Q on a fiber is 0~.(x,y,z) = (x,—x -y + %, -z), and the quotient a2 is given by

18



Xro/Q={((X.Y,W),(t2.14.15,0)) € C* x b/W | — £ X5 + X¥* - W?
+ApXt + Ap X + ApX? + AxX + AyY + A = 0}

a®

(b/W)® = {(12,14,15,0) € H/ W}

with
t
Axs = 3,
— 3 2 1
Ax3 = —@tz - §t4,

- 71 € 7.3
AXZ = 192t2l‘4 + 32l6 + 864t2’

_ 1., 52 35 4 12
Ax = —55l612 ~ 353014 ~ 7exsl ~ wales
_ 1 1 1.3
Ay = 3l6 + 3302l + 33503,

11
6912

L
192

5
5.

1,02, 1 3 2 1
Ag = 128t6t2 + 32t6t4 + iy + bty + 3324

Before quotient, the discriminant of a® is given by LU H C (h/W)* with

3 6 4 2.2 3
_ oty ho_ _f L _ bl B4 9 _h_ 2702 _
L={t6+ 5 + 155 =00 H={gh ~ ¥ + & * 1672%4% — 3 ~ 1576 = 0.

After quotient, it is known from Theorem 2.3 that all of (b/W)< is the discriminant. By studying explicitly the
singularities in the fibers (@®)~! (12, 14, ,0) and (@®)~!(t2, 4, 16,0), we obtain the following types:

(t2, 4, 16,0) Configuration of (a®)~!(t5,14,1,0) (@?) (13,14, 15,0)

(Cx{0)\(LUH) P1+ P2+ p3 Al +A1+A
Ay, + A + P1 + P2+ D3

L\{t4:—§} S Al +A+A +A

o)
2 2
H\((Lﬂ{t4:—%})U{t4:%}) Ar+p Az + Ay
LN{ts=-2 %0} Az +p Dy +A
HO{ty =2 %0} Ay As

(LAH)\{ts = -2} S A3+ A +A,

h=t4=1,=0 Dy Deg

Table 9: Configurations of the fibers of @® and o for A(T') = D4 and Q = Z/27Z

with p; (i = 1,2, 3, @) denoting a smooth point, and if the action of Q is not mentioned, the point (smooth or singular)
is fixed.

Let IT' = {ay,as,@3,4,as,a6} be a set of simple roots of the root system of type Dg (cf. Table 4 for the
numbering). All the sub-root systems ¢’ of D¢ containing ® = {«, @3, s}, as well as their realisations are given in
the following table:
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Type of ¢’ Realisations of ¢’

A1+A1+A1 <ap,a3,qs5 >
A A A A <ay,a3,Q5,0¢ >, < @1,d3,05, &1 +2&'2 +2CL/3 +2a4 + a5+ ag >,
e <a1,a3,a/5,a3+2a/4+a5+a/6>
<ai,a3,0s5,@ >, <Q1,03,05,04 >, < A1,Q3,05,02 + @3 + @4 >,
A3 +A]

<@p,q3,q5,q) + @3 + @4 + Qg >, < @1, A3, A5, A4 + Ag >,
<ay,a3, 5,2 + @3 + 204 + @5 + A >

<ap,as,as5,,¢ >, < A1,Q@3,05, A4, A +26¥2 +2cx3 +20z4+a5 + g >,
<ay1,d3,Q5,Q2 + @3 + A4,Q3 +2a/4+a'5 + ag >,
As+ A + A <ay,q3,qs, @ + @3 + @4 + g, a3 + 204 + @5 + g >,
<ay,q3,qs5,04 + Qg, A1 +2(12 +2(I3 +2¢y4+a/5 + ag >,
<ap,as3,qs,a + a3 + 24 + as + ag, Qg >

D4+ A <ay,a3,05,02,a3 + 204 + a5 + s >, < @1, @3,05, %4, Us >,
<ap,a3,qs5,a3 + @3 + @4, Q6 >

As <ap,qs3,@5,Q2,q4 >, <Q1,Q3,5,@2 + @3 + @4 + @6, @4 >, < A1,0Q3,05,Q2,04 + Qg >,
<a1,@3,q5,04 + Qg, @y + Q@3 + Q4 >

Deg <ap,ar,q3,q4,qs,x6 >

Table 10: Realisations of the sub-root systems containing ® for A(T') = Dy and Q = Z/2Z

Set (ey, e2, €3, €4, €5,¢6) an orthonormal basis of b/ of type D¢, and define (€1, &, €3, €, €5, &) its dual basis. Fol-
lowing [2], the simple roots of Ds are

a; = € —é,
@ = € —e€,
a3 = €6 - &,
@y = €4 —6s,
as = € — €,
Qg = €5+ €.

Let h' = (&1,6,63,&4,85,&) € 1), with the coordinates being expressed in the basis (ey, ez, e3, es,€5,¢6). Then
h' € Hyy, N Hy, N Hy, if and only if & = &, & = & and &5 = &.

Using [13], one can compute the flat coordinates of Dy restricted to the subspace H,, N H,, M Hy, C b’ and obtain
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2,42, 2
Ya(é1,63,65) = 2(§+&+E5),
2 2 2pl | 62422 64242 | 64242
Yal€1,63,65) = —3&0 - 38 - 36+ 868 + 588 + 088,
24242
¢6(§1,§3»§5) = 251 355,
_ 4 8 6 6 2
Us(61.63.65) = 1255 + 125"53*' 12555 125§ & - 125§ - 125515% 1255 &8
1255355 1256355 1255153 + 125‘:‘:4‘.7{4"' 125§4§4+ 125§4§3§5
2 2
1255 f 125§ é:’ifs,
_ 108 +2 108 »6 108 -2 22 #1022 £10
WIO(§1»§3,§5) - 625§ §3§5 625§ §3§5 625§ f 55 3125 T 3125 3 312555
%63 - et - el - Zeagt - §6§4 S8
625§ 625 5 625 153 625 5 625 3 625 5
8 8
625§ 53 525§ fs + 6255153 + 6255165 + 6256365 52553‘?5
L 648 648 648
625§4§ 54 625§1§3§5 + 625'?116;165’
2
U(é1.é3.6) = E8E.
. 1 1 1
We can verify that | Y3 = s¥oibs — mlﬁgw + ﬁlﬁzzv
5, 1,2 1 2,2
Y10 = —so000%2 T 56¥2W¥6 — sg¥as + S¥ae,
1
¥y o= §¢6-
Define
fo /W) - /W
1)
1 12
t2 §t4 + rtz
1 1
Iy N Zt6 + ﬁt2t4 + 43212
1 7 2 119
11 *[21‘6 + mlzm + 432000l2 l4
133 131
0 3600000t2 400t2t6 * 108000t2t4 300t2t4 20t4t6
gtﬁ + r8t2t4 + @t2

It is clear that f is an injective morphism, and if (Y2, Y4, s, s, Y10,¥) € ' (Hy, N Ha, N Hyy ), then by setting

h =Y,
1,2
1y = 244 — 5593,

o = 46 — 3Yata — 15503
it follows that f(l‘g,l4,t6,0) = ((//2,1,04,!,[/6,l//g,(//10,l//). Hence
f 2 (0/W)® ——=—— 7 (o, (\ Hoy (1 Ha) € /W',

Let ¢’ be a sub-root system in Table 10, and set &’ € N, H,. With the formulas just given, one can compute

(t2,14,16,0) = £~ 1 (2’ (")), and verify the following correspondence:
¢ of type A| + A| + A > (2,4, 16,0) generic,
o oftype Ay + A1+ A +A] > (1213,16,0) € L\{ts =~ 5},
¢’ of type A3 + A, — (t2, 14, 16,0) eH\((Lﬂ{t4-—f})U{t4 = —})
@' of type Az + A; + A, D (t27l4,te,0)G(LﬂH)\{M:—%}’
¢’ of type Dy + A — (t2,14,16,0) € LN{tg = —% +0},
¢' of type As > (tr,t4,16,0) e HN{ty = % 0},
¢’ of type Dg — (t2,14,16,0) = (0,0,0,0).
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With Table 9, we see that the singular configuration in the fiber of a® above f~'(x’(h')) is of the same type as ¢'.
Therefore for the type Dy — C3 — Dg, the map f realises a bijection between the singular configurations of the fibers of
a® and the sub-root systems of D5 containing © = {a1, a3, a5 }.

4.5. Case D4 - G2 - E6

In this section T = D,, T = T and Q = Z/37Z =< p >. The restriction a® of the semiuniversal deformation a of a
simple singularity of type Dy is

3
Xra = {((x.5.2).(12,0,16,0)) € C* x b/W | 22 = xy(x+y) = Zxy + 1 (t6 + 15}

a,ﬂ

(b/W)® = {(12,0,16,0) € b/ W}
The action of Q on a fiber is p.(x,y,z) = (y,—x — y + %,2), and so the quotient a2 is given by

Xro/Q = {((X.Y.Z),(12,0,15,0)) € C* x b/ W | 11664X* — Y3 — 7> - 3241, X*Y
— (18913 + 583216) X* + (810t + 1213) Y + 11§ + 2816 + 7291 = 0}

a®

(b/W) = {(1,0,1,0) e h/W}

Before quotient, the discriminant of a®* is given by {(#+ 1% N 1%) =0}, and after quotient, it is all of (/W) be-

cause of Theorem 2.3. By studying explicitly the singularities in the fibers (a®)~'(1,,0,,0) and (®)~' (12,0, 1,0),
we obtain the following types:

(t2,0,1,0) Configuration of (a®)~!(1,,0,1,0) (@%)~! (12,0, 16,0)
Generic point pL+ Do Ay + Ay
Q
; /_\
t=-1*0 | At + A + A+ P+ P2 Ay +Ar+ A
Q Q
t}
te = 1788 +0 Al AS
h=t=0 D, Es

Table 11: Configurations of the fibers of o and @ for A(T") = Dy and Q = Z/37

with p; (i = 1,2) denoting a smooth point, and if the action of Q is not mentioned, the point (smooth or singular) is
fixed.

Let IT' = {a1, a2, a3, a4, @5, ¢ } be a set of simple roots of the root system of type Eg. All the sub-root systems ¢’
of Eg containing ® = {1, a3, as, s}, as well as their realisations are given in the following table:
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Type of ¢’ Realisations of ¢’

Ar+ Ay <ay,as,qs,qg >

<ap,as,qs,Q6, @2 >, < @1, Q3,05, X6, &1 + @2 + 23 + 34 + 205 + g >,

A2 +A2 +Al <ay,a3,0s5,06, @1 + 20’2 + 2(13 + 3&4 + 20’5 + g >
As <ay,3,as,Q6, a4 >, < @1, Q3,05, U6, X2 + A4 >, < A1, A3, 05, A, @) + @3 + 204 + Q5 >
Es <ap,ar,q3,q4,qs5, A6 >

Table 12: Realisations of the sub-root systems containing ® for A(T') = Dy and Q = Z/3Z

Set b’ = (&1,6,83,&4,65,&) € b, with the coordinates being expressed in the basis of fundamental coweights
(Y, wy, wy,wy,w!,w!). Then h’ € Hy, NHy, NHos NHy ifand only if & = &3 =65 =6 =0

Using [7] and [13], we compute the flat coordinates of Eg restricted to the subspace Hy, (N Hy, N Hes N Hy, C B
and obtain

Wa(&a,6a) = 265 +66E4+ 68,

Ys(é2.64) = 0,

Ue(£2.64) = —E—-986E4 - 3068, - 4588, - 306581 - 96,8, - 38,

Us(£2.64) = 5(&+3684+38) (58 + 4566, + 1448087 + 189838, + 1283¢1 - 2168, - 9€9),

Yo(é2.64) = O,
v(énés) =  FEE+ D6 22775254 ‘9‘”5254 366 - 176" - 16568
_ 1089 5454 5225 5225 £646 _1g12 979 §§f4
There are the following relations among the flat coordinates:
{ Us = —q303 — j¥ave
Uiz = qe¥S - g6 + ¥V
Define
fo W)~ b'/w’
15)
t 0
0 —6tg — =
ts ” 576t2+ 3tat6
0 0
29 6_9p2

301362 ~ 26 ~ aglel

The map f is an injective morphism, and if (¥, s, e, s, Yo, ¥12) € ' (Hy, M Hay N Has N Hy, ), then by setting

fy =y,
fo = — 46 — 73593
it follows that f(lz, 0, 6, 0) = (1702, Ys, e, s, Yo, lﬂlz). Hence
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£ (0)W)® —=—> 2 (Hy, M Hay (VHoy N Ha,) C B /W',

Let ¢’ be a sub-root system in Table 12, and set i’ € N,ey H,. With the preceding expressions, we compute
(t,0,15,0) = f~' (2’ (h")), and verify the following correspondence:

¢ of type Ay + Ay — (12,0, 16,0) generic,

3
¢ of type Ay + Ay + A <————>  (15,0,1,0) € {te = — 1 # 0},
¢/ Oftype As > ([2,0, [6,0) € {[6 = 1%8 * O},
¢, of type Eq D — (IQ,O, t6,0) = (O, 0, 0,0)

With Table 11, we see that the singular configuration in the fiber of @@ above f~!(7'(h’)) is of the same type as ¢'.
Hence for Dy — G, — Eg, the map f realises a bijection between the singular configurations of the fibers of @ and the
sub-root systems of Eg containing @ = {a, a3, as, g}

4.6. Case D4 - G2 - E7
In this section T’ = D,, I" = O and Q = S3 =< p, o >. The restriction a** above the fixed points is the same as the
one in the preceding part, ie

3
Xra = {((x,y,2), (t2,0,15,0) € C3 x h/W | 22 = xy(x +y) - %xy-r %(% + 1%)}

QQ

(b/W)® = {(12,0,15,0) € b/ W}
and the action of Q on a fiber is
o.(x,y,2) = (x,—x—y+2,-z) and p.(x,y,2) = (y,—x -y + £,2).
The quotient a2 is then given by

Xra/Q={((X,Y,Z),(t2,0,15,0) € C> x h/W | X°Y - 11664Y? + Z? + 3241, XY>
+(18913 +583216) Y? — (1215 + 8112t6) XY — (5315 + 28316 + 72912)Y = 0}

(b/W)® = {(12.,0,4,0) € b/ W}

3 3
The discriminant of the deformation before quotient is {(# + 1% )(t6 — 1%) =0}, and after quotient it is (/W)*. The

study of the fibers of o** and a? gives the following singular configurations:
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(t2,0, l‘6,0)

Configuration of (a®)~!(1,,0,1,0)

(@) (12,0, 1,0)

Generic point

smooth and no Q-fixed point

A2+A1 +A1 +A1

3
hH

0

A

f6=—105 * 0 U'CAI + A+ A As + Az + A
P P
fo= 120 A (Q-fixed) Ds+ A,
th=t=0 D4 (Q-fixed) E;

Let Il = {ay, @, a3, a4, as, as, a7 } be a set of simple roots of the root system of type E;. All the sub-root systems
¢’ of E; containing © = {@|, @z, @3, s, a7}, as well as their realisations are given in the following table:

Table 13: Configurations of the fibers of ¢ and a® for A(T') = Dy and Q = G3

Type of ¢’

Realisations of ¢’

A2+A1 +A1 +A1

<ap,qr,q3,q5,a7 >

A3 +A2 +A1 <ay,a2,Q3,5,@7,Q6 >, < A1,Q2,Q@3,A5,Q7,¥] + Q2 +2a3 + 3&'4 +2(15 +2a6 +a7 >
Do+ A <ap,q,q3,q5,q7,q4 >, < Q1,Q®2,Q3,X5,q7, 04 + A5 + @6 >,
5 +41 <ay,an,q3,Q5,a7, @ + @3 + 24 + a5 + ag >
E; <ay,a,as3,qs4,s,ds, @7 >

Set ) = {(&1,62,83,64,E5,E6,67,88) € C¥ | & + & = 0}, (ey, ..., eg) the canonical basis of C3, and (e, ..., &) its
dual basis. Following [2], the simple roots of E; are

Set i’ = (£1,62,63,€4,65,&6,67) €' (we write here (£1,62,&3,84,65,&6,&7) for (61,62,63,E4,5,E6,€7,~€7)). Then
//l, € Hm ﬂHaz fj[{(y3 ﬂHa5 mH(u lf and only lf .f] = 62 = 0, 53 = §4, 55 = f@ and §7 = —53 - 65.

Table 14: Realisations of the sub-root systems containing ® for A(I') = Dg and Q = ;3

a
(&%)
a3
@y
as

@6

a7

= %(61 +58)_%(62+€3+€4+€5+56+€7),

= € t+ée,
= €& - €,
= 66,
= &4 —6,
= 6 &,
= € — E5.

Using [1] and [10], one can compute the flat coordinates of E7 restricted to the subspace
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expressions are




Ua(é3.65) = G +EE+E),

l/lﬁ (53’ é_-s) - 3;;;6§g 32176§SE 4 53552&;‘65 162024532é'_-§€_{53 + 535525%54 + 32176§ é'_-s 3%;;652’
Us(é3.65) = o= (8 +EEs +£3) (55081965 + 16524576365 + 1389264£4£3 + 24433653
+1389264§-‘3§5 +1652457&;£3 + 550819£%),
U10(63.65) = 1ooes (2074385 + 622298565 + 41208447 — 212996363 + 412088344 + 6222963¢3
+20743£8) (&3 + &5 + €2)2,
_ 42062501701 &8 4423023418 &9 62899959716 #10 347826674932
Yio(63.és) = - 398671875 fsf?_ 102515625 5355 5980078125 5980078125 &3 55 1993359375 ‘53‘55
_ 3081278138 (12 _ 3081278138 12 _ 175228928248 _ 6162556276
1794023437553 1794023437555 854296875 é:355 5980078125 3 55
_ 3478266074932 5 &7 _ 42062501701 4 8 _ 4423023418 3 <9 _ 62899959716 ¢2 10
1993359375 ‘f%‘fs 398671875 ‘.‘9:3‘.‘::5 102515625 f355 5980078125 §3§
6162556276 11
5930078125535 ’
Via(6.65) = —smomarrrs (& + E3és + £3)(1511960253367£3% + 9071761520202£3 ' &5

+67786465629432£1062 + 255774514211975£5€3 + 617323843488330&5¢2
+1034437665403692£]¢3 + 1226835303782847£5£8 + 1034437665403692£3¢1
+617323843488330£5£8 + 255774514211975£5¢2 + 67786465629432£3¢10
+9071761520202¢&3&5! + 1511960253367£1%),

Vis(é,&s) =  49900582548245699977888 ~18 _ 49900582548245699977888 ~18 _ 1808994581776446325173376 §3§15
18163,65) = 128185297421220703125 3 128185297421220703125 S5 42728432473740234375  ©3
_ 43351951625476282697248 §2 516 _ 49900582548245699977888 £ £ - 49900582548245699977888 517 ¢
2848562164916015625 ©3 14242810824580078125 14242810824580078125 3
 43351951625476282697248 16§2 _ 1808994581776446325173376 15 53 _ 1224969840491929611874048 1454
2848562164916015625 5 42728432473740234375 5 14242810824580078125
_283014291225008940645632 513 §5 _ 8202907266598286263520384 §12 56 _ 3383893531113795266600128 11 57
2034687260654296875 3 S5 42728432473740234375 93 S5 14242810824580078125 5
349873020975151098628384 é;lO fg _ 3288297534494448854110112 59 59 _ 349873020975151098628384 58
1294800984052734375 93 S5 11653208856474609375 355 1294800984052734375 3
_ 3383893531113795266600128 §7 f” _ 8202907266598286263520384 fﬁ 512 _ 283014291225008940645632 §5 §13
14242810824580078125 3 42728432473740234375 93 2034687260654296875 3
_1224969840491929611874048 54 514
14242810824580078125 :
We can verify that
_ 2252645 473
ys = -yl + Ly,
_ 557%8% 111
lﬂlo = 105 '7[’2 11021106,
_ 43251895481 1079173 ,3,,  _ 1 2
Yo = 24494400 '//2+ 1360800w2¢6 103680w6’
__573683065303,,7 , 10112840293 ,4 , 17821 2
Ya = 145406736 V2t 1688228160 Y26 ~ 9300582 V2V
" _ _158967115381411558331119 3918765562691815131116(!/ _ 7868764351687¢3lp2 _ 5 w3
18 = 4023348492240 2 64820614597200 7 2%6 T 3601145255400 ¥ 2¥'6 ~ 119904 V6
Define
. Q / /
fo O/w)* - by /W
15}
Mtg + 1800012
f 2044595 4 946000 946000, 1
%3 Lt
0
o @ £+ 3997600 21
16
877545367 6 30746815 _ 2
0 asso0 >+ Cases Dale — 31256
_ 4251411945017 7 42570028475 (4, 556906250 1 2
12658216032 12 T 1775844 1276 8613 126
_ 134750219913739937987 9. _ 277874830706221330 16 _ 488086012279345000 3 tt _ 625000000 ;3
150013422353520 2 4910652621 2°6 666878751 2% 9 6

The morphism f is injective and if (Y2, ¥e, ¥s, Y10, Y12, Y14, ¥18) € 7' (Hoy N Hyy N Hoy N Hyg N Hy, ), then by setting
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{ ty =y,
1 1861
I6 = Tgoo0¥'6 ~ 16200%’
it follows that f(lz,o, t5,0) = (lﬁz,!ﬁ(,,lﬁg,lﬁ[o,lﬁ]z,!ﬁm,l[/]g). Hence
f : (b/W)Q —_— ﬂ,(H(Yl ﬂHdz mth ﬂHﬂfs ﬂHm) c bI/W,'

Let ¢’ be a sub-root system in Table 14, and set i’ € N,ey H,. With the preceding expressions, we compute
(t2,0,15,0) = f~' (2’ (h")), and verify the following correspondence:

¢’ of type Ay + Ap + Ay + A4 — (12,0, 6,0) generic,

3
¢ of type A3 + Ay + Ay — (£2,0,1,0) e{téz—’—2 £0},
¢/ Oftyp€ Ds + A, D — ([2,0, 15,0) € {[6 = 108 * O}
¢, of type E; D — (12,0, 16,0) = (0,0, 0,0)

With Table 13, we see that the singular configuration in the fiber of a® above f~' (' (k') is of the same type as
¢'. Hence for Dy — G, — E7, the map f realises a bijection between the singular configurations of the fibers of @** and
the sub-root systems of E7 containing © = {a1, @, a3, @5, @7}.

4.7. Case E6 - F4 - E7
SetT'=T7,T" = O and Q = Z/27 =< o >. According to [4], a semiuniversal deformation &* of a simple singularity
of type F4 is given by

3
Xrg {(()C y,Z) ([2,0 lﬁ,lg,o l‘]z) E(C3 Xb/W| - *x +y +Z — *X2y+ i(%— %)xz

+ag(ots + 52 = )y + 562 - ﬁ - Lé %) 0}

C&'Q

(0/W)2 = {(12.0.16,1,0,115) € b/W}
Furthermore, the action of Q on a fiber of % is 0.(x,y,z) = (—x,y, —z) and the quotient a2 is

Xra/Q = {((X,Y,Z) (zz,() t6, 13,0, rn))ec*xb/m - ‘X’+XY3+Z2 XY + 55 (t6 - )x2

= (- t+ﬂ—@)xy+576(m—ﬁ—i ’“’Z)X 0}

a®

(0/W)? ={(,0,16,25,0,112) € b/ W}

Before quotient, the discriminant of % is H; UH, with

o Hy={13? - 1448tc + 576131 +5184t2t6 - 13824t2t6t8 - 138240t2t8 69120t2t6 331776:,2% +8294401312t5 +
3981312¢1513t5 — 5308416121613 — 24883217 + 398131211512 + 707788813 — 1592524842, = 0},

o Hy = {13% + 144816 + 5761515 + 51841562 + 13824851615 — 1382406512 + 691206313 — 3317761121316 + 829440131215 —
3981312¢126515 + 5308416121617 — 2488321F — 398131211217 + 707788813 — 1592524843, = 0 and 1 # 0}.

After quotient, it is known from Theorem 2.3 that all of (b/lV ) composes the discriminant. By studying explicitly
the singularities in the fibers (a®*)™! (12,0, t.13,0,12) and (a®)~!(t2,0,1,13,0,112), we obtain the following types:
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(12,0, 16,13,0,112)

Configuration of (a®*)~!(#,,0,1s,13,0,12)

(aig)_l (t2’ 07 I6, 13, Oa tlz)

Generic point pPL+p2+D3 Al +A+ A
7‘[1 A1 +p A3 +A1
H[ m{fg = le+96l°} A3 +p Dy +A]
_ zz+96t6
Hl m{lg = }ﬂ{[2+8[6—0} A5 +p D5 +A1
Hl ﬂ{tg = t2+96t6 } ﬂ{tz 8[6 = 0} Dy Dg
H] ﬂ{lg = _léiztg + %t2t6} Az A5

Ha\H,

Aq + A+ P1+ D2+ D3

U

A] +A1 +A1 +A1

Ay + Ay +DP1+ D2+ D3

U

Hy ﬂ{ls = —@t — %t2t6} Ay +A1+A1 + A
A + Al +A + P
HlnHZ \—/ A3 +A1 +A1
A> + A+ A+ P
HiNHa ﬂ{tg 192t - %t2t6} U A3 +Ar,+ A
A2 + A] + A]
HiNH2N{ts = — 14513 + S1ate} Ké/ As+ Ay
h=te=13=1t2=0 Eg E;

Table 15: Configurations of the fibers of & and o for A(T) = E

with p; (i = 1,2,3, @) denoting a smooth point, and if the action of €2 is not mentioned, the point (smooth or singular)

is fixed.

LetIT' =

{a1, a2, @3, 4, as, a6, a7 } be a set of simple roots of the root system of type E7. All the sub-root systems
¢’ of E; containing ® = {a,,@s, 7}, as well as their realisations are given in the following table (except in the first

case A| + A + A and the last one E7, we will not repeat that ¢’ contains ©, for the sake of readability):

Type of ¢’ Realisations of ¢’
Ay +A1 + A <a,as,a7 >
<@g > <a@3+ag >, <ap+az+ag >, <ap+ay +2a3 +3ag + 25 + 206 + @7 >, < @4 + as + g >,
Az + A <@ +as+as+ag>, <@ +@3+a4+as+ag >, <ap +a + 23 +3aq + 25 + ag >, < @g >,
<ay+taz+2a4+as+ag>, <)+ +az+2a4 +as+ag >, <ap +ap +2a3 + 204 + as + ag >
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D4+ Ay

<aj,aztayg >, <aqp,az3 +ag4+as+ag >, <ap,ar +a3 +2oz4+(15 +ag >, < @3,a4 >,
<a@3,a4 +@5 +ag >, <@3,q] +ap +a3 +20’4+0/5 +ag >, <@ +a3,a4 >, <@ +@3,04 + Q@5 + Qg >,
<aptaz,ar+az+2a4+as+ag >, <a) +ar+ a3 +2a4 +as,a3 + @y + as + g >,
<ap+ay+ a3+ 204 +as,a6 >, <ap + @y +2a3 + 24 + a5, a4 + a5 + @6 >,
<@y +ap+2a3 + 24 + as, a6 >, < @ + @3 + 24 + 205 + 206 + @7, + @3 + @4 >,
<ayp+ay + a3+ 24 +2a5 + 206 + @7, 3 + @4 >, < @) + @y + 203 + 204 + 2a5 + 206 + @7, 4 >,
<ay + a3 +20z4+a5,a] +azt+agtast+tag >, <at+az +2a4+a5,a6>

Ds + Ay

<ap,a3 +@4,ap + Q3 +2(I4+2(15 +2a6+a'7 >, <ap,a3 +a4 +a5 + g, + @3 +2a4 + a5 >,
<ap,a + a3+ 24 + as + g, @3 >, < @3,04,Q1 >, < @3,Q4, Q] + @2 + @3 + 24 + 205 + 206 + @7 >,
<@z, a4 +as + @g, @) >, < @3,Q4 + A5 + Ae, A + @2 + @3 + 204 + 5 >,
<ap +a3,a4,ap + Q@3 +2(l4+2&5 +2a/6+a7 >, <a) +a3, a4 +as +ap, a2 + @3 +2£¥4 +as >,
<ap+ay+ a3+ 24 +as,a6,a3 >, < @) + @3 + 204 + 5,06, >, < @2 + @3 + 204 + a5, @6, ] + @3 >

De

< ay,®6,@3 >, < @4, A6, @] + @3 >, < @4, A6, @] + @2 + 203 + 204 + a5 >, < @3 + @4, 6, @] >,
<3+ ay,06,a] + @) + @3 + 24 + a5 >, < @) + @3 + @4, @, @ + @3 + 204 + a5 >,
< 4,3 +@4 +as +ap, @1 +@3 >, < 4,3 + @4 +as +ag,a; >, <@4,a1 +@3 +a4 +as + ap, @3 >,
<@3+ Q4,04 +as5 + g, @1 >, <3 +Q4,04 + a5+, @) +a@3 >, <@ +a3 + Q4,04 +as + ag, @3 >

As

<@y, >, <y, + @y +2a3 + 204 + a5 + @ >, < @3 + @4, Q6 >,
<az+a4,a) +a+a3 +2a/4+a/5+a'6 >, <a)+a3+ay4,a6 >, <a;+a3 +a/4,a/2+a3+2a4+as +ag >,
<ag+as+aga) +ay +2a3 +2a4 + a5+ @ >, < @3+ @4 +as + ag, @) + @y + @3 + 204 + as + ag >,
<a)p+az+ag+as+ag,a +a3 +2(14+05 + g >,<a1+a2+2a3+3a/4+2a5 + g, @6 >,
< @4,a3 + @4 +as + @ >, <@4,a1 +taz+ag+as+ag >, <3 +a4,a4 +as +ag >,
<@z +ayg, ) +az3+agtas+ag>,<aptazt+ayg,a4+a5+a>,<ap+a3+a4,a3+a4+as5+ag >

Al +A +A + A

<ap >, <a3>,<at+az >, <ay+az+a+as > <ap+ay+az+ a4 +as >,
<ap+ap+2a3+2a4 +as >, < @y + a3 +2a4 +2a5 + 206 + @7 >, < @) +@p + a3 +2a4 + 205 + 206 + @7 >,
<ay+ap +2a3 + 24 + 2a5 + 206 + @7 >, < @) + 2an + 2a3 + 4ayg + 3as + 2a6 + @7 >,
<(1’1+2(1/2+3(l3 +4a4+3a5 +2(1’6+(I7 >,<2(ll +2(¥2+3(13 +4a4+3a5+2a6+a7>

Ay +A + A+ A

<ap,a3 >, <ap,a + a3 +2a4 +as >, <ap,ar + a3+ 2a4 + 25 + 206 + @7 >,
<ap,a) +2ap + 3az +4ag + 3as + 206 + @7 >, < @3, @) + @ + a3 + 204 + as >,
<@z, + @ + @z + 24 + 2a5 + 206 + @7 >, < @3, @) + 2 + 203 + day + 3as + 2a6 + a7 >,
<ap +az,a +a3+2a/4+a5 >, < +a/3,a/2+a3+2a/4+2a/5 +2(}’6+(Y7 >,
<ayp+az,a) +2a; + 2a3 + 4ay + 3as + 26 + @7 >,
<az+a3+2a/4+a/5,a/1+a2 +a3+2a4+20/5 +2¢1’6+a/7 >,
<@y + a3+ 24 + as,a) + @y + 2a3 + 2a4 + 205 + 206 + a7 >,
<ap +(22+a3+2(l4+&5,(lz+&3+2(l4+2(¥5 +2(16+(Y7 >,
<ap+a +a3+2a4+a5,al +(12+26Y3+2(I4+2(15 +2016+oz7 >,
<ay+ap+2a3 +2a4 + as, @ + @3 + 2a4 + 2a5 + 206 + @7 >,
< ap +az+2(13+20/4+115,(11+a2 +a3+2a4+2a/5 +2a/6+a/7>
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A3 +A1 + A

<y, >, <@g, + @y +2a3 + 204 + as >, < @y, 2 + @3 + 204 + 25 + 206 + @7 >,
<ag,a; +ay +a3 +2(14+2(15 +2a6+a7 >, < a4,q] +2(12+3(13 +4a4+3a5 +2(Z6+(l7 >,
< ag,2aq +2ap + 3a3 + dayg + 3as + 2a6 + @7 >, < a3 + ag, ) + a3 >,
<az+ay,a) +ay +a3 +2a4 +as >, <3+ g, + @3 + 2a4 + 205 + 206 + a7 >,
< @3+ ag,a) +ap +2a3 +2a4 + 2as5 + 206 + @7 >, < @3 + @4, @) + 27 + 203 + day + 3as + 206 + @7 >,
< a3+ ay,2a) +2a) +3a3 +4ay + 3as + 2a6 + a7 >, < @) + @3 + g, @3 >,
<ap+azt+tag,a2 +a3 +2a4+a'5 >, <ayt+taz+ag,a; +ay +a3 +2(Z4+20’5 +2a5+a'7 >,
<ap+ a3 +ag,a) +ay +2a3 + 2a4 + 2a5 + 206 + @7 >,
<a)+a3z+ay4,a +2a2+2a/3 +4a4+3a5 +2a6+a'7 >,
< @)+ a3+ ag,a) + 2 + 33 +4ay + 3as + 206 + @7 >, < @) + @z + 23 + 34 + 2as5 + 206 + 7,1 >,
< aq +a2+2a3+3a/4+2(15 +2(1/6+(17,(13 >, < +az+2a/3+3a4+2a/5 +2(1'6+a/7,(11 + a3 >,
<ap+ap+2a3 +3aq +2as5 + 206 + @7, + @3 + 204 + as >,
<ap+ap+2a3 +3aq +2a5 + 206 + 7,01 + @2 + @3 + 204 + @5 >,
<ap+ap+2a3 +3ag + 2a5 + 2a6 + @7, + @ + 203 + 204 + a5 >,

<aq+as+agap >, <aq+as+ g, + @3+ 204 +as5 >, < @4+ Qs+ @g, @) + a2 + a3 + 204 +as >,
<y +as+ag, ) + @y +2a3 + 2a4 + 2a5 + 206 + @7 >,
< a4 +as + ap, +2a2+303 +4a4+3a/5+2&5+a'7 >,
< g+ as +ag, 2 + 2ap + 3a3 + 4ayg + 3as + 26 + @7 >, < @3 + @4 + as + g, @ + @z >,
<az +a4 +as+ag,a +a3 +2(1/4+a/5 >, < a3 +ay +as +ag, a1 +a2+2a3+2a/4+a/5 >,
<3+ ay+as+ag, ) +ay + a3+ 2a4 + 2as5 + 206 + @7 >,
<3+ a4+ as + ag, @) + 2 + 2a3 + dayg + 3as + 206 + @7 >,
<a@3+ag+as+ag,2a; + 2 +3a3 +4ay + 3as + 206 + @7 >, < @) + @3 + aq + as + ag, @3 >,
<otz +ag+as+ap,a)+ay+a3+2a4+ a5 >, <)+ a3+ a4 +as +ag, @) +ap +2a3 +2a4 +as >,
<a)p+az+agt+as+ag,ar +a3 +2(Z4+20’5 +2a5+a'7 >,
<a)+ a3+ ayg+as+ ag, a) + 2a + 2a3 + 4ay + 3as + 206 + a7 >,
<apt+aztagqt+as+ag,a) +2&2+3a’3 +4a/4+3a/5 +2a5+a/7 >, < ap +a/2+2a/3+3a4+2a5 +ag, a1 >,
<ap+ap+2a3 +3aq +2a5 + ag, @3 >, < @) + @z + 2a3 + 3a4 + 25 + g, @) + @3 >,
<ap +C¥2+2(}’3 +3(1/4+2(15 +(1/6,(12+(1/3+2(l4+2a5 +2016+a/7 >,
<ap+ay+2a3 +3aq + 2a5 + ag, a1 + @y + a3 + 2a4 + 2a5 + 206 + @7 >,
<ap +ap +2(¥3 +3(14 +205 + g, 1 + @ +2a3 +2(l4 +2(15 +2(¥6 + a7 >,

< g, @) >, < @, @3 >, < Qg, ] + @3 >, <@g, @] + 27 + 23 + 4ay + 3as + 2a6 + a7 >,
< ag, @) + 2 + 3a3 + day + 3as + 2a6 + a7 >, < @, 201 + 2 + 33 + day + 3as + 206 + a7 >,
<ay+ a3z +2a4 +as +ag,a3 >, <@+ a3 +2a4 + as + ag, @ + @ + a3 + 24 +as >,
<@y + a3 +2a4 +as +ag, @) + @y +2a3 + 204 + as >,
<y + a3 +2a4 +as +ag, @ + ar + @3 + 204 + 2a5 + 206 + @7 >,
< ap +a/3+2a/4+a/5 + g, @] +a2+2a3+2a/4+20z5 +2(}’6+(Y7 >,
<@y + a3 +2a4 + as + ag, 21 + 2an + 3a3 + 4ay + 3as + 206 + @7 >,
<y +ap +(l3+za/4+(25 +ag, 1 +@3 >, <a)+ay+a3 +2(14+a'5 + g, a2 + @3 +2(1’4+Ck5 >,
<@y +a+az+2a4 +as + ag,ap + @ +2a3 + 204 + as >,
<ayp+a+as +204+(¥5 + g, a2 + @3 +2(I4+2Cl5 +2(Z6+Cl7 >,
<ap+ay +a3 +2(Z4+(15 +116,(11+(12+2(Z3 +2@4+2a5+2a6+a7 >,
<ay+ap+az+2a4 +as + ag, ap + 20 + 3a3 + 4ay + 3as + 206 + @7 >,
<a/1+a2+2a/3 +2(¥4+(¥5 + g, a] >,<(Yl+(12+2(l3 +2(1’4+(15 + g, a2 + @3 +2a/4+a/5 >,
<ap+ap+2a3 +2a4 + s + ag, @) + a2 + @3 + 204 + as >,
<(21+(lz+2(23+204+(25 +a6,a/2+a3+2a4+2a/5 +2(16+(I7 >,
<ap+ap +2a3 +2a4 + s + ag, @) + @2 + @3 + 2a4 + 2as5 + 206 + @7 >,
<ap +(22+2(I3 +2(l4+(15 + g, @] +2(l’2+2(l/3 +4(Z4+3(25 +206+(l7 >
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Az +A2 + A

<ag,ay,ap + @3 + 2a4 + 25 + 26 + @7 >, < aq, @1, @1 + 200 + 33 + 4day + 3as + 206 + @7 >,
< ay,q] +a'2+2a/3 +2a4+a5,a2+a3 +2(l4+2(1/5 +20/6+a/7 >,
<@g, + @y +2a3 + 2a4 + as, @) + ap + @3 + 204 + 205 + 206 + @7 >,
<@z +a4,a) + @3,y + @3 + 2aq + 2as + 206 + a7 >,
<asz+ag,a) +a3,qq +2112+2(1/3 +4(l4+3a’5 +2a6+a7 >,
<a3+ay,a) +ay + a3+ 204 +as,ap + a3 + 2a4 + 2a5 + 206 + a7 >,
<azt+tag,a1 +ay +a3 +2(1/4+a/5,(11 +(12+2(l3 +2&4+26¥5+2a5 + a7 >,
<ap+ a3+ ag, a3, ) +ay + @3 + 2a4 + 205 + 206 + @7 >,
<ap+a3+ay4,a3,q1 +2(1/2 +2(Y3 +4a4+3a5 +2a6+a7 >,
<ap+asz+ag,ap+ a3 +2a4 +as, @) + @y + a3+ 2a4 + 205 + 206 + a7 >,
<y +a3+ag,a) + a3 + 24 + as, @) + @y + 2a3 + 24 + 2a5 + 206 + @7 >,
<ap +112+2(1/3 +3Q4+2£¥5 +2(L/6+CK7,LY1,(13 >,
<ap +ap +2(l’3 +3ay +2(I5 +2(l6 +a7,a1,ap + a3 +2ay +as >,
< ap +02+20/3 +3(1/4+2(15 +2(tﬁ+a7,af3,a1 +ay +a3 +2a/4+015 >,
<ay+ap +2a3 + 3aq + 2as5 + 206 + @7, + @3, + @3 + 24 + @5 >,
<ayg+as+ag,a),a +as3 +2(Y4+a/5 >, <4 +as+ap,a1,aq] +202+3a3 +4a4+3a/5 +2a/6+a/7 >,
<ag+as+ag, @y + a3 +2a4 + as, ) + ap + 23 + 2a4 + 2as5 + 206 + a7 >,
<ag4+as+ag,a) +ay+ a3+ 24 +as, @) +ap +2a3 + 2a4 + 2as5 + 206 + @7 >,
<3+ ag+as+aga) +az, @ +az + 24 + as >,
<az+ag4 t+as+aga) +a3,a] +2a2 +2(l3 +4(¥4 +3(l5 +2(16 + a7 >,
<3+ ag+as+ag+ a3+ 204 + as,a) + @ + a3 + 24 + 2as5 + 206 + @7 >,
<a3+ag+as+ag,a) +ay + 203 + 24 + s, a1 + ar + a3 + 2a4 + 205 + 206 + @y >,
<ay+a3z+aq +as5+ag,a3,@1 +a2 +a3+2a4+a5 >,
<@+ a3+ ag+as+ag, a3, ) + 2 + 2a3 + dag + 3as + 2a6 + @7 >,
<ay+az3taq+as+ag,a) +ay +a3 +2a4+a5,a2+a3+2a4+2a5+2a/6+a7 >,
<yt a3z +ag+as+ag,ap +ay +2a3 + 204 + as,ap + @3 + 2a4 + 2as5 + 206 + @7 >,
<ap +ap +2a3 + 3a4 + 205 + ag, a1, @3 >,
<ap+ap+2a3 +3ag + 2a5 + ag,y, @2 + @3 + 204 + 25 + 206 + @7 >,
<ap+ap +2a3 + 34 + 205 + @6, @3, @) + @ + @3 + 24 + 205 + 206 + @7 >,
<ap +a2+2a3 +3C¥4+2(15 + ag, a1 +@3,a2 + @3 +2(Z4+20’5 +2a5+a'7 >,
< g, 1,3 >, < g, @1, + 2a3 + 3a3 + dag + 3as + 2a6 + @7 >,
< ag,a3,qq +2(22+2(13 +4a4+3a5+2a/6+a7 >, < g, a1 +@3,Q] +2(1/2+2(Y3 +4a/4+3a'5+2a/6+a/7 >,
<y + a3 +2a4 +as + ag, @3, @) + @ + @3 + 24 + as >,
<ap+ a3 +2(1/4+(1’5 + g, @3, + a2 + Q3 +2(1/4+2(15+2a6+0z7 >,
<@y + a3 +2a4 +as+ag, ) +ar + @3 +2a4 +as, @) + a2 + 23 + 2a4 + 2as5 + 206 + @7 >,
<ay+a3 +2ay + as + g, @) +(L’2+2a/3 +2(14+a5,(z| +ay +a3 +204+2(I5 +2(l6+(l7 >,
<ap+ay+a3+2a4 +as+ag,a) + @3, + a3 +2a4 + as >,
<ay+ay+az+2a4 +as + ag, ) + a3, @ + a3 + 2a4 + 2as5 + 26 + a7 >,
<ap+ayt+as +2C¥4+(25 + g, ap + @3 +2a/4+a/5,a/1 +a/2+2a/3 +2cv4+2a5+2a5+a7 >,
<ap+ay+az+2a4 +as +ag, @) + @ + 203 + 204 + s,y + @3 + 2a4 + 2a5 + 206 + @7 >,
<y +ap +2a3 +2a/4+a/5 + g, a1, @) + 3 +20'4+0/5 >,
<ap+ap+2a3 + 204 + as + ag, @1, @ + @3 + 204 + 205 + 206 + @7 >,
<ap+ap +2(l3 +2a4 +as +ag,ap + a3 +2&4 +as, a1 +ap + a3 +2(1/4 +2(Z5 +2&6 + a7 >,
<ap+ap+2a3 + 24 + as + ag, ) + @ + @3 + 24 + @5, + @3 + 2a4 + 205 + 206 + @7 >
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< ag,®6, @] >, < 4,06, @1 + 203 + 33 + dag + 3as + 2a6 + @7 >,
<a4,a6,2a1 +2&2+3(l3 +4a/4+3a/5 +2a6+a/7 >, < ay4,q] +(12+2(1/3 +2a4+a5 + g, a1 >,
<@g, + @y +2a3 + 2a4 + as + g, 2 + @3 + 204 + 205 + 206 + @7 >,
<y, +ay + 23 + 204 + a5 + g, @) + @2 + @3 + 204 + 205 + 206 + @7 >, < @3 + @4, @6, Q] + @3 >,
< a3+ ayg, a6, ) + 20 + 203 + day + 3as + 206 + a7 >,
< @3+ a4, @6, 201 + 200 + 33 +4as +3a5 + 206 + @7 >, < @3+ @4, @1 @2 + @3+ 204 + @5 + @6, @) +@3 >,
< a3+ a4,q +az+a3+204+a5 + g, @2 +a3+2a4+205 +2016+a7 >,
<3+ ag,a) +ay+ a3 +2a4 +as + ag, @) + @y + 2a3 + 24 + 205 + 206 + a7 >,
<ayp+a3+ay4,q6,3 >, <) +a3 +a4,Q06, 01 +2a2+2a3 +4a/4+3a/5 +2(}'6+(l7 >,
<ap+az+ay, a6, +2a) +3a3 +dayg +3as + 206 + @7 >, < @] + @3 + g, @ + @3 + 204 + a5 + ag, @3 >,
<ap+a3 +a4,a2 +a@3 +2(1/4+(15 + g, @1 + @ + 3 +2(1‘4+2(1/5 +2(16+(1/7 >,
<a)+ a3+ ag,a + a3 +2a4 +as + ag, @) + @y +2a3 + 2a4 + 2a5 + 206 + a7 >,
<4 +as+ap, @) +a +2(l3 + 2y +as + ag, @1 >,
<4+ as+ag,ap + @ +2a3 + 204 + s + @g, @ + @3 + 204 + @5 >,
<@g+ as+aga) +ay +2a3 + 204 + as + g, @) + @y + @3 +2a4 + as >,
<az+aq+as+ag,a) +ay +a3 +2a/4+a/5 + g, )] + @3 >,
<@z +ag+as+ag,a) +ay+ a3+ 24 +as + ag, a0 + @3 + 204 + as >,
<@z +a4+as+ag,a) +ay+ a3+ 24 +as + g, @) +ap +2a3 + 204 + as >,
<ap+az+ag+as+ag,ar + a3+ 2a4 + as + ag, @3 >,
<ap+az+taygt+as+agar+a3 +2a4 +as +ap, ) +ap +a3 +2(¥4 +as >,
<ap+a3z+ag+as+ag,ar + @3+ 2a4 + as + ag, @) + @y + 23 + 204 + as >,
<ap+ay +2a3 + 3a4 + 205 + ag, ap, @1 >, < @) + @ + 23 + 34 + 2a5 + ag, g, @3 >,
<ap+a +2013 +304+205 + ag, g, ] + @3 >,
< ag,a3 +aq +as +ag, ] + @y +2a3 + 204 + as >,
<a4,a3 +ay4 +as +ag,a) +ap + a3 +2cz4+2a5+2a6+a7 >,
< @q,@3 + a4 + as + ag, 2a1 + 2ap + 3a3 + dag + 3as + 2a6 + a7 >,
<ag,q] + @3+ a4+ as + ag, @) + @ + 203 + 204 + as >,
<4, + Q3+ a4 +as + ag, @ + a3 + 24 + 2as5 + 206 + @7 >,
<4, + @3+ a4 +as + g, + 200 + 3a3 + 4ag + 3as + 206 + @7 >,
<a@3+a4,a4 +as +ap, a1 +a2 +a3 +2&4+(¥5 >,
<3+ ag,a4 +as +ag, @) + @ +2a3 + 2a4 + 25 + 206 + @7 >,
<@z +a4,a4 +as +aﬁ,2a1 +2a/2+3a3 +4a'4+3a5 +2a5+a7 >,
<3+ ag,a) +a3+ay+as+ag,a) + @ + a3+ 24 +as >,
<3+ a4,a] + a3+ a4+ as + ag, @y + @3 + 24 + 2a5 + 206 + @7 >,
<@z +ag,a) +a3+ag +as + ag, @) + 202 +2a3 + 4day + 3as + 2a6 + @7 >,
<ap+az+ayg,a4 +as+ g, +@3 +2ay +as >,
<apt+az+ag,a4 +as +ag,q) +(1/2+2(Z3 +2(t4+20(5 +2£¥5+a7 >,
<@y + a3+ ag, a4 +as + ag,aq + 2z + 3a3 + dag + 3as + 2a6 + @7 >,
<ap+a3+a4,a3 a4 +as5 +ag, a2 +a3+2a4+a5 >,
<@+ a3+ ag, a3 +ag +as + ag, @) + @ + @z + 24 + 2a5 + 206 + a7 >,
<)+ a3+ ag,a3 + a4+ as + ag, @) + 20 + 2a3 + dayg + 3as + 2a6 + @7 >

As + A

E7 <ay,az,q3,q4,as, Q6,7 >

Table 16: Realisations of the sub-root systems containing ® for A(T") = E¢

The description of E7 will be the same as the one in Section 4.6. Therefore i’ € H,, N Hos N Hy, if and only if
& =-&, 8 =& and & = &s.

Using [1] and [10], one can compute the flat coordinates of E; restricted to the subspace Hy, N Hos N Hy, C U,
i.e. as functions of &1,&3,&5 and &7. We will not give these expressions because of their extensive size. For example,

18 contains 220 terms.

It can be verified that
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82928 2 9
Yo = 222y3- 3l//zl//6+§¢’21//8,
_ _12190772504 7, 7281979 ,4,, _ 471547 ;3 3779
Ya = 219805 V2t 1522152 ¥2¥6 ~ 75026428 * Gr65120¥2%6
413490 1
8613 lelﬁz 25920w6¢8,
__1271044247268145576 ,9 | 256749355304 , 6, _ 12475637391961 ,5
Yis = 94705443405 Yo + 25982289 Yavs 9093801150 Yais
6360724111 470160383920 3 5935967
3117874680‘/’2‘/’6 3756131 V12¥2 — 41810580'71’2'!’6‘/’8
101699 20
~ 50970800 V2V 52488 saass ¥ — 37%12V6-
Define
fow bW
15}
167353 _
f ) 3000t
4884005 ,4 360500
0 oy L~ T hle+ 50000zg
113
- B3 - 63001316 + 22901514
13
1533855367 ,6 _ 5865805 29273752, 343752
0 Satss00 15— g bole + Zsgy oty = Y53 tg — 312511
to 4794135161101 2226935425 4 4765011875 .3, _ 103796875 . 2 229656250 156250
9205975296 t2 6088608 1216 T ~0s5074 1218 28188 1216 go13  2l2+ —57— lels
53845033157553005 46 2973773239515500 .5 2028480753289375 3.2 3997692756437500 t’;t 6356187500001 [2
8418261636 2l6— 545628069 28~ 155893734 26 95268393 77427 210

74647399081995101197 .9

GZSOOOOOZ S+ 32999899562500
696843

Bt5l5— 218201341605120 12

132812500 l%
243 6

The morphism f is injective and if (Y2, Y6, s, Y10, Y12, ¥14,Y18) € ' (Hy, N Hoy N Hy, ), then by setting

b =Y,

le = ;Zgng 3000'706’

fg = mlﬁs %Wé - %lﬁz%,

ha = i§3333333§3 1,/13 - 973;023050900 'ﬁ%‘/’G + 633(3)3(1)300 ‘/’29/’3 648000000 ¢6 31125 Y2,

it follows that f(,,0,1,13,0,112) = (Y2, Y6, ¥s, Y10, Y12, Y14, ¥13). Hence

[ (o/w)e 7' (Hay M Hos MHay) €O /W'

Let ¢’ be a sub-root system in Table 16, and set i’ € Nyep H,. With the preceding expressions, we compute
(12,0, 16,13,0,112) = f~1(#' (")), and verify the following correspondence:

¢’ of type A1 + A1 + Ay — (t2, 16, I3, 12 ) generic,

¢ of type Az + A, > (to.te, 13, t12) € Hy,

¢’ of type Dy + A, —— (tntettn) e HiIN{ts = &= ’2+96’6}

¢’ of type Ds + A, (et 112) € HiN{ts = 5 ’2+96’6 {8 + 86 = 0},
¢’ of type Dg > (ndets.012) € HIN{ts = o ’2+96’6 }N{8 - 85 =0},
¢’ of type As > (f2, 16,13, 112) € Hi N{ts = 192l2 + t2t6}’

¢ of type Aj + A + A + Ay > (tp,le, 13, 112) € Ho\H1,
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¢ of type Ay +Aj + A1+ Ay <> (il 05,112) € Ha{ts = — 13513 — §1ale }

¢ of type A3 + A| + Aj > (t2, 16, 13, 112) € H1 N Ha,

¢ of type Az + Ay + A (e ts,tn) e HiNHaN{ts = — 15513 — 11at6 )},
¢’ of type As + A, > (ntets.tn) € HINH2N{ts = —q5515 + 1ale )
¢’ of type E7 — (t2, 16, 13, 112) = (0,0,0,0).

With Table 15, we see that the singular configuration in the fiber of @@ above f~!(7'(h')) is of the same type as ¢'.
Hence for E¢ — F4 — E7, the map f realises a bijection between the singular configurations of the fibers of @ and the
sub-root systems of E; containing @ = {a,, as,a7}.

Conclusion

Conjecture 3.1 and the subsequent proof (Theorem 3.2) for small rank cases give a direct link between the singular

configurations of the fibers of the deformation @ of a simple singularity of type A(I"") and sub-root systems of a root
system of type A(T”). As every fiber of o is singular (Theorem 2.3) and as the Dynkin diagram associated to the
singular configuration of such a fiber has to contain the subset @ of simple roots of a root system of type A(I"), this
subset O characterises how far the morphism o is from being isomorphic to the semiuniversal deformation XII s, of
the simple singularity of type A(T").
The full proof of Conjecture 3.1 requires another approach. Indeed the proof presented in Section 4 is based on
direct computations of the singular configurations of the fibers of @ and of . But these computations themselves
stem from the equation of the deformation a®, which is not known when o is the semiuniversal deformation of a
simple singularity of type C,, r > 6 (i.e. ' = D,y and I'" = D,(,_;)). This is due to the fact that in order to obtain
a®, we need to determine the independent cycles of M(T") (cf. Section 1.2), and as the dimension vector of M(T) is
(1,1,2,....,2,1,1), the 2-dimensional vertices introduce a complexity in the relations between the cycles, complicating
the computation of @ when the rank r increases (cf. [4] Section 4.3.7 for details). The author is therefore working
on a more general approach which would provide a proof of Conjecture 3.1 in all generality.
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