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Abstract

The issue to predict the behavior of building materials during wide horizons of time is still

challenging. Experimental set-ups, since they require to perform tests for several years, are costly,

never at the full scale and inconvenient. Building Performance Simulation (BPS) programs are de-

signed to perform predictions on computational machines and cut experimental costs significantly.

Nonetheless, in the recent review of state–of–the–art, it was indicated that despite the wide range

of programs, there are still some drawbacks in terms of the accuracy and the high computational

cost. This paper investigates the application of an innovative numerical method, called Super–

Time–Stepping (STS) method. It allows performing accurate simulations with time-steps much

larger than with standard explicit approaches. These "super" time-steps also enable us to reduce

the computational cost. In addition to that, the design of the method allows easier application

for models in higher dimensions and with nonlinear parameters. The efficiency of the method

is tested on linear and nonlinear academic cases. Further study for the reliability of the model

is performed on an experimental case study. The experiment has been carried out on a rammed

earth wall during almost 14 months. Obtained data is presented in this article and implemented

into proposed model. As a result of the case studies, it is shown that in comparison to the EULER

explicit method, the STS methods can cut costs by more than five times while maintaining high

accuracy and efficiency. A very fine analysis of the physical phenomena is also performed.

Keywords: porous material; numerical simulation; heat and moisture transfer; super–time–

stepping; rammed earth; long-term simulation
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1 Introduction

Assessing the long-term behavior of building envelope’s moisture damage is crucial [1, 2]. Ex-

perimental set-ups are costly, never at the full scale and inconvenient since they require to perform

tests for several years. Various Building Performance Simulation (BPS) programs are established

to perform predictions on computational machines and cut experimental costs significantly. To list

only a few, one can mention DELPHIN [3], WUFI [4] and Domus [5]. These programs include

numerical models to simulate, among other phenomena, coupled heat and moisture transfer.

The physical phenomena of coupled heat and moisture transfer have been studied in depth

from the 1950s [6]. Since then, there is no consensus on the numerical strategies to solve such

class of nonlinear parabolic problems [7–15]. On one hand, the traditional explicit methods are

simple and accurate to implement. It can also be argued, that the best practice to solve coupled

problems numerically is to employ the explicit numerical schemes. However, problems with a

nonlinear behavior of the materials necessitates very fine space and time discretizations (especially

for a long-term or a whole building scale simulations). As a result, classical explicit approaches

are overly restrictive for the choice of time-steps to satisfy the numerical stability. On the other

hand, there are implicit schemes, which are free from stability conditions and moderately efficient

but can be comparatively complicated to use in practice. They lack robustness for sufficiently

nonlinear problems by requiring sub-iterations to treat nonlinearities. This, in turn, considerably

increases computational costs. In the works of CLARK and KAVETSKI [16, 17] the traditional

time-stepping methods have been critically evaluated by their fidelity and efficiency. It was shown

that each of the classical methods has certain restrictions. Need for innovative approaches has

been highlighted. The goal of this article is to demonstrate that there exists a class of robust

methods.

Among others, two main limitations of traditional methods implemented in BPS programs

are discussed in this article. They are the high computational cost and the choice of a very fine

numerical grid. The innovative numerical schemes proposed in this work enable to overcome both

of them while retaining the advantages of an explicit formulation.

Despite its history of almost 40 years [18], the group of methods called Super–Time–Stepping

(STS) is novel to the state-of-the-art of building simulations. It has already proved to be suffi-

ciently efficient in decent studies from applied mathematics [19–22]. But it is employed only

for a limited range of parabolic problems and almost never practically used. This is unfortunate,

because, first of all, the method claims to be a very powerful tool to cut computational costs in

a very simple way. Basically, it enables to relax stability restriction for a time discretization of

the explicit scheme by performing a certain number of "jumps" over several time-steps. If the

number of these jumps is N S, then the new time-step shall be at least N 2
S times bigger than the

explicit one. As the stability is forced only on big steps (or supersteps), the computational gain

is proportional to the number of supersteps, N S. The advantages can be quite dramatic as N S

increases.

Secondly, compared to the unconditionally stable implicit schemes, the STS method is much

easier to implement (thanks to an explicit formulation). The design of the method implies easier

applications for models in higher dimensions and with nonlinear properties. The notable ap-

plications to linear and nonlinear parabolic problems were performed in [23–25]. In the works

of ALEXIADES [24, 25], the method was inspired by the recursion relations associated with the

CHEBYSHEV polynomials. The STS method was then further developed by MEYER et al. [20, 21]

by introducing the methods based on the recursion relations of the shifted LEGENDRE polynomi-

als. The properties of both polynomials allow ensuring the stability of the method at the end of
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each iteration stage, i.e. at the end of a cycle of N S time-steps. Consequently, it is believed that

with the STS method it possible to employ the discretization with larger super-time-steps and to

cut computational costs.

In this work, it shall be proved that the STS method can be far more efficient than the well-

known EULER explicit scheme in application to the building heat and mass transfer phenomena.

Another improved explicit approach, namely DU FORT–FRANKEL method is used for a critical

assessment of the STS method. The method was deeper explored in the works of GASPARIN et

al. [26, 27].

As the first evaluation step, the schemes will be validated for two case studies of linear and

nonlinear heat and moisture transfer models. The application to the real case study will be the next

step to validate the fidelity of the proposed numerical models for long-term simulations. Then, the

predictions of the numerical models shall be compared with more than 14 months of experimental

observations, obtained in previous investigations for the drying of a rammed earth wall [28–30].

The article is organized as follows. The mathematical model to reproduce the physical phe-

nomena is presented in Section 2. It follows with the description of the numerical methods in

Section 3. Validation of the reliability and accuracy of schemes are performed for two cases with

linear and nonlinear material properties in Section 4. Finally, after successful tests, the proposed

methods are assessed for their fidelity by application to a real case study. A broad presentation

of the experimental set-up, the physical phenomena and the numerical application are detailed in

Section 5.

2 Mathematical Model

This section provides a short summary of the general formulation of the heat and moisture

transfer phenomena. Governing equations are synthesized from expressions of physical flows.

Boundary conditions are written as a linear combination of temperature and moisture concentra-

tion differences. The adopted procedure to calculate the vapor concentration difference is also

presented. In the end, the dimensionless formulation is described for the governing equations and

the boundary conditions.

2.1 Heat and mass balance

The governing equations are based on the conservation equation for liquid and vapor masses,

and on the energy conservation equation [31–33]. The model is formulated for the one-dimensional

heat and moisture transfer through a porous material. The equations are defined by the spatial do-

main Ω x = [ 0, ℓ ] and the time domain Ω t = [ 0, τ ], where ℓ
[
m
]

is the thickness of a wall

and τ
[
h
]

is the final time. The material is represented by a solid matrix and fulfilled in the pores

by water in vapor and liquid states. The dry air phase is not taken into account in the model. The

schematic representation of the wall is illustrated in Figure 1. The subscripts 0 , 1 and 2 represent

the dry state of the material, the water vapor and the liquid water, respectively. The mass balance

reads as in [32]:

ρ 2 ·
∂θ

∂t
= −

∂j 12
∂x

, (2.1)

where ρ 2

[
kg/m 3

]
is the specific mass of liquid water and θ

[
∅

]
is the volumetric moisture

(liquid plus vapor) content. Density of the moisture flow rate, j 12
[
kg/(m 2 · s)

]
, includes the

water vapor flow rate j 1 and the liquid water flow rate j 2, so that j 12 ≡ j 1 + j 2.
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Figure 1: The schematic representation of the wall.

The energy conservation equation enables to compute the temperature T
[
K
]

evolution as in

[32]:
(
ρ 0 · c 0 + ρ 2 · c 2 · θ

)
·
∂T

∂t
= −

∂j q
∂x

− L ◦
12 ·

∂j 1
∂x

, (2.2)

where ρ 0

[
kg/m 3

]
is the specific mass of the dry material, c 0

[
J/(kg · K)

]
is the material heat

capacity and c 2
[
J/(kg · K)

]
is the water heat capacity. The quantity j q

[
W/m 2

]
is a sensible

heat flow rate. The latent heat of vaporization L ◦
12

[
J/kg

]
is taken as a positive constant value.

2.2 Expression of the flows

The total moisture flow rate can be expressed depending on the temperature T
[
K
]

and mois-

ture θ
[
∅

]
gradients ([31, 32]):

j 12 = −

(
D θ ·

∂θ

∂x
+ DT ·

∂T

∂x

)
, (2.3)

where D θ

[
m 2/s

]
is the diffusion coefficient under moisture gradient and DT

[
m 2/(s · K)

]
is

the diffusion coefficient under temperature gradient. D θ and DT are functions of T and θ:

D θ : (T, θ ) 7→ D θ (T, θ ) ,

DT : (T, θ ) 7→ DT (T, θ ) .

The sensible heat flow rate j q is defined using the FOURIER law:

j q = − kT ·
∂T

∂x
, (2.4)

where kT

[
W/(m · K)

]
is the thermal conductivity of the material, that depends on T and θ:

kT : (T, θ ) 7→ kT (T, θ ) .

Lastly, the vapor flow rate j 1 is written as in [31, 32, 34]:

j 1 = − kTM ·
∂θ

∂x
, (2.5)

where kTM

[
kg/(m · s)

]
is the vapor transfer coefficient under a moisture gradient, defined as

follows:

kTM : (T, θ ) 7→ kTM (T, θ ) .

It should be noted that the vapor transfer coefficient under the temperature gradient (the so-called

SORET effect) can be neglected in building components [34, 35].
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2.3 Governing equations

For the sake of clarity, the so-called global heat storage coefficient cT
[
W · s/(m 3 · K)

]
is

introduced as in [36]:

cT : θ 7→ ρ 0 · c 0 + ρ 2 · c 2 · θ .

Using the expression of the flow rate given by Equations (2.3) – (2.5) combined with the mass and

heat balance Equations (2.1) and (2.2) respectively, the mathematical model can be expressed as:

ρ 2 ·
∂θ

∂t
=

∂

∂x

(
D θ ·

∂θ

∂x
+ DT ·

∂T

∂x

)
, (2.6a)

cT ·
∂T

∂t
=

∂

∂x

(
kT ·

∂T

∂x

)
+ L ◦

12 ·
∂

∂x

(
kTM ·

∂θ

∂x

)
, (2.6b)

which is a system of two coupled partial differential equations with respect to two unknowns T

and θ.

2.4 Boundary conditions

At the interface between the material and the ambient air, the sensible heat flow rate j q de-

pends on the values at the interface and the ambient air conditions:

n · ( j q ) = hT ·
(
T − T∞

)
, (2.7)

where n ∈ {−1 , 1 } is the outward unit normal vector, projected on the Ox axis. The vector

assumes + 1 at the left and − 1 at the right boundary sides (see Figure 1 for the schematic

representation of the wall). hT

[
W/(m 2 · K)

]
is the surface heat transfer coefficient, which is

also a function of time t:

hT : t 7→ hT ( t ) ,

T is the surface temperature at x = { 0, ℓ }, T∞ is the ambient air temperature given as a

function of time t ∈ [ 0, τ ]:

T∞ : t 7→ T∞ ( t ) .

According to MENDES et al. [32], the assumption is made that moisture flow between a porous

medium and the air can be written as a function of a vapor concentration difference:

n · ( j 1 ) = hM ·
(
ρ 1 − ρ 1,∞

)
, (2.8)

with ρ 1

[
kg/m 3

]
being the vapor concentration at the surface (x = { 0, ℓ }). ρ 1,∞ is the vapor

concentration in the ambient air, which is taken as the time dependent variable:

ρ 1,∞ : t 7→ ρ 1,∞ ( t ) ,

The parameter hM

[
m/s

]
is the surface vapor transfer coefficient, defined as a function of time

t:

hM : t 7→ hM ( t ) ,

It is possible to present the vapor concentration difference as a combination of the temperature

and moisture concentration differences. For this purpose, the first step is to assume, that the water
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vapor behaves as a perfect gas. Also, one can recall that the vapor pressure can be written as a

product of the saturated pressure P sat

[
Pa
]

and the relative humidity ϕ
[
∅

]
, which yields:

ρ 1 − ρ 1,∞ =
P sat · ϕ ·M

R 1 · T
−

P sat,∞ · ϕ∞ ·M

R 1 · T∞

or,

ρ 1 − ρ 1,∞ =
ϕ∞ ·M

R 1
·

(
P sat

T
−

P sat,∞

T∞

)
(2.9)

+
M

R 1
·
P sat

T
·
(
ϕ − ϕ∞

)
,

where R 1

[
J/( kg · K)

]
is the gas constant of vapor, M

[
kg/mol

]
is the molecular mass, P sat,

P sat,∞ and ϕ, ϕ∞ stand for the saturated pressure and the relative humidity on the surface and

of the air respectively. The saturation pressure P sat is a function of temperature T and can be

approximated according to [37] as follows:

P sat : T 7→ exp

(
65.81 −

7066.27

T
− 5.97 · log (T )

)
.

It is also important to note that the relative humidity ϕ depends on the moisture content θ of the

material:

ϕ : θ 7→ ϕ ( θ ) .

The relative humidity can also be calculated as a first-degree function with small errors for

a certain range of the moisture content. According to MENDES et al. [32], by introducing a

residual function r related to the moisture content on the surface, one can increase accuracy of

such substitutions. Therefore, one can write the following functions:

r : θ 7→ ϕ ( θ ) − ϕ̃ ( θ ) ,

where ϕ̃ : θ 7→ A · θ , with A being a coefficient from linear approximation of function ϕ ( θ )

(see Figure 2). Using the first order TAYLOR expansion [38], the function ϕ̃ ( θ ) can be written in

the other way as:

ϕ̃ ( θ ) = ϕ ( θ∞ ) +
d ϕ̃

d θ
·
(
θ − θ∞

)
+ O

( (
θ − θ∞

) 2 )
, as θ → θ∞ ,

where θ is the surface moisture content at x = { 0, L }. The moisture content in the ambient air

θ∞ is taken as a time dependent variable:

θ∞ : t 7→ θ∞ ( t ) .

Thereby, the second term on the right-hand-side of Equation (2.9) becomes:

ϕ − ϕ∞ =
d ϕ̃

d θ
·
(
θ − θ∞

)
+ r ( θ ) .

Finally, Equation (2.9) is written as:

ρ 1 − ρ 1,∞ =
ϕ∞ ·M

R 1
·

(
P sat

T
−

P sat,∞

T∞

)

+
M

R 1
·
P sat

T
·

(
d ϕ̃

d θ
·
(
θ − θ∞

)
+ r ( θ )

)
.
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Figure 2: The schematic description of the functions ϕ ( θ ), ϕ̃ ( θ ) and r ( θ ).

Lastly, assuming that there is no liquid water coming from the ambient environment, for the

moisture balance Equation (2.1) the boundary condition is expressed as:

n ·

(
D θ ·

∂θ

∂x
+ DT ·

∂T

∂x

)
=

hM ·M

R 1
· ϕ∞ ·

(
P sat

T
−

P sat,∞

T∞

)

+
hM ·M

R 1
·
P sat

T
·

(
d ϕ̃

d θ
·
(
θ − θ∞

)
+ r ( θ )

)
, for x = { 0, ℓ } . (2.10)

Using Equations (2.7) and (2.9), we obtain the boundary condition for the heat balance Equa-

tion (2.2):

n·

(
kT ·

∂T

∂x
+ L ◦

12 · kTM ·
∂θ

∂x

)
= hT ·

(
T − T∞

)
+L ◦

12·
hM ·M

R 1
·ϕ∞·

(
P sat

T
−

P sat,∞

T∞

)

+ L ◦
12 ·

hM ·M

R 1
·
P sat

T
·

(
d ϕ̃

d θ
·
(
θ − θ∞

)
+ r ( θ )

)
, for x = { 0, ℓ } . (2.11)

Boundary conditions, considered in this section, represent the general overview. According

to this results, any type of boundary conditions can be further derived, depending on the avail-

able data of heat and moisture transfer. In the next section, presented dimensionless formulation

enables to solve whole class of such problems.

2.5 Dimensionless formulation

The governing equations together with boundary conditions are solved numerically in a di-

mensionless form. The solution in dimensionless formulation has advantages such as application

to a class of problems sharing the same scaling parameters (e.g. FOURIER and BIOT numbers)

[39, 40], simplification of a problem using asymptotic methods [41] and restriction of round-off

errors.
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For this purpose, the following dimensionless quantities are defined:

v
def
:=

θ

θ ◦
,

v∞

def
:=

θ∞

θ ◦
,

u
def
:=

T

T ◦
,

u∞

def
:=

T∞

T ◦
,

ϕ ⋆
∞

def
:=

ϕ∞

ϕ ◦
∞

,

P ⋆
sat

def
:=

P sat

P ◦
sat

,

where the superscripts ◦ and ⋆ represent a characteristic value of a dimensionless variable. Di-

mensionless quantities of space and time domains are:

x ⋆ def
:=

x

ℓ
, t ⋆

def
:=

t

t ◦
.

Material properties can be written in dimensionless form as follows:

D ⋆
θ

def
:=

D θ

D ◦
θ

,

D ⋆
T

def
:=

DT

D ◦
T

,

c ⋆T
def
:=

cT
c ◦T

,

k ⋆
T

def
:=

kT

k ◦
T

,

k ⋆
TM

def
:=

kTM

k ◦
TM

.

The FOURIER numbers are defined as:

FoM
def
:=

t ◦ · D ◦
θ

ℓ2 · ρ 2
, Fo T

def
:=

t ◦ · k ◦
T

ℓ2 · c ◦T
.

There are also dimensionless coupling parameters:

γ
def
:=

D ◦
T · T ◦

D ◦
θ · θ

◦
, δ

def
:= L ◦

12 ·
k ◦
TM · θ ◦

k ◦
T · T ◦

.

The BIOT numbers can be expressed as:

Bi sat
M

def
:=

ℓ · ϕ ◦
∞ · hM ·M

D ◦
θ · θ

◦ · R 1
·
P ◦

sat

T ◦
· ϕ ⋆

∞ ,

Bi θM
def
:=

ℓ · hM ·M

D ◦
θ · R 1

·
P ◦

sat

T ◦
·
d ϕ̃

d θ
·
P ⋆

sat

u
,

Bi TT
def
:=

ℓ · hT

k ◦
T

,

Bi sat
T

def
:= L ◦

12 ·
ℓ · ϕ ◦

∞ · hM ·M

k ◦
T · T ◦ · R 1

·
P ◦

sat

T ◦
· ϕ ⋆

∞ ,

Bi θT
def
:= L ◦

12 ·
ℓ · θ ◦ · hM ·M

k ◦
T · T ◦ · R 1

·
P ◦

sat

T ◦
·
d ϕ̃

d θ
·
P ⋆

sat

u
.

Finally, additional flux terms of the boundary conditions can be formulated as:

GM
def
:=

ℓ · r ◦ · hM ·M

D ◦
θ · θ

◦ · R 1
·
P ◦

sat

T ◦
·
P ⋆

sat

u
· r ⋆(u ) ,

GT
def
:= L ◦

12 ·
ℓ · r ◦ · hM ·M

k ◦
T · T ◦ · R 1

·
P ◦

sat

T ◦
·
P ⋆

sat

u
· r ⋆(u ) ,

where r ⋆(u ) is the dimensionless formulation of the residual function r ( θ ).

For the model given in Equation (2.6), the equations representing mass – v and heat – u

transfer in porous material can be written in the dimensionless form for x ⋆ ∈
[
0 , 1

]
and t ⋆ ∈[

0 , τ
]
:

∂v

∂t ⋆
= FoM ·

∂

∂x ⋆

(
D ⋆

θ ·
∂v

∂x

)
+ FoM · γ ·

∂

∂x ⋆

(
D ⋆

T ·
∂u

∂x ⋆

)
, (2.12a)

c ⋆T ·
∂u

∂t ⋆
= Fo T ·

∂

∂x ⋆

(
k ⋆
T ·

∂u

∂x ⋆

)
+ Fo T · δ ·

∂

∂x ⋆

(
k ⋆
TM ·

∂v

∂x ⋆

)
. (2.12b)
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The initial conditions at t ⋆ = 0 are u 0 = v 0 = 1 for ∀x ⋆ ∈
[
0 , 1

]
. The boundary

conditions at the surface x ⋆ = { 0, 1 } are defined as:

n ·

(
D ⋆

θ ·
∂v

∂x
+ γ ·D ⋆

T ·
∂u

∂x ⋆

)
= Bi sat

M ·

(
P ⋆

sat

u
−

P ⋆
sat ,∞

u∞

)

+ Bi θM ·
(
v − v∞

)
+ GM , (2.13a)

n ·

(
k ⋆
T ·

∂v

∂x
+ δ · k ⋆

TM ·
∂u

∂x ⋆

)
= BiTT ·

(
u − u∞

)
+ Bi sat

T ·

(
P ⋆

sat

u
−

P ⋆
sat ,∞

u∞

)

+ Bi θT ·
(
v − v∞

)
+ GT . (2.13b)

Henceforth, the presented formulation simplifies the description of case studies presented in

Sections 4.1 and 4.2. For those sections, all necessary dimensionless values are given in appen-

dices. The next section presents two numerical methods applied in the studies. The section starts

with the descriptions of a discretization for a simple diffusion equation. However, both methods

are presented with extensions to the coupled and nonlinear equations. At the end of the section,

definitions of criteria to evaluate a numerical efficiency of methods are provided.

3 Numerical Methods

Initial-boundary value problem, namely simple diffusion equation [5] in one dimension, is

considered in order to explain numerical schemes. For the sake of simplicity and without losing

generality all other terms of the dimensionless Equations (2.12) are dropped out.

∂ u

∂ t
=

∂

∂ x

(
d ·

∂ u

∂ x

)
, (3.1)

where d is the material diffusivity, u
(
x, t = 0

) def
:= u 0 (x ) is the initial condition, u

(
x =

0, t
) def
:= uL

∞ ( t ) and u
(
x = 1, t

) def
:= uR

∞ ( t ) are DIRICHLET boundary conditions for the left

and right boundaries.

In order to describe the numerical schemes, let us consider the following discretization for the

space and time domains [42]. Uniform discretization of the space interval Ω x  Ω h is written

as:

Ω h =

N x⋃

j = 1

[x j, x j + 1 ], x j + 1 − x j ≡ ∆x, ∀ j ∈ { 1, . . . , N x } .

Time layers are spaced uniformly as well:

tn = n∆ t, ∆ t = const > 0, ∀n ∈ { 0, . . . , N t } .

The discretization error depends on the choice of parameters N x and N t. These values can be

chosen according to the computational cost requirements. The points of the (x, t ) plane, where

x = x j and t = tn intersect are called mesh points or nodes of the grid. The approximate

solution of Equation (3.1) will be defined only at the grid nodes. The values of the function

u (x, t ) at discrete nodes are denoted by un
j := u (x j , t

n ).
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3.1 The Du Fort–Frankel Method

The improved explicit method, called DU FORT–FRANKEL, is one of the methods which can

be used to find the numerical solution of the problems such as Equation (3.1). The method was

first presented in the listed works [43–45] almost 50 years ago. In this article, the detailed dis-

cretization of the scheme is omitted, and interested readers can refer to the recent papers [26, 27].

There the method has been extended for coupled equations of heat and mass transfer, and its

performance has been discussed in more details.

The value of un+1
j with DU FORT–FRANKEL (DF) discretization can be expressed in the

following form for the linear case:

un + 1
j =

1 − α

1 + α
· un−1

j +
α

1 + α
·

(
un
j + 1 + un

j − 1

)
, n > 1,

where the coefficient α is expressed as

α
def
:= 2

∆ t

∆x 2
· k.

The extension of the DF scheme for a nonlinear case, where the nonlinearity comes from the

material diffusivity k, can be written in the following way:

un + 1
j =

α 0 − α 3

α 0 + α 3
· un − 1

j +
α 1

α 0 + α 3
· un

j + 1 +
α 2

α 0 + α 3
· un

j − 1 , n > 1 ,

where

α 0
def
:= 1 ,

α 1
def
:= 2

∆ t

∆x 2
· k n

j + 1

2

,

α 2
def
:= 2

∆ t

∆x 2
· k n

j −
1

2

,

α 3
def
:=

∆ t

∆x 2
·

(
k n
j + 1

2

+ k n
j −

1

2

)
.

It should be noted that the material diffusivity can be expressed explicitly at j ± 1
2 for the time-step

tn:

k n
j± 1

2

= k

(
un
j± 1 + un

j

2

)
. (3.2)

The stencil of the DF method is illustrated in Figure 3a.

3.2 The Super–Time–Stepping Method

Super–Time–Stepping (STS) approach was first presented in the work of GENTZSCH [18]

almost 40 years ago for parabolic problems. The method itself belongs to a class of RUNGE–

KUTTA-like methods, which iterative algorithms admit some kind of temporal interpretation. It

was claimed to remarkably speed up the explicit time–stepping schemes in a very simple way.

However, despite its obvious advantages, since then the method was only employed for a lim-

ited range of problems. The notable applications to linear and nonlinear parabolic problems were

performed in [23–25]. In the works of ALEXIADES [24, 25], the method was inspired by the recur-

sion relations associated with the CHEBYSHEV polynomials. The STS method was then further

developed by MEYER et al. [20, 21] by introducing the methods based on the recursion relations

of the shifted LEGENDRE polynomials. The properties of both polynomials allow ensuring the

11
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un un+1

tn tn+1

t

Euler Explicit

(b)

Figure 3: Stencils of DU FORT–FRANKEL scheme (a) and Super–Time–Stepping method in comparison with

EULER explicit scheme (b).

stability of the method at the end of each iteration stage. Thereby, the schemes are able to relax

the strong stability requirement at the end of every time-step [25].

In this work, it was proved that the STS method can be more efficient than the well-known

EULER schemes of the order O (∆t + ∆x 2) in application to the building physics phenomena.

There are two main benefits to the STS method. Firstly, compared to the EULER explicit scheme,

the STS method may overcome the stability condition of COURANT–FRIEDRICHS–LEWY (CFL)

[46] written for Equation (3.1):

∆t 6
1

2 k
·∆x 2 . (3.3)

This condition imposes certain restrictions for the application of the EULER explicit scheme into

building simulation tools [27]. Secondly, compared to EULER implicit scheme, the STS methods

are much easier to implement, since it has an explicit formulation. Indeed, the implicit scheme

is unconditionally stable, but it requires a relatively high number of sub-iterations to handle with

nonlinearity. Therefore, while maintaining high accuracy, the STS method makes it possible to

implement the discretization with larger time-steps and to reduce computational time requirement.

The general idea of the method, very well described in the work of ALEXIADES [25], is

given below. Also, in this article, three STS approaches are considered based on three families of

orthogonal polynomials, namely shifted CHEBYSHEV polynomial of degree N S, and two shifted

LEGENDRE polynomials of first and second orders. Without loss of generality and for simplicity

of presentation, we consider the time-dependent linear diffusion Equation (3.1). The EULER

explicit discretization for this equation can be written as [25]:

un + 1 =
(
I − ∆ t ·A

)
· un , n > 0 , (3.4)

where matrix A can be constructed according to the chosen space discretization. For example,

using central finite differences discretization, the matrix A is a symmetric, positive definite matrix

which can be expressed in the following way in the case of linear parameter k and DIRICHLET

12



boundary conditions:

A
def
:= α ·




2 − 1 0

− 1
. . .

. . .

. . .
. . . − 1

0 − 1 2




, (3.5)

where

α
def
:=

k

∆x 2
.

The stability condition of the scheme is associated with the spectral radius ρ of the matrix operator:

ρ
(
I − ∆ t ·A

)
< 1 ,

where the spectral radius operator ρ (−) is traditionally defined as follows:

ρ : Matm×m (R) −→ R> 0 ,

Matm×m ∋ A 7−→ max
16j6m

{
|λ j |

∣∣ Av j = λ j v j , v j ∈ R
m \ 0

}
∈ R> 0 .

Noting the maximum eigenvalue of matrix A as λmax , the above relationship yields to the fol-

lowing stability condition for time discretization ([25]):

| 1 − ∆ t · λmax | < 1 =⇒ ∆t < ∆t exp , (3.6)

with

∆t exp
def
:=

2

λmax
, (3.7)

where λmax =
4 k

∆x 2
. The above condition (3.6) can be relaxed by the STS method. The main

advantage of the method is that it allows relaxing the stability constraint on each time-step ∆ t

by introducing superstep ∆ t S. The STS imposes stability constraint only at the end of a cycle of

N S time-steps, which leads to a method similar to a RUNGE–KUTTA-like method with N S stages.

This technique can be better understood with the stencils of the STS scheme in Figure 3b. One can

observe that the STS method performs sequences of N S inner steps (intermediate calculations)

and in general executes N S ·
τ

∆ t S
explicit steps, where τ is the total simulation time. As a result,

approximately N STS
def
:=

τ

∆ t S
temporal nodes are obtained.

The definition of superstep is different for the schemes with CHEBYSHEV and LEGENDRE

polynomials. Nonetheless, according to [25], the stability condition (3.6) can be written as:

∣∣∣PN S

(
∆ tS , λ

) ∣∣∣ 6 1 , ∀λ ∈ [λmin, λmax ] , (3.8)

where λmin > 0 is the smallest eigenvalue of the matrix A (3.5). Hence, the supersteps ∆ t S
for all three polynomials can be chosen according to the number of time-substeps N S and explicit

time-step ∆ t exp defined in (3.7):

• RKC1: RUNGE–KUTTA–CHEBYSHEV method [25]:

∆ t S =

N S∑

k = 1

τ k
λmax−−−→ N 2

S ·∆ t exp , (3.9)

where τ k – the time-step of intermediary stage k, presented later in the Section 3.2.1.
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• RKL1: RUNGE–KUTTA–LEGENDRE method of the first order [20]:

∆ t S 6
N 2

S + N S

2
·∆ t exp . (3.10)

• RKL2: RUNGE–KUTTA–LEGENDRE method of the second order [20]:

∆ t S 6
N 2

S + N S − 2

4
·∆ t exp . (3.11)

Lastly, one can express discretization (3.4) [25] in terms of discrete evolution operator:

un+1 =

(
PN

(
∆ t S ,A

)
)

· un , n = 0 , 1 , . . . NSTS . (3.12)

In the next sections, broader discussions with examples of algorithms are presented for RKC1,

RKL1 and RKL2. For any further details, interested readers can refer to [20, 21, 24, 25].

3.2.1 RKC1: RUNGE–KUTTA–CHEBYSHEV method

Within this approach, according to [25], a stability polynomial can be written, with the λ –

eigenvalues of the matrix A, as follows:

PN S

(
τ k , λ

) def
:=

N S∏

k = 1

(
1 − τ k · λ

)
, ∀λ ∈ [λmin, λmax ] .

In addition, the optimal properties of CHEBYSHEV polynomials TN(·) [47] allow to reformulate

the stability condition (3.8) as:

∣∣∣PN S

(
τ k , λ

) ∣∣∣ 6 K < 1 ,

for

K = TN S

( λmax + µ

λmax − µ

)
,

where µ is a number in the interval ( 0, λmin ]. Thereby, a modified version of condition (3.6) can

be written as: ∣∣∣∣∣

N S∏

k = 1

(
1 − τ k · λ

)
∣∣∣∣∣ < 1 , ∀λ ∈ [λmin, λmax ] ,

where τ k is explicitly defined as:

τ k = ∆t exp ·

[(
− 1 + ν

)
· cos

(
2 k − 1

N S
·
π

2

)
+ ν + 1

] − 1

, (3.13)

for k = 1 , . . . , N S and ν
def
:=

µ

λmax
. Hence, by the RKC1 approach, one can find the explicit

value of ∆ t S and define a new algorithm based on Equation (3.4):

un+1 =

(
N∏

k = 1

(
I − τ k ·A

)
)

· un , n = 0 , 1 , . . . NSTS .

The algorithm of the RKC1 scheme can be summarized in the following way:
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Set N S > 1 ;

Set µ > 0 ;

Compute τ k according to the Formula (3.13), ∀ k = 1 , . . . , N S ;

Compute ∆ t S =

N S∑

k = 1

τ k ;

while t 6 T do

for k = 1 , . . . , N S do

u k = u k − 1 − τ k ·A · u k − 1

end

t = t + ∆ t S ;

u 0 = uN S ;

end

Algorithm 1: The algorithm of the RKC1 scheme.

3.2.2 RKL: RUNGE–KUTTA–LEGENDRE approach

The STS method based on LEGENDRE’S polynomials has a different approach from the RKC1

method. The main difference is that the superstep ∆ t S is defined by the user. The explanation of

the approach, according to [20], starts with a demonstration of the first order scheme RKL1 and,

then, follows with the second order scheme RKL2.

The RKL1 scheme can be written in the following way:

u 0 = u ( tn ) , (3.14)

u 1 = u 0 + µ̃ 1 ·∆ t S ·A · u 0 ,

u k = µ k · u
k − 1 + ν k · u

k − 2 + µ̃ k ·∆ t S ·A · u k − 1 , 2 6 k 6 N S ,

u ( tn + ∆ t S ) = uN S .

with the parameters:

µ k =
2 k − 1

k
, ν k =

k − 1

k
, µ̃ k =

2 k − 1

k
·

2

N 2
S + N S

.

In a similar way, the RKL2 scheme can be written as follows:

u 0 = u ( tn ) , (3.15)

u 1 = u 0 + µ̃ 1 ·∆ t S ·A · u 0 ,

u k = µ k · u
k − 1 + ν k · u

k − 2 + ( 1 − µ k − ν k ) · u
0 +

µ̃ k ·∆ t S ·A · u k − 1 + γ̃ k ·∆ t S ·A · u 0 , 2 6 k 6 N S ,

u ( tn + ∆ t S ) = uN S ,

where

b k =
k 2 + k − 2

2 k · ( k + 1)
, ν k =

k − 1

k
·

b k
b k−2

, a k = 1 − b k ,

µ k =
2 k − 1

k
·

b k
b k−1

, µ̃ k = 4
2 k − 1

k · (N 2
S + N S − 2 )

·
b k
b k−1

, γ̃ k = − a k−1 · µ̃ k .

The algorithm of the RKL (1, 2) schemes can be summarized in the following Algorithm (2):
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Set N S > 2 ;

Compute ∆ t S ; (according to the Formulas (3.10) or (3.11)) ;

while t 6 T do

u 1 = u 0 + µ̃ 1 ·∆ t S ·A · u 0 ;

for k = 2 , . . . , N S do

u k = f
(
u k − 1 , µ k ,∆ t S , . . .

)
(using (3.14) or (3.15))

end

t = t + ∆ t S ;

u 0 = uN S ;

end

Algorithm 2: The algorithm of the RKL (1, 2) approach.

3.2.3 Extension to nonlinear equation

The extension of the method to the nonlinear case, where the material diffusivity k is a de-

pendent variable of a grid function U n =
{
un
j

}N x

j=1
, can be expressed with the change of the

matrix A at (3.5). The matrix now depends on all values of a grid function, i.e. A (U n ), and can

be written in the following form:

A (U n )
def
:= α ·




(
k n
j+ 1

2

+ k n
j− 1

2

)
− k n

j+ 1

2

0

− k n
j− 1

2

. . .
. . .

. . .
. . . − k n

j+ 1

2

0 − k n
j− 1

2

(
k n
j+ 1

2

+ k n
j− 1

2

)




,

where

α
def
:=

1

2∆x 2

and k n
j ±

1

2

can be computed with the Equality (3.2).

This superstep ∆ t S should be computed with formulas (3.9) – (3.11). It can be seen that

these values should be estimated in accordance with ∆ t exp which is directly linked with CFL

stability condition. However, a value of the CFL condition is not known a priori, hence needs

to be estimated. For the simple diffusion Equation (3.1), ∆ t exp can be chosen according to the

following restriction:

∆ t exp 6
∆x 2

2
· min{

uL
∞
(t), uR

∞
(t)
}

{
1

k (uL
∞ )

,
1

k (uR
∞ )

}
.

It can also be mentioned that the above expression is totally reasonable for the case when nonlinear

parameter k (u ) is a monotone increasing function. Moreover, imposing boundary conditions

ensure that u < max
t> 0

{
uL
∞(t), uR

∞(t)
}

always holds. Hence, it is also true that k (u ) <

max
t> 0

{
k (uL

∞ ) , k (uR
∞ )
}

. So, the relationship
1

k (u )
< min

t> 0

{
1

k (uL
∞ )

,
1

k (uR
∞ )

}
always

holds true as well.
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3.2.4 Extension to coupled system of nonlinear equations

The discretization by the STS method for the case of equations’ system can be written in the

same way as Equation (3.12) but with vector notation:

u
k+1 = PN S

(
∆ t S, A

)
· uk , (3.16)

where u
def
:=
(
u 1, u 2, . . . , un

)
– a vector, which includes all n variables, A is the discretization

matrix and ∆ t S is the super-time-step.

As was mentioned earlier, a value of the CFL condition is not known, therefore for the di-

mensionless coupled Equations (2.12) ∆ t ⋆exp can be computed from the extremal values of uL,R
∞

and v L,R
∞ . Those values are given for the boundary conditions (2.13a) and (2.13b) at x ⋆ = 0

and x ⋆ = 1, which correspond to left (L) and right (R) boundary conditions respectively (see,

for example, Figure 1). For the dimensionless mass balance Equation (2.12a) the value of ∆ t ⋆exp

should be:

∆ t ⋆Mexp 6

(
∆x ⋆

) 2

2
min

{
min

v
L,R
∞ , u

L,R
∞

(
1

FoM ·D ⋆
θ

(
v L,R
∞ , uL,R

∞

)
)
,

min
v
L,R
∞ , u

L,R
∞

(
1

FoM · γ ·D ⋆
T

(
v L,R
∞ , uL,R

∞

)
)}

,

and for heat balance Equation (2.12b):

∆ t ⋆Texp 6

(
∆x ⋆

) 2

2
min

{
min

v
L,R
∞ , u

L,R
∞

(
c ⋆T
(
v L,R
∞ , uL,R

∞

)

Fo T · k ⋆
T

(
v L,R
∞ , uL,R

∞

)
)
,

min
v
L,R
∞ , u

L,R
∞

(
c ⋆T
(
v L,R
∞ , uL,R

∞

)

Fo T · δ · k ⋆
TM

(
v L,R
∞ , uL,R

∞

)
)}

.

From these two results, the minimum should be chosen as:

∆ t ⋆exp 6 min

{
∆ t ⋆Mexp , ∆ t ⋆ Texp

}
. (3.17)

3.3 Comparing numerical solutions

Numerical methods can be compared among each other by computing the L 2 error [42] be-

tween a numerical solution u num and a reference solution u ref:

ε 2 (x )
def
:=

∣∣∣∣ u ref (x, t ) − u num (x, t )
∣∣∣∣

2

=

√√√√ 1

N t

N t∑

j=1

(
u j, ref (x , t j ) − u j, num (x , t j )

) 2
,

where N t is the total number of temporal steps. For the numerical validation, the reference

solution is taken to be equal to the pseudo-spectral solution. This solution is obtained with the

Matlab open source package Chebfun [48], which is based on the CHEBYSHEV polynomials

adaptive spectral methods. Likewise, the Significant Correct Digits of a solution can be computed

as [49]:

scd (u )
def
:= − log 10

∥∥∥
u num (x, τ ) − u ref (x, τ )

u ref (x, τ )

∥∥∥
∞

.
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To evaluate the fidelity of the numerical methods, the observed data from experimental set up is

taken instead of the reference solution u ref. One can refer to the fidelity as a quantitative measure

to evaluate the ability of the numerical approximations with the governing equations to reproduce

the observed data [16, 17]. The stability, accuracy and, later, the fidelity of the numerical models

is quantified with the global uniform error L∞, which is defined as:

ε∞

def
:= sup

x∈

[
0, ℓ
] ε 2 (x ) . (3.18)

The relative error, evaluated at the point x = x 0 , is also discussed for some cases:

η ( t )
def
:=

∣∣u ref (x 0, t ) − u num (x 0, t )
∣∣

u ref (x 0, t )
,

where
∣∣ u ref (x 0, t ) − u num (x 0, t )

∣∣ is the residual.

In order to determine whether numerical results over or under predict the experimental data,

the distribution function f is used in Section 5. The mean E, or expected value of the distribution

function, is calculated as another assessment of a simulation error.

The efficiency of DU FORT–FRANKEL and Super–Time–Stepping methods are also compared

relatively to the EULER explicit scheme. For this purpose, two ratios are introduced. The first one

is the ratio of the total number of temporal steps ̺N t

[
%
]
, which is computed as follows:

̺N t

def
:=

N scheme
t

N EULER
t

· 100% ,

where N scheme
t and N EULER

t are the total numbers of temporal steps of the DF or STS schemes

and of the EULER explicit scheme respectively. The second ratio, ̺CPU

[
%
]
, shows how compu-

tational cost can be shortened compared to the EULER explicit scheme:

̺CPU
def
:=

t scheme
CPU

t EULER
CPU

· 100% ,

where t scheme
CPU

[
s
]

and t EULER
CPU

[
s
]

are computational times required by the DF or STS schemes and

by the EULER explicit scheme respectively. For a long-term simulation, one can also calculate the

computational time ratio per day ̺ day
CPU

[
s/d
]
, which evaluates how many computational seconds

are required to perform the simulation for one day:

̺ day
CPU

def
:=

t scheme
CPU

τ/ ( 24 h )
,

where τ
[
h
]

is the final time.

Above-mentioned quantities are used to evaluate numerical methods. In the following section,

the methods are validated for two case studies.

4 Numerical validation

4.1 First case: linear heat and mass transfer model

For the first case, material properties are considered to be constant throughout the material

and independent of the physical conditions and the environment of studied material. The model is

taken in its dimensionless form as (2.12) together with the initial and boundary conditions (2.13).
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Figure 4: Dimensionless u (a) and v (b) profiles at full time discretization, for ∆ t ⋆ values presented in Table 1

and ∆x ⋆ = 10−2.

4.1.1 Case study

Dimensionless parameters are presented in Appendix A.1. The total simulation time is τ ⋆ =

24. The space discretization parameter is ∆x ⋆ = 10−2 for all schemes. The value of the

time-step parameter for each scheme is discussed below on the case by case basis.

4.1.2 Results and discussion

For the sake of simplicity and without loss of generality, the results have been presented in

their dimensionless form. Profiles of dimensionless temperature – u and moisture content – v

at final state are presented in Figure 4. It can be seen that simulation results of all methods

are very close to the reference solution (for a reference solution see Section 3.3). The steady

decrease in temperature and slight fluctuation of moisture content can be noticed in the figures.

Another good correspondence of the results can be seen in Figure 5 for profiles in the middle of

the material. Distribution of heat and moisture starts from initial values (which are equal to 1 in

the dimensionless representation), and shows time fluctuations according to the periodic boundary

conditions.

The parametric study of schemes, i.e. the accuracy with respect to the discretization parameter

∆ t, is presented by plotting results of the L∞ error as a function of ∆ t ⋆ in Figure 6. In this arti-

cle, the main interest is on a comparison of predictions with the DF and STS schemes. Therefore,

a parametric study of the EULER explicit scheme is omitted, as it was already discussed in the

literature in comparison with DU FORT–FRANKEL scheme. Interested readers may consult these

previous results in [26, 27]. From Figure 6 one can see that the L∞ error of the STS methods is

high for small values of ∆ t. Basically, the error between two orange dashed lines, show that the

STS methods "prefers" time-steps bigger than ∆ tCFL, required for stability of the EULER explicit

scheme in accordance with the CFL condition 3.3. As the STS methods were designed to over-

come that stability restriction by "jumping" with bigger time-steps, the number of supersteps N S

should always be higher than one for RKC1 and two for RKL methods. However, the choice of

N S and, consequently, of ∆t S has to be done with caution. These observations are also consistent

with those of MEYER et al. [20, 21]. Further study for the influence of N S choice is discussed
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(a) (b)

Figure 5: Dimensionless u (a) and v (b) evolutions at x ⋆ = 0.5, for ∆ t ⋆ values presented in Table 1 and

∆x ⋆ = 10−2.

later in this section.

Generally, the results of the STS methods hold the tolerable level of an engineering accuracy

up to ∆ t = 10−1. In comparison with the DF scheme, a comparable level of error can be

obtained with bigger time-steps. This again shows the possible effectiveness of the STS methods

to solve problems for coarser time discretization. Moreover, it should be noted that the DF method

is intrusive, while the STS methods are non–intrusive. Indeed, the DF method is fully discrete, i.e.

it is a discretization in both space and time domains. Whereas the STS methods can be coupled

with any space discretization solvers without any problem, i.e. the methods do not depend on an

operator. This aspect of the STS methods shall be highly beneficial for further employment on

two-dimensional heat and mass transfer models.

One can also observe that the convergence of the DF method follows the second order accu-

racy, while for the STS methods there are unexpected results. The RKC1 and RKL1 methods

follow the first order accuracy, which proves their applicability and the construction of schemes.

However, the RKL2 method does not follow the second order accuracy in accordance with the

order of LEGENDRE polynomial used for the construction of the scheme. This observation ques-

tions the reliability of the RKL2 method as it apparently does not follow its convergence path.

Hence, the application of this scheme is questioned for further studies.

On the Table 1 a comparison of the numerical results for all approaches is displayed. The

relative effectiveness of the methods compared to the EULER explicit scheme is also given. One

can see that with the STS methods it is possible to obtain an L∞ error of order 10−3 with time-

steps almost 100 times bigger than it is required with classical stability restrictions. Another

advantage of the STS method is seen from the ratios ̺N t
, which are only 1%, 1.8% and 3.7% with

the RKC1, RKL1 and RKL2 schemes respectively. From the table, it can also be noted that the

digits accuracy (SCD) is more than two for all schemes, which basically means that differences in

the results occur only in the third digit. Also, Figure 7 displays the L 2 error between the numerical

simulation results and reference solution, for ∆ t ⋆ presented in Table 1 and ∆x ⋆ = 10−2. The

consistency between results is observed, thus for the purpose of validation, these results prove the

accuracy of the implemented methods.

In terms of the CPU time, it can be noticed, that among all methods the simulation with the
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Figure 6: L∞ error as a function of ∆ t ⋆ for dimensionless u (a) and v (b).

Table 1: Comparison of the numerical results for the linear case study. The number of super-time-steps:

N S = 10.

EULER DF RKC1 RKL1 RKL2

Time-step ∆t ⋆ 2.81 × 10−4 10−3 2.81 × 10−2 1.55 × 10−2 7.59 × 10−3

Total number of time-steps 85 333 24 000 853 1 552 3 160

̺N t
[ % ] 100 28.13 1.00 1.82 3.70

ε∞: v 1.31 × 10−3 1.35 × 10−3 4.64 × 10−3 3.97 × 10−3 4.57 × 10−3

ε∞: u 1.04 × 10−3 1.10 × 10−3 4.85 × 10−3 2.83 × 10−3 3.43 × 10−3

Digit accuracy: v 3.02 3.03 2.23 2.61 2.71

Digit accuracy: u 3.17 3.13 2.30 2.76 2.58

CPU time [ s ] 1.64 0.56 0.15 0.37 1.18

̺CPU [ % ] 100 34.15 9.15 22.56 71.95
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Figure 7: Error between the numerical simulation results and reference solution, for ∆ t ⋆ values presented in

Table 1 and ∆x ⋆ = 10−2.

RKC1 method takes only 9 % of the CPU time required by the EULER explicit discretization. The

notable difference between the STS schemes can be explained with the intermediate RUNGE–

KUTTA-like calculations (see the scheme of the method in Figure 3b). From Figure 8, it can be

seen how a size of N S influences the overall efficiency of the simulations (the test was made for

N S up to 150).

The error increases with N S, because a bigger N S implies a wider superstep. Hence, fewer

discretization points and less accuracy from the simulation are obtained. The ratios ̺CPU and ̺N t
,

on the other hand, are decreasing functions of N S. Therefore, depending on the requirement, a

bigger N S can be taken to perform faster simulations but with a higher error. The recommended

horizon for the choice of N S can be bounded with N S = 100, because, after this point, the

required CPU time remains almost stable while the error becomes bigger. The convergence paths

of O
(
N 2

S

)
for the errors and ratio ̺N t

are consistent with the Equations (3.9)–(3.11) to obtain

supersteps ∆ t S. In terms of the order of convergence of O (N S ) for the computational time

ratio ̺CPU, the dependence can be clearly seen from the Figure 3b. As the STS methods perform

N S intermediate steps, the computational time shall increase by the total number of supersteps.

Last but not least, one can also observe that among all three schemes the RKL2 method is

the weakest with higher errors and ratios. From Table 1 it can also be seen that the CPU time

with the RKL2 method is shorter only for 30% than the explicit scheme. Therefore, for further

investigation, it is proposed to omit the implementation of the RKL2 scheme and continue with

the RKC1 and RKL1.

4.2 Second case: nonlinear heat and mass transfer model

The linear case was studied to validate methods for a faster simulation and to verify the con-

vergence of schemes. The second case study, which is nonlinear, is more realistic as material

properties are in correlation with the surrounding field and taken as functions of the dimension-

less moisture content and temperature.

22



N S

[

Ø
]

2 10 100

ε
u ∞

[

Ø
]

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

RKC1

RKL1

RKL2

O (N 2
S )

(a)

N S

[

Ø
]

2 10 100

ε
v ∞

[

Ø
]

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

RKC1

RKL1

RKL2

O (N 2
S )

(b)

N S

[

Ø
]

2 10 100

̺
C
P
U

[%
]

10
-1

10
0

10
1

10
2

10
3

RKC1

RKL1

RKL2

O (N S )

(c)

N S

[

Ø
]

2 10 100

̺
N

t
[%

]

10
-3

10
-2

10
-1

10
0

10
1

10
2

RKC1

RKL1

RKL2

O (N 2
S )

(d)

Figure 8: Influence of the number of supersteps N S on L∞ error (as a function of N S, compared with the

reference solution) for dimensionless u (a) and v (b); on the ratios ̺CPU (c) and ̺N t
(d) compared to the

EULER explicit scheme results.
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Figure 9: Variations of boundary data, at x ⋆ = 0 in blue dashed line and at x ⋆ = 1 in red dotted line, for

dimensionless u (a) and v (b).

4.2.1 Case study

As the validation for the linear case was successful for the dimensionless form of the model,

the same technique is used for the second case too. The variations of the boundary conditions are

given as:

x ⋆ = 0 : uL
∞ = 1 +

1

100
sin

(
2π

t ⋆

50

)
, v L

∞ = 1 −
3

5
sin

(
2π

t ⋆

3

)
,

x ⋆ = 1 : uR
∞ = 1 −

1

50
sin

(
2π

t ⋆

20

) 2

, vR
∞ = 1 +

1

2
sin

(
2π

t ⋆

9

)
,

and are presented in Figure 9.

The initial conditions for u and v are identically equal to one. More details on the description

of the case can be found in [27] and in Appendix A.2.

4.2.2 Results and discussion

In this case study only three schemes are compared, namely DU FORT–FRANKEL, RUNGE–

KUTTA–CHEBYSHEV and RUNGE–KUTTA–LEGENDRE methods of the first order. For each of

these schemes, different discretization parameters of the time domain are applied. For DU FORT–

FRANKEL this parameter equals ∆ t ⋆ = 10−3.

The time discretization for the STS schemes should be computed with the Formulas (3.9) and

(3.10). The required explicit time-step is chosen according to the Equation (3.17) to be ∆ t ⋆exp =

2.16·10−5 . By applying this result with the number of super-time-steps N S = 10 to the formulas,

one can get ∆ t ⋆RKC1 = 2.16 · 10−3 and ∆ t ⋆RKL1 = 1.19 · 10−3 as supersteps for RUNGE–

KUTTA–CHEBYSHEV and RUNGE–KUTTA–LEGENDRE methods of the first order respectively.

It can be noted that the STS method allows increasing the size of the time domain discretization

by increasing the value of supersteps N S. This might have an impact on the reduction of the

CPU time performance compared to the EULER explicit scheme. The efficiency of the methods

is further reported on Table 2. The most remarkable point is the number of time-steps used by
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Table 2: Computational time and accuracy of results of four schemes for nonlinear case study. The number of

super-time-steps: N S = 10.

EULER DF RKC1 RKL1

Time-step ∆t 2.16 × 10−5 10−3 2.16 × 10−3 1.19 × 10−3

Total number of time-steps 5 567 953 120 000 55 680 101 236

̺N t
[ % ] 100 2.12 1.00 1.81

ε∞: v 1.94 × 10−4 2.01 × 10−4 3.73 × 10−4 2.96 × 10−4

ε∞: u 1.51 × 10−4 1.50 × 10−4 1.77 × 10−4 2.39 × 10−4

Digit accuracy: v 3.64 3.81 3.83 3.72

Digit accuracy: u 4.05 4.08 3.54 3.74

CPU time [ s ] 1 298 32 103 200

̺CPU [ % ] 100 2.44 8.00 15.45

each method. It can be noted that the DF and RKL1 methods require only 2% of the total time-

steps number of the EULER explicit method, and the RKC1 method computes only 1% of it.

The accuracy of digits (SCD) is almost 4 for all schemes and is slightly higher for simulations

of dimensionless u. One can also see that the CPU time for DU FORT–FRANKEL simulation

is only 2% of time needed for the EULER explicit method, whereas the STS methods take 8%

(RKC1) and 15% (RKL1). These results are consistent since N S = 10 and the numerical time-

stepping methods RKC1 and RKL1 require intermediate RUNGE–KUTTA-like iterations between

two super-time-steps.

The accuracy of the simulations can be observed from the profiles of dimensionless temper-

ature and volumetric moisture content, which are presented in Figures 10 and 11. It can be seen

that both STS methods produce results in very good agreement with the reference solution.

Further from Figure 12, which shows the error in comparison with the reference solution,

one can see that schemes perform very well for quite stringent error tolerance levels. Table 2 also

demonstrates that the global uniform error L∞ and the digit accuracy are compatible among stud-

ied method. Overall, it can be concluded that while obtaining almost the same level of accuracy,

all three methods proved to be much more efficient than the EULER explicit method in terms of

the CPU time gain and wider discretization sizes.

5 Comparison with experimental observations

Previous sections aimed at quantifying the accuracy and efficiency of the numerical models.

The analysis was made according to the numerical error in reference to the "exact" solution,

obtained with the the Matlab open source package Chebfun [48]. This section is aimed to

analyze the fidelity of the numerical models [16, 17]. One can refer to the fidelity as a quantitative

measure to evaluate the ability of the numerical approximations with the governing equations

to reproduce the observed data. In this paper, the L∞ error given by Eq. (3.18) is applied as a

measure of the fidelity. The application to the real case study is the next step to validate the fidelity

of the proposed numerical models for long-term simulations. The predictions of the numerical

models are now compared with more than 14 months of experimental observations, obtained in

previous investigations for drying of a rammed earth wall [28–30].
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Figure 10: Dimensionless u (a) and v (b) profiles at t ⋆ = 40 , t ⋆ = 80 and t ⋆ = 120 , for ∆ t ⋆ values

presented in Table 2 and ∆x ⋆ = 10−2.
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Figure 11: Dimensionless u (a) and v (b) evolutions at x ⋆ = 0.5 , for ∆ t ⋆ values presented in Table 2 and

∆x ⋆ = 10−2.
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Figure 12: Error between the numerical simulation results and reference solution, for ∆ t ⋆ values presented

in Table 2 and ∆x ⋆ = 10−2.

Figure 13: Overview of one of the boxes with an open door (on the left), and the central data-logger with the

temperature and relative humidity control group (right) from [28].

5.1 Experimental set up

The experimental setup consists of a 1× 1.5 × 0.3
[
m 3
]

sized and initially saturated rammed

earth wall. It is placed in a double climatic box. The picture and schematic illustration can be

seen in Figures 13, 14 and 15.

Relative humidity and temperature variations are monitored in two boxes. One should notice

that the boundary conditions are controlled on one side of the wall, as illustrated in Figure 14. The

sensors are placed in the middle of the wall on a central horizontal plane at the height of 0.5
[
m
]
,

on surfaces of the wall and inside boxes. As a result of measurements, the data for approximately

14 months’ time period is available. In particular, the following values have been recorded: (i)

the variations of the ambient humidity and temperature in the boxes; (ii) the temperature in the

middle and on surfaces of the rammed earth wall; (iii) the moisture content in the middle of the

rammed earth wall.

Part of the experiment, which imposes additional difficulty is that doors of boxes are occasion-

ally opened during the experiments. These sequences are highlighted in Figure 16a. They lead

to changes in heat and mass surface transfer coefficients, particularly by making them varying in

time.
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Figure 14: Scheme of the wall, placed in a double climatic box with doors.

Figure 15: Illustration of the experimental design with the position of the sensors for the temperature, relative

humidity and moisture content.
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Figure 16: Plot of the mass content and specifically designed function b ( t ) with sequences of opening and

closing doors during the first four months of experiment.

5.2 Parameters for the mathematical model

The heat and moisture transport inside the rammed earth wall is simulated using the system

of nonlinear coupled partial differential equations given in Eq. (2.6). The material properties

are taken according to Refs. [29, 30, 50]. The specific heat capacity and dry mass are equal to

c 0 = 648
[
J/(kg · K)

]
and ρ 0 = 1730

[
kg/m 3

]
respectively. The diffusion coefficients under

temperature and moisture gradient are equal to DT = 10−11
[
m 2/(s · K)

]
and D θ ( θ ) =

10−8 + 2 · 10−10 · θ
[
m 2/s

]
. The function of the thermal conductivity kT as a function of θ is

expressed as kT ( θ ) = 0.6 + 5 · θ
[
W/(m · K)

]
. The value of the vapor transfer coefficient

under a moisture gradient is equal to kTM = 4 · 10−18
[
kg/(m · s)

]
. The values of the thermo-

physical constants are as follows: c 2 = 4185.5
[
J/(m 3 · K)

]
, L ◦

12 = 2.5 · 10 6
[
J/kg

]
,

ρ 2 = 10 3
[
kg/m 3

]
, R 1 = 2 · 10−3

[
J/(kg · K)

]
. Function of relative humidity on mass

content is defined as a linear function:

ϕ̃ ( θ ) =
ρ 2

2 ρ 0
· θ ,

and residual function is obtained by function fitting:

r ( θ ) =

∣∣∣∣∣ 1 − exp

(
−

4 ρ 2

5 ρ 0
· θ

)
−

ρ 2

2 ρ 0
· θ

∣∣∣∣∣ .

The boundary conditions at the interface of the material with the surrounding environment

are of two different types. The temperature of the material at surfaces is measured during the

experiment, hence it is known and Equation (2.11) is not used. Instead, a DIRICHLET–type of

boundary condition is imposed for temperature:

T ( x = { 0, ℓ } , t ) = T L,R
∞ ( t ) ,

where the thickness of the wall is L = 0.3m and the time variations of the ambient temperature

T L,R
∞ ( t ) are shown in Figure 17b.
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Figure 17: Time variations of mass content in the ambient air (a) and of the temperature at surfaces (b).

The mass content at surfaces is not measured directly and the boundary condition is set to

be of the ROBIN–type. The Equation (2.10) is slightly modified by introducing the function b

depending on time, designed to model the influence of the opening and closing of the box doors:

n ·

(
D θ ·

∂θ

∂x
+ DT ·

∂T

∂x

)
= b · B ·

(
θ − θ∞ ( t )

)
− b ·G∞ , (5.1)

where

b : t 7→ b ( t ) , B : (T, θ ) 7→
hM

R 1
·
P sat

T
·
d ϕ̃

d θ
, G∞ : (T, θ ) 7→ −

hM

R 1
·
P sat

T
·r ( θ ) .

The time variations of θL,R
∞ ( t ) in the ambient air are shown in Figure 17a.

The surface convective coefficient is set to hM = 10−9
[
m/s

]
. The function b ( t ) can be

seen as a distortion of the latter. According to the state of the box doors, their time variations are

shown in Figure 16b. The function b ( t ) is equal identically to zero for the first 5 days when the

wall was built but was placed out of its boxes. During this period, it was sealed with cellophane

tape. The range of the function b ( t ) is equal to 1 and to b 1 when the box doors are closed and

opened respectively. The value of the parameter b 1 needs to be estimated since the value of the

surface vapor transfer coefficient hM is not known when the box doors are opened.

As for the initial conditions, the moisture level and temperature within the material are con-

sidered to be initially uniform θ = 0.33
[
∅

]
and T = 16.5

[
◦C
]
, respectively.

5.3 Results and discussion

The aim of this section is twofold. The first one is to discuss the reliability of the experimental

data, mathematical and numerical models by comparing the numerical predictions to the experi-

mental observations under their uncertainties. The second one is to assess the numerical model

fidelity and efficiency.

The discussion of the physical results starts with an evaluation of the uncertainties of experi-

mental measurements. It is one of the important issues that should be considered before starting

any comparison with numerical simulations. It can be also mentioned, that these uncertainty
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Figure 18: Uncertainty of measurements and time evolutions of the mass content (a) and temperature (b) in

the middle of the wall in comparison with the three schemes along almost 430 days of the experiment.

measurements were not performed in the works of [28, 29]. Below is the formula to determine

uncertainty of measurement:

σ 2
m = σ 2

S + σ 2
P , (5.2)

where σ 2
S is the sensor accuracy used for the experiments, and σ 2

P is the positioning sensitivity

evaluated numerically.

First of all, the sensor accuracy for mass content and temperature measurement should be

identified [51, Chapter 8]. Water content is monitored with the sensors Campbell CS616,

with the accuracy of σ ⋆ θ
S = ± 2.5% of volumetric water content and temperature sensors were

Campbell CS215, the accuracy of which is σ ⋆ T
S = ± 1.5% of temperature in ◦C . The values

of accuracy are relative to an absolute standard. So, in order to correctly display the uncertainty

of measurement σS , the given sensor accuracy values should be multiplied by the measured ones:

σ θ
S = σ ⋆ θ

S · θm , σ T
S = σ ⋆ T

S · Tm , (5.3)

where θm and Tm are the data obtained from monitoring changes in the middle of the material.

Secondly, positioning accuracy needs to be determined. The accuracy of placement can be

taken as ∆xP = 0.5 cm. So, the second term of Equation (5.2) can be evaluated as:

σ θ
P =

∂θ

∂x
· ∆xP , σ T

S =
∂T

∂x
· ∆xP . (5.4)

Finally, one can input values obtained from Equations (5.3) and (5.4) to the equality given

by Eq. (5.2) to get a corresponding uncertainty of measurement values for water content and

temperature with the following equalities:

θ±
m = θm ± σ θ

m , T ±
m = Tm ± σ T

m . (5.5)

The uncertainty, determined in this way, is shown in Figure 18.

Next part discusses the fidelity of a mathematical model, i.e. the ability of the model to re-

produce experimental/physical results. Also, the description of the parameters that were adjusted

31



Table 3: The value of the cost function
∣∣∣∣ θ exp. − θ num

∣∣∣∣ for each b 1.

b 1 = 1 b 1 = 4.5 b 1 = 6 b 1 = 9∣∣∣∣ θ exp. − θ num

∣∣∣∣ [∅ ] 8.37 × 10−2 1.48 × 10−2 1.64 × 10−2 3.62 × 10−2

during the implementation is discussed below. The difference between measured data and sim-

ulation results can be seen in Figure 18. At first glance, from Figure 18b it can be noticed that

the temperature evolution was determined more precisely than the mass content. Discrepancies

in simulation results for temperature evolution during the first 100 days of a time period can be

explained with the sequences of opening doors. It has to be further studied whether the heat

exchange by radiation with other surfaces is significant or not during those openings.

From Figure 18a, it can be seen that simulation results for mass content evolution do not

perfectly fit the experimental data. There are several possible explanations for that. First, the

material properties, particularly D θ , are defined by a linear polynomial in θ . The variation of this

diffusion coefficient relative to θ may be a different function than the one here assumed. Then,

the boundary conditions (5.1) are strongly nonlinear. They have an important influence on the

results as it is discussed below. Particularly, the specially designed function b ( t ) , representing

the variation of the surface transfer coefficient with the opening/closing of the box doors, has a

strong impact on the results. The investigations of its influence are explored below.

Function b ( t ) is implemented directly in boundary conditions for the mass transfer to model

sequences of doors opening (see Figure 16b). However, due to the coupling between two equa-

tions of the model given by Eqs. (2.6), it has an impact on both terms. In addition, this function

cannot be precisely modelled for at least two reasons: (i) the exact number of days when win-

dows were opened is not precisely known from experimental data; (ii) air flows in rooms were not

measured during those sequences. According to this last point, the surface transfer coefficient has

been modelled as a piece-wise constant depending on time. Certainly, the time variations of this

coefficient are more complex than this assumption.

Various numerical experiments are performed in order to estimate the impact of function

b ( t ) , whose general representation of step-function can be seen from Figure 16b. As one might

be mainly concerned with the behavior of simulation results shortly after the end of sequences,

the demonstrative tests have been carried out for a 220 days time period. In Figure 19, one can

observe the distinct effects of increasing or decreasing the coefficient b 1. Thus, it is adjusted until

a better fit is found with b 1 ≈ 4.5 . From the Table 3, it can also be seen that the cost func-

tion of b 1 ≈ 4.5 is the smallest among others. One should note that all these adjustments and

computations are possible thanks to fast numerical computations.

Eventually, the importance of flux terms needs to be discussed. The term on the right-hand

side of the boundary conditions for the mass content transfer expressed in Eq. (5.1) plays crucial

role for model fitting with experimental data as it is discussed below. By neglecting either term,

results differ significantly, proving once again the importance of both flux terms. One can first

study the case similar to the boundary conditions applied in two previous case studies (linear and

nonlinear). Here, the second flux term is neglected:

D θ ·
∂θ

∂x
+ DT ·

∂T

∂x
= b ·B ·

(
θ − θ∞

)
, (5.6)

Figure 20a shows that the drying process with only one flux term is almost twice slower after 40

days. It proves the necessity to include the second term in the boundary flux condition, due to the

32



t
[

d

]

0 50 100 150 200

θ
[

Ø
]

0.05

0.1

0.15

0.2

0.25

0.3

0.35

b 1 = 9
b 1 = 6
b 1 = 4.5
b 1 = 1
θ experiment

Figure 19: Demonstration of results of tests on parameter b 1 of step-function b ( t ) illustrated in Figure 16b

in comparison with experimental data of the mass content.

temperature and saturation pressure at the surface. The similar pattern of slower drying can be

observed in Figure 20 if the first flux term equals to zero:

D θ ·
∂θ

∂x
+ DT ·

∂T

∂x
= − b ·G∞ . (5.7)

Conclusively, a good agreement of simulation results with experimental data can be observed by

applying full boundary conditions given in Eq. (5.1).

Last point to mention is a relative importance of first and second flux terms in (5.1). One can

see the ratio between two time dependent terms in Figure 20b. It can be noticed that both terms

are interchangeably important. The term B takes the leading role when difference of moisture

content in ambient air increases, as can also be seen in Figure 17a. The term G is important to

stabilize periods when drying goes fast and gets steady for a long time at the beginning and at the

end of the experiment respectively.

Turning now to the fidelity of numerical results, one can look at the profiles of the relative

error in Figure 21. The error remains around O ( 10−1 ) for the mass content evolution and for

the temperature almost O ( 10−2 ) during most of the simulation time. Occasional discrepancies

occur because of a few reasons mentioned earlier.

In order to evaluate whether the numerical models over or under predict the experimental

data, one can observe Figure 22. As was discussed earlier, due to the difficulty of modelling the

function b ( t ), the simulation results for the mass content evolution both over and underpredict

the data conversely (as can be clearly seen from Figure 18a). Interestingly, for the temperature

evolution, it is noticeable that the simulation results slightly underestimate the experimental data.

Nonetheless, the range of underestimation is within the uncertainty of the sensor as can be seen

from Figure 18b. It should be noted, that f
(
σ θ
m

)
is not plotted in Figure 22a because of the very

small distribution mean of the uncertainty of measurement of the moisture content E (σ θ
m ) =

2 · 10−3 [∅ ] compared to the distribution mean E (σ T
m ) = 3 · 10−1 [ ◦C ]. To sum up the

fidelity measurements, from Table 4, one can observe that the error ε∞ and the distribution mean

E magnitudes show that all three methods perform with the comparable level of accuracy.

More information about the numerical efficiency of the applied methods compared to the EU-

LER explicit scheme is provided in Table 5. First of all, it can be seen that the number of required
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Figure 20: Demonstration of comparative tests for cases when either flux terms of boundary condition given

in Eq. (5.1) equals to zero (a); the ratio between fluxes throughout the time period of experiment (b).
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Figure 21: Relative error of the three methods with reference to the experimental data of the mass content (a)

and temperature (b).

Table 4: L∞ error and E means of the probability density functions of three methods with reference to experi-

mental data.

DF RKC1 RKL1

ε∞: Mass content [∅ ] 1.07 × 10−2 1.91 × 10−2 1.91 × 10−2

ε∞: Temperature [ ◦C ] 6.03 × 10−1 5.53 × 10−1 5.52 × 10−1

E (∆ θ): Mass content [∅ ] 1.72 × 10−3 3.72 × 10−3 3.71 × 10−3

E (∆T ): Temperature [ ◦C ] −5.45 × 10−2 −5.41 × 10−2 −5.39 × 10−2
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Figure 22: The distributions of the three methods with reference to the experimental data of the mass content

(a) and temperature (b).

Table 5: Comparison of the time-steps and computational times for the experimental case study. The total

number of super-time-steps for the STS methods is N S = 70 .

EULER DF RKC1 RKL1

Time-step ∆t [min ] 1.09 × 10−3 1 × 10−1 5.38 × 10−1 2.73 × 10−1

Total number of time-steps 9 417 915 103 394 19 220 37 899

̺N t
[% ] 100 1.1 0.2 0.4

CPU time [ h ] 62 1.4 10.7 21.7

̺CPU [ % ] 100 2.2 17.2 34.8

̺ day
CPU [ s/d ] 520 11 89 181
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time-steps is only 1% for the DF and 0.2%, 0.4% for the RKC1, RKL1 respectively, comparing

to the explicit EULER method. Moreover, in terms of the CPU speed–up, one can observe that

all three methods proved to be much faster than the explicit scheme. For the simulation of almost

430 days, the time required for simulations was around 1.4 h, 10 h and 21 h for the DF, RKC1 and

RKL1 methods respectively. In addition, the computational time ratio per day of simulation ̺
day
CPU

clearly demonstrates advantages of the proposed numerical models. The DF scheme is leading

for the speed of calculation, however, the STS methods were able to perform with the same level

of accuracy for larger time-steps. This difference, as was mentioned earlier, is due to the num-

ber of intermediate computations between consecutive super-time-step ∆ t S required by the STS

approaches. Eventually, all these results prove the computational effectiveness of the numerical

schemes to predict long-term heat and mass transfer phenomena through a porous material.

6 Conclusion

Problems of the heat and moisture transfer through porous media of building envelopes are in

active discussion since more than half a century. Modern simulation tools have been developed to

help manufacturers and builders to better predict the behavior of used materials. Nonetheless, the

issue of efficiency of those tools is still persisting. Main concern lies in reducing computational

cost and increasing the accuracy of predictions.

In this article, innovative methods, namely the Super–Time–Stepping methods, were proposed

to apply on building heat and mass transfer phenomena. It was suggested that those methods can

perform accurate simulations with temporal discretization bigger than with standard approaches.

Those "super" time-steps are claimed to enable to reduce the computational cost. In addition to

that, the design of the methods implies easier application for models in higher dimensions and

with nonlinear properties. Moreover, the explicit formulation makes it possible to avoid costly

sub-iterations to treat nonlinearities.

The efficiency and reliability of the numerical models have been evaluated for two case stud-

ies. A reference solution was taken to evaluate the accuracy of computed solutions. The computa-

tional cost of the models was compared to a standard approach such as the EULER explicit method

and to an innovative one such as the DU FORT–FRANKEL one. The latter has been recently em-

ployed for the simulation of heat and mass transfer in building porous material in Refs. [26, 27].

The first case considered a linear problem. It was used to confirm the theoretical understanding

of the numerical methods, particularly for relaxing the stability limits of the scheme. The second

case study dealt with a more realistic case by including varying and nonlinear material properties.

It was shown, that the numerical models predict the solution with very satisfactory accuracy. The

computational efforts were cut by 92% and by 85% for the approach based on CHEBYSHEV and

on LEGENDRE orthogonal polynomials respectively.

After these numerical investigations, the fidelity of the proposed models was evaluated for the

case of drying of a rammed earth wall. The numerical predictions were compared to experimental

observations of moisture content and temperature obtained in previous works [29, 30, 50]. This

case requires a long-term simulation since the experimental data is available for more than 14

months. The predictions of the physical model with proposed numerical models show a satisfac-

tory agreement with the experimental observations. As was presented, for a long-term simulation

the Super–Time–Stepping methods proved to be much more efficient than the EULER explicit

method, which is still widely implemented in building simulation programs. Suggested methods

enable to cut the computational cost by more than 5 times.
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Another point to mention is that with the STS methods it is possible to make discretization

of time domain much longer than it ever was possible before. It should be also noted that the

STS methods ensure stability only for super-time-steps. In comparison with the EULER explicit

method, where temporal discretization imposed by the CFL stability condition and is of order

10−3, the STS approach enables to implement time-steps at least 100 times longer. This discov-

ery might be crucially beneficial for problems, where temporal evolution flows very fast and a

previous fine time domain discretization was costly for such processes.

Moreover, it should be noted that the DU FORT–FRANKEL method is intrusive, while the STS

methods are non–intrusive. The DF method is fully discrete, i.e. it is a discretization in both

space and time domains. Whereas the STS methods can be coupled with any space discretization

solvers without any problems, i.e. the methods do not depend on an operator. This aspect of the

STS methods shall be highly beneficial for any further employment as well.

In general, it can be concluded that the STS methods proved to be both numerically efficient

and accurate. The future perspectives are various. Methods can now be tested on broader problems

such as two–dimensional simulations of heat and mass transfer.
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Nomenclature

Parameters involved in the dimensionless representation

δ, γ coupling parameters
[
∅

]

Bi BIOT number
[
∅

]

Fo FOURIER number
[
∅

]

G additional flux terms
[
∅

]

u, v fields
[
∅

]

Greek letters

ρ specific mass
[
kg/m 3

]

σ 2
P positioning sensitivity

[
%
]

σ 2
S sensor accuracy used for the experiments

[
%
]

τ final time
[
h
]

θ volumetric moisture (liquid plus vapor) content
[
∅

]
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ϕ relative humidity
[
∅

]

Latin letters

c heat capacity
[
J/(kg · K)

]

cT energy storage coefficient
[
W · s/(m 3 · K)

]

D θ diffusion coefficient under moisture gradient
[
m 2/s

]

DT diffusion coefficient under temperature gradient
[
m 2/(s · K)

]

hM surface vapor transfer coefficient
[
m/s

]

hT surface heat transfer coefficient
[
W/(m 2 · K)

]

j 12 density of moisture flow rate
[
kg/(m 2 · s)

]

j q sensible heat flow rate
[
W/m 2

]

kT thermal conductivity of the material
[
W/(m · K)

]

kTM vapor transfer coefficient under a moisture gradient
[
kg/(m · s)

]

ℓ thickness of a wall
[
m
]

L ◦
12 latent heat of vaporization

[
J/kg

]

M molecular mass
[
kg/mol

]

n outward unit normal vector
[
∅

]

P sat saturation pressure
[
Pa
]

R 1 constant gas for vapor
[
J/( kg · K )

]

t time
[
s
]

T temperature
[
K
]

x thickness coordinate direction
[
m
]

Subscripts

0 dry material

1 water vapor

2 liquid water

∞ ambient air

m experimental measurement

Superscripts

L, R left and right boundary values

◦ reference value

⋆ dimensionless quantity
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A Appendix

A.1 Dimensionless parameters for linear case study

For the sake of reproducibility of numerical simulations presented in Section 4.1, we provide

here all necessary parameters of the mathematical model.

Material properties expressed with FOURIER numbers, γ and δ which are equal to Fo T =

1.6 · 10−1, FoM = 8 · 10−2, γ = 0 and δ = 2.35 · 10−2. Other parameters are taken to be

equal to 1:

D ⋆
θ = D ⋆

T = c ⋆T = k ⋆
T = k ⋆

TM = 1.

BIOT numbers are expressed as parameters for the boundary conditions and are taken to be equal

to:

x = 0 : Bi sat ,L
M = 0 , Bi θ ,LM = 2.55 , BiT ,L

T = 5.05 , Bi sat ,L
T = 0 , Bi θ ,LT = 4.96 · 10−1 ,

x = 1 : Bi sat ,R
M = 0 , Bi θ ,RM = 5.18 , BiT ,R

T = 1.98 , Bi sat ,R
T = 0 , Bi θ ,RT = 6.73 · 10−2 .

Additional flux parameters are taken as GM = GT = 0. Variation of the boundary data is set

to obey te following periodic functions:

x = 0 : uL
∞ = 1 +

3

5
sin

(
2π ·

t

5

) 2

, v L
∞ = 1 +

1

5
sin

(
2π ·

t

2

) 2

,

x = 1 : uR
∞ = 1 +

1

2
sin

(
2π ·

t

3

) 2

, vR
∞ = 1 +

9

10
sin

(
2π ·

t

6

) 2

.

A.2 Dimensionless parameters for nonlinear case study

For the sake of reproducibility of numerical simulations presented in Section 4.2, we provide

here all necessary parameters of the mathematical model. The problem is considered with Fo T =

1.61 · 10−1, FoM = 1.16 · 10−2, γ = 2.35 · 10−2 and δ = 1.5 · 10−1. Dimensionless

material properties are defined as follows:

D ⋆
θ ( v ) = 4.045 v 6.448 + 16.23 ,

D ⋆
T ( u ) = 0.4 + 3.4u ,

c⋆T ( v ) =
246.6 v 2 − 778.9 v + 656.9

v 4 − 41.37 v 3 + 395.2 v 2 − 985.6 v + 760.7
,

k⋆T ( v ) =
15.3 v 2 − 46.53 v + 38.04

v 4 − 10.46 v 3 + 46.24 v 2 − 85.34 v + 56.1
,

k⋆TM ( v ) =
1.644 v 2 − 7.013 v + 7.505

v 4 − 3.133 v 3 + 4.859 v 2 − 8.003 v + 7.408
.

BIOT numbers of the boundary conditions are taken to be equal to:

x = 0 : Bi sat ,L
M = 0 , Bi θ ,LM = 3.65 , BiT ,L

T = 6.45 , Bi sat ,L
T = 0 , Bi θ ,LT = 0.514 ,

x = 1 : Bi sat ,R
M = 0 , Bi θ ,RM = 5.48 · 10−1 , Bi T ,R

T = 2.06 , Bi sat ,R
T = 0 , Bi θ ,RT = 7.72 · 10−2 .

Additional flux parameters are taken as GM = GT = 0 .

39



References

[1] M. Woloszyn and C. Rode. Tools for performance simulation of heat, air and moisture conditions of

whole buildings. In Building Simulation, volume 1, pages 5–24. Springer, 2008.

[2] A. S. Guimarães, J. Delgado, A. C. Azevedo, and V. P. de Freitas. Interface influence on moisture

transport in buildings. Construction and Building Materials, 162:480–488, 2018.

[3] B.C. Bauklimatik Dresden. Simulation Program for the Calculation of Coupled Heat, Moisture, Air,

Pollutant, and Salt Transport. 2011.

[4] I.B.P. Fraunhofer. Wufi. 2005.

[5] N. Mendes, M. Chhay, J. Berger, and D. Dutykh. Numerical methods for diffusion phenomena in

building physics: A practical introduction. PUCPRess, 2017.

[6] A. Luikov. Heat and mass transfer in capillary bodies. New York, NY: Pergamon Press, 1966.

[7] W. J. Ferguson and I. W. Turner. A comparison of the finite element and control volume numerical

solution techniques applied to timber drying problems below the boiling point. International Journal

for Numerical Methods in Engineering, 38(3):451–467, 1995.

[8] H. Thomas, K. Morgan, and R. Lewis. A fully nonlinear analysis of heat and mass transfer problems

in porous bodies. International Journal for Numerical Methods in Engineering, 15(9):1381–1393,

1980.

[9] F. Tariku, K. Kumaran, and P. Fazio. Transient model for coupled heat, air and moisture transfer

through multilayered porous media. International journal of heat and mass transfer, 53(15):3035–

3044, 2010.

[10] J. Langmans, A. Nicolai, R. Klein, and S. Roels. A quasi-steady state implementation of air convec-

tion in a transient heat and moisture building component model. Building and Environment, 58:208–

218, 2012.

[11] C. Belleudy, M. Woloszyn, M. Chhay, and M. Cosnier. A 2d model for coupled heat, air, and moisture

transfer through porous media in contact with air channels. International Journal of Heat and Mass

Transfer, 95:453–465, 2016.

[12] K. Abahri, R. Bennacer, and R. Belarbi. Sensitivity analyses of convective and diffusive driving

potentials on combined heat air and mass transfer in hygroscopic materials. Numerical Heat Transfer,

Part A: Applications, 69(10):1079–1091, 2016.

[13] M. Simo-Tagne, R. Rémond, Y. Rogaume, A. Zoulalian, and B. Bonoma. Modeling of coupled

heat and mass transfer during drying of tropical woods. International Journal of Thermal Sciences,

109:299 – 308, 2016.

[14] A. Paepcke and A. Nicolai. Performance analysis of coupled quasi-steady state air flow calcula-

tion and dynamic simulation of hygrothermal transport inside porous materials. Energy Procedia,

132:759–764, 2017.

[15] T. Hong, J. Langevin, and K. Sun. Building simulation: Ten challenges. In Building Simulation,

pages 1–28. Springer, 2018.

[16] M. P. Clark and D. Kavetski. Ancient numerical daemons of conceptual hydrological modeling: 1.

fidelity and efficiency of time stepping schemes. Water Resources Research, 46(10), 2010.

40



[17] D. Kavetski and M. P. Clark. Ancient numerical daemons of conceptual hydrological modeling:

2. impact of time stepping schemes on model analysis and prediction. Water Resources Research,

46(10), 2010.

[18] W. Gentzsch. Numerical solution of linear and non-linear parabolic differential equations by a time-

discretisation of third order accuracy. Proceedings of the third GAMM—Conference on Numerical

Methods in Fluid Mechanics, pages 109–117, 1980.

[19] K. Gurski and S. O’Sullivan. A stability study of a new explicit numerical scheme for a system of

differential equations with a large skew-symmetric component. SIAM Journal on Numerical Analysis,

49(1):368–386, 2011.

[20] C. D. Meyer, D. S. Balsara, and T. D. Aslam. A second-order accurate super timestepping formulation

for anisotropic thermal conduction. Monthly Notices of the Royal Astronomical Society, 422(3):2102–

2115, 2012.

[21] C. D. Meyer, D. S. Balsara, and T. D. Aslam. A stabilized Runge–Kutta–Legendre method for explicit

super-time-stepping of parabolic and mixed equations. Journal of Computational Physics, 257:594–

626, 2014.

[22] P. Schrooyen, A. Turchi, K. Hillewaert, P. Chatelain, and T. E. Magin. Two-way coupled simula-

tions of stagnation-point ablation with transient material response. International Journal of Thermal

Sciences, 134:639 – 652, 2018.

[23] J.-J. Droux. Three-dimensional numerical simulation of solidification by an improved explicit

scheme. Computer Methods in Applied Mechanics and Engineering, 85(1):57–74, 1991.

[24] V. Alexiades. Overcoming the stability restriction of explicit schemes via super-time-stepping. Pro-

ceedings of Dynamic Systems and Applications, 2:39–44, 1995.

[25] V. Alexiades, G. Amiez, and P.-A. Gremaud. Super-time-stepping acceleration of explicit schemes

for parabolic problems. Communications in numerical methods in engineering, 12(1):31–42, 1996.

[26] S. Gasparin, J. Berger, D. Dutykh, and N. Mendes. Stable explicit schemes for simulation of nonlinear

moisture transfer in porous materials. Journal of Building Performance Simulation, 11(2):129–144,

2018.

[27] S. Gasparin, J. Berger, D. Dutykh, and N. Mendes. An improved explicit scheme for whole-building

hygrothermal simulation. In Building Simulation, volume 11, pages 465–481. Springer, 2018.

[28] P.-A. Chabriac. Mesure du comportement hygrothermique du pisé. PhD thesis, ENTPE; CNRS-LTDS

(UMR 5513), 2014.

[29] L. Soudani, A. Fabbri, J.-C. Morel, M. Woloszyn, P.-A. Chabriac, H. Wong, and A.-C. Grillet. As-

sessment of the validity of some common assumptions in hygrothermal modeling of earth based

materials. Energy and Buildings, 116:498–511, 2016.

[30] L. Soudani, M. Woloszyn, A. Fabbri, J.-C. Morel, and A.-C. Grillet. Energy evaluation of rammed

earth walls using long term in-situ measurements. Solar Energy, 141:70–80, 2017.

[31] J. R. Philip and D. A. De Vries. Moisture movement in porous materials under temperature gradients.

Eos, Transactions American Geophysical Union, 38(2):222–232, 1957.

[32] N. Mendes, P. C. Philippi, and R. Lamberts. A new mathematical method to solve highly coupled

equations of heat and mass transfer in porous media. International Journal of Heat and Mass Transfer,

45(3):509–518, 2002.

41



[33] G. H. dos Santos, N. Mendes, and P. C. Philippi. A building corner model for hygrothermal perfor-

mance and mould growth risk analyses. International Journal of Heat and Mass Transfer, 52(21-

22):4862–4872, 2009.

[34] H. M. Künzel. Simultaneous heat and moisture transport in building components. One-and two-

dimensional calculation using simple parameters. IRB-Verlag Stuttgart, 1995.

[35] H. Auracher. Wasserdampfdiffusion und Reifbildung in porösen Stoffen: Mitteilung aus dem Institut

für Technische Thermodynamik und Thermische Verfahrenstechnik der Universität Stuttgart. VDI-

Verlag, 1974.

[36] S. Gasparin, J. Berger, D. Dutykh, and N. Mendes. An adaptive simulation of nonlinear heat and

moisture transfer as a boundary value problem. International Journal of Thermal Sciences, 133:120–

139, 2018.

[37] O. Coussy. Poromechanics. John Wiley & Sons Ltd., 2004.

[38] D. J. Struik. A source book in mathematics, 1200-1800, volume 11. Harvard University Press, 1969.

[39] J. Berger, S. Gasparin, D. Dutykh, and N. Mendes. Accuracy of numerical methods applied to build-

ing energy performance. 2017.

[40] A. Trabelsi, Z. Slimani, and J. Virgone. Response surface analysis of the dimensionless heat and mass

transfer parameters of medium density fiberboard. International Journal of Heat and Mass Transfer,

127:623–630, 2018.

[41] A. H. Nayfeh. Perturbation methods. John Wiley & Sons, 2008.

[42] S.V. Patankar. Numerical fluid flow and heat transfer. Hemisphere, New York, 1980.

[43] E. C. Du Fort and S. P. Frankel. Stability conditions in the numerical treatment of parabolic differen-

tial equations. Mathematical Tables and Other Aids to Computation, 7(43):135–152, 1953.

[44] R. D. Richtmyer and K. W. Morton. Difference methods for initial-value problems. Interscience,

New York, 1967.

[45] P. J. Taylor. The stability of the Du Fort-Frankel method for the diffusion equation with boundary

conditions involving space derivatives. The Computer Journal, 13(1):92–97, 1970.

[46] R. Courant, K. Friedrichs, and H. Lewy. On the partial difference equations of mathematical physics.

IBM journal of Research and Development, 11(2):215–234, 1967.

[47] V Markov. On functions least deviated from zero on a given interval. St. Petersburg (in Russian).

German translation: Uber Polynome, die in einem gegeben Intervalle möglichst wenig fon Null ab-

weichen. Math. Ann, 77(1916):213–258, 1892.

[48] T. A. Driscoll, N. Hale, and L. N. Trefethen. Chebfun guide. Pafnuty Publications, Oxford, 2014.

[49] G. Söderlind and L. Wang. Evaluating numerical ODE/DAE methods, algorithms and software.

Journal of computational and applied mathematics, 185(2):244–260, 2006.

[50] L. Soudani, A. Fabbri, M. Woloszyn, P.-A. Chabriac, A.-C. Grillet, and J.-C. Morel. Etude de la

pertinence des hypothèses dans la modélisation hygrothermique du pisé. In Proceedings of French

Speaking Conference of the International Building Performance, 2014.

[51] L. Soudani. Modelling and experimental validation of the hygrothermal performances of earth as a

building material. PhD thesis, Lyon, 2016.

42


	Introduction
	Mathematical Model
	Heat and mass balance
	Expression of the flows
	Governing equations
	Boundary conditions
	Dimensionless formulation

	Numerical Methods
	The DuFort–Frankel Method
	The Super–Time–Stepping Method
	RKC1: Runge–Kutta–Chebyshev method
	RKL: Runge–Kutta–Legendre approach
	Extension to nonlinear equation
	Extension to coupled system of nonlinear equations

	Comparing numerical solutions

	Numerical validation
	First case: linear heat and mass transfer model
	Case study
	Results and discussion

	Second case: nonlinear heat and mass transfer model
	Case study
	Results and discussion


	Comparison with experimental observations
	Experimental set up
	Parameters for the mathematical model
	Results and discussion

	Conclusion
	Acknowledgements
	Nomenclature
	Appendix
	Dimensionless parameters for linear case study
	Dimensionless parameters for nonlinear case study

	References

